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Similar image search for histopathology: SMILY
Narayan Hegde 1, Jason D. Hipp1, Yun Liu1, Michael Emmert-Buck2, Emily Reif1, Daniel Smilkov1, Michael Terry1, Carrie J. Cai1,

Mahul B. Amin3, Craig H. Mermel 1, Phil Q. Nelson1, Lily H. Peng1, Greg S. Corrado1 and Martin C. Stumpe1,4

The increasing availability of large institutional and public histopathology image datasets is enabling the searching of these

datasets for diagnosis, research, and education. Although these datasets typically have associated metadata such as diagnosis or

clinical notes, even carefully curated datasets rarely contain annotations of the location of regions of interest on each image. As

pathology images are extremely large (up to 100,000 pixels in each dimension), further laborious visual search of each image may

be needed to find the feature of interest. In this paper, we introduce a deep-learning-based reverse image search tool for

histopathology images: Similar Medical Images Like Yours (SMILY). We assessed SMILY’s ability to retrieve search results in two

ways: using pathologist-provided annotations, and via prospective studies where pathologists evaluated the quality of SMILY search

results. As a negative control in the second evaluation, pathologists were blinded to whether search results were retrieved by SMILY

or randomly. In both types of assessments, SMILY was able to retrieve search results with similar histologic features, organ site, and

prostate cancer Gleason grade compared with the original query. SMILY may be a useful general-purpose tool in the pathologist’s

arsenal, to improve the efficiency of searching large archives of histopathology images, without the need to develop and

implement specific tools for each application.
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INTRODUCTION

The growing adoption of digital pathology1 provides opportu-
nities to archive and search large databases of pathology images
for diagnosis, research, and education. Histopathology is the
examination of biological tissue specimens for diagnostic pur-
poses and is traditionally performed using microscopes. After
digitization, images “tagged” (annotated) with clinical data such as
diagnoses and patient demographics can be searched based on
the text-based tags. For example, searching for “breast” and
“carcinoma” in the clinical notes could yield a list of images that
were diagnosed or suspected to contain breast cancer.
A relatively unique aspect of histopathology images is that they

are typically much larger than those found in other imaging
specialties: a typical pathology slide might be 100,000 × 100,000
pixels when digitized at high magnification. Since clinical
annotations such as text reports apply to the entire image or
sets of images rather than specific locations within the image,
matching a search “query” with the location in the image that the
search is relevant to can be challenging. For instance, a tumor in a
pathology image may be only 100 pixels across, comprising one-
millionth of the image area. A clinician, researcher, or trainee who
has found this image or set of images via searching based on text
would still need to visually search the image to locate the lesion
before any subsequent analysis. This problem is further com-
pounded because like many disciplines, real-world pathology
cases contain multiple (e.g., 5–100) images, and the available text
labels might not be specific enough in terms of a particular
disease subtype of interest.
In non-medical domains, a potential solution is reverse image

search, also termed content-based image retrieval (CBIR),2 to find

visually “similar” images. In the diagnostic workflow for example, a
clinician may want to search a database for similar lesions to
determine if a feature of interest is malignant or a benign
histologic mimic, for example in basal cell carcinoma.3 Relevant
tools in non-medical domains include “search by image” for
general images,4 visual search5 for retail products, and other tools
for faces6 and art.7 In medical imaging, related works include CBIR
for radiology8–10 and pathology.11–20 Prior machine learning-
based CBIR systems have employed application-specific models,
which require collecting labeled data for each application,
creating a significant burden to their implementation. Further-
more, “similarity” in these works were defined along specific axes,
whereas the intended meaning could vary based on the use case.
For example, two images could be similar in that they originate
from the same organ, same cancer, similar staining, or similar
histologic features.
In this paper, we developed a histopathology similar image

search tool (Similar Medical Images Like Yours, SMILY) without
using labeled histopathology images. We then evaluated histo-
pathology image search quality in several organs: breast, prostate,
and colon, representing three of the four most common non-
cutaneous cancer sites. Our evaluation had two components. First,
we quantitatively evaluated how often a query image would be
matched to an appropriate result from a dataset that was pre-
annotated by pathologists. Second, in a blinded prospective study,
we had pathologists evaluate how a query image compared to
search results that were selected either using SMILY or randomly.
In both evaluations, we assessed SMILY’s ability to retrieve similar
tissue types, histologic features and even disease states such as
prostate cancer Gleason grading.
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RESULTS

Overview of SMILY and our evaluations

Figure 1 provides an overview of the development and usage of
our proposed tool, SMILY. The first step is to create the SMILY
database for searching. The core algorithm of this step is a
convolutional neural network that condenses image information
into a numerical feature vector, termed an embedding. When
computed across image patches cropped from slides, this created
a database of patches and a numerical summary of each patch’s
information content. When a region of interest is selected for
searching (termed the query image), the embedding for the query
image is computed and compared with those in the database to
retrieve the most similar patches (Methods). An example of the
user interface for SMILY is presented in Fig. 2. In the following
evaluations, the database was constructed using images at
medium (×10) magnification from the publicly available TCGA
(The Cancer Genome Atlas).21 In total, the evaluations used
127,000 image patches from 45 slides and the query set consisted
of 22,500 patches from another 15 slides.

Large-scale quantitative study using annotations

Labels for the first type of evaluation were prepared by
pathologists annotating various histologic features in the images,
such as arteries, nerves, smooth muscle, and fat. Despite non-
exhaustive annotations, this process produced a total annotated
area exceeding 128,000,000 8 × 8 μm regions (each roughly
equivalent to a lymphocyte). After sampling to ensure a balanced
dataset with respect to classes of interest in each analysis, this
produced thousands of image patches per class (Methods, Table 1).
Next, for each query patch, we evaluated the performance of
SMILY in retrieving patches of the same histologic feature in the
database. We used the top-5 score, which evaluates the ability of
SMILY to correctly present at least one correct result in the top five

search results. This metric was chosen to mimic the standard
search process, where a user evaluates a small number of search
results to find matches of interest. The subsequent evaluations
used image patches extracted at ×10 “medium power” magnifica-

tion, which is commonly used for reviewing images. The results on
other magnifications are presented in Supplementary Fig. 1, and
additional performance metrics are presented in Supplementary
Fig. 2. The use of multiple magnifications at the same time for

additional context also improved performance (Supplementary
Fig. 3).
Figure 3a illustrates the results of this large-scale quantitative

analysis. When we used query images from prostate specimens,
SMILY had a 62.0% top-5 score at retrieving images of the same

histologic feature. This was significantly higher than a traditional
image feature extractor (scale-invariant feature transform, SIFT)
used in related work17 (44.2%, p < 0.001 for all histologic features
except nerve, which was non-significant) and random (28.3%).

When SMILY retrieved results that did not exactly match the
histologic feature, it commonly returned a similar feature, such as
another fluid-transporting vessel: capillaries, arteries, veins, and

lymphatics (Fig. 4a). Next, we expanded to queries from multiple
organs: breast, colon, and prostate. For most histologic features,
errors tended to occur between the same histologic features, but
across organs (Fig. 4b). For example, the histologic feature match

score was at 65.3%, but the combined histologic feature and
organ match was lower at 40.0%. Finally, we evaluated the ability
of SMILY to retrieve images of the same prostate cancer Gleason
pattern (Fig. 3b). SMILY was significantly more accurate than the

SIFT baselines at retrieving images with the correct Gleason
patterns (73.1% vs. 62.1%, p < 0.001), and frequently with both the
same Gleason pattern and the same histologic feature (25.3% vs.

17.6%, p < 0.001 for comparison with SMILY).

Fig. 1 Overview of Similar Medical Images Like Yours (SMILY). First, a database of image patches and a numerical characterization of each
patch’s image contents (termed the embedding) is created. SMILY uses a convolutional neural network to compute this embedding (schematic
used for illustration purposes only, see Methods for architecture descriptions). Next, when a query image is selected, SMILY computes the
embedding of that query image and compares the embedding with those in the database in a computationally efficient manner. Finally,
SMILY returns the k most similar patches, where k is customizable
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Study with pathologists

The previous analyses used a large number of patches for
evaluations: >20,000 patches in the query set and five times that
number in the database. However, one limitation was that they
were based on non-exhaustive annotations of histologic features
and Gleason patterns. For example, if a query image contains fat
only, a retrieved image search result that contains both fat and an
artery (but is only annotated as “artery”) will be considered an
error during the prior evaluation. Thus, our second set of
evaluations involved a study with pathologists to assess if at least
one histologic feature or cancer grade present in the query image
exists in the SMILY search results. As a control to ensure that
graders were not artificially scoring SMILY results highly, some
search results were from a random search instead of SMILY. The
graders were blinded to the source of the search results: SMILY or
random. Analogous to the large-scale quantitative stores above,
we then assessed search results along multiple axes: histologic
feature, organ site, and Gleason grading (Table 2).
Using queries from prostate specimens, SMILY had an average

score (Methods) of 62.1% for finding similar histologic features,
significantly higher than the random search results (26.8%,

p < 0.001) (Fig. 5a). “Random” performance exceeds the inverse
of the number of categories (1/9= 11%) because each search
result can contain multiple histologic features. When we queried
from multiple organs, SMILY’s score for histologic feature match
was similarly significantly higher than random (57.8% vs. 18.3%,
p < 0.001, Fig. 5b). In this study, pathologists reported the organ
site as unambiguous for only 32.0% of the individual search
results. Among these search results, 68.3% were from the same
organ site as the query image (Fig. 5c). Finally, graders provided a
0–100 “match quality score” for prostate cancer patches, based on
tumor presence, Gleason pattern and histologic features (Methods
and Table 3). In this analysis, SMILY scored an average of 61.0%,
compared with 30.0% for random results (Fig. 5d, p < 0.001).

Visualization of learned embeddings

To better understand SMILY, we visualized the embeddings using
t-SNE, a common tool for understanding where data lie in a high-
dimensional embedding space.22 Figure 6a shows that image
patches from the same organ site can lie in very different areas in
the embedding space. When colored based on histologic features,
the clusters tend to have more distinct colors (Fig. 6b). For

Table 1. Summary of data used in large-scale quantitative study

Dataset Organ site(s) Categories assessed Number of slides
in the database

Number of patches
in the database

Number of slides in
the query set

Number of patches
in the query set

Organ-specific Prostate 9 histologic features 15 45,000 (5,000 per
feature)

5 9,000 (1000 per
feature)

Multi-organ Prostate,
breast, colon

10 histologic features 45 87,000 (3,000 per
feature/organa)

15 14,500 (500 per
feature/organa)

Gleason
gradingb

Prostate Non-tumor and Gleason Patterns
3,4,5 (NT, GP3, GP4, GP5)

20 40,000 (10,000 in
each category)

5 8,000 (2,000 in each
category)

To avoid biases in the evaluation, we randomly subsampled the original annotated regions, resulting in 5,000 patches per histologic feature per organ
aIn our study, no lymphocytes were found upon non-exhaustive review of the prostate specimens, so the number of patches exclude this
bNot every patch in this dataset was concurrently labeled with histologic features, so 4,000 database patches and 1,600 query patches with both types of

annotations were used for assessing the simultaneous match of both Gleason pattern and histologic feature

Fig. 2 Sample view of the SMILY user interface. Sample query from a prostate specimen and search results. One of the search results has been
magnified for better visualization. Clicking a search result opens a new viewer centered on the result that can be zoomed in for detail or
zoomed out for context. Additional examples of queries and search results are presented in Supplementary Fig. 4, including an additional
interface for scoring the quality of each search result for the prospective studies with pathologists
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example, the bottom left prostate cluster in Fig. 6a is composed of
a mixture of histologic features such as arteries, lymphatic vessels,
and capillaries in Fig. 6b.

Computational efficiency of searching

Finally, to investigate the computational efficiency of SMILY for
datasets of realistic sizes, we created a database for all prostate,
breast, lung, and colon specimens from TCGA, at four magnifica-
tions: ×40, ×20, ×10, and ×5. This generated about 109 image
patches. Using 400 computers with ten compute threads each,
and some optimizations to use a hash table instead of the kd-tree
depending on the local embedding density,23 queries had a
median query time of 1.3 s. This can in principle be further
accelerated using text-based search to filter images, and real-time
updating of search results to present preliminary results before
the search completes. By contrast, a naive implementation on a
single machine with 107 image patches (100 times fewer than
above) required a significantly slower 25 s per query.

DISCUSSION

This study presents SMILY, a tool to search for similar histopathol-
ogy images using an image as the query. To our knowledge, we
have performed the most comprehensive evaluation of a reverse
image search tool for histopathology. SMILY retrieves image
search results with similar histologic features, organ site, and
cancer grades, based on both large-scale quantitative analysis
using annotated tissue regions and prospective studies with
pathologists blinded to the source of the search results. In the rest
of this discussion, we will discuss some nuanced issues regarding
similar image search: what ‘similarity’’ means; what a tool like
SMILY can be used for; comparison with “traditional” application-
specific approaches; how SMILY was developed and what that
means for future applications not covered in our evaluations;
comparison with prior work; and finally technical implementation
considerations.
First, the meaning of “accuracy” in the setting of a similar image

search tool deserves some thought. From first principles, the ideal

Fig. 3 SMILY search accuracy from large-scale quantitative evaluation using pathologist-provided annotations. a Results for histologic feature
match in prostate specimens, in comparison with a traditional image feature extractor (scale-invariant feature transform, SIFT) and random
search. b Results for prostate cancer Gleason grade and histologic feature match, in comparison with the same baselines. Error bars indicate
95% confidence intervals (Methods)
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search tool displays what you are searching for. However, this goal
is ambiguous because the intent of the search depends on the use
case: searching for other images with the same stain, similar stain
intensity, same histologic feature, or similar lesion in the most
general sense. As such, in the absence of information about search
intent, the ideal tool should surface a breadth of search results
instead of focusing on any single axis of similarity. To address the
lack of algorithmic awareness for the search intent, advances in
human-computer interaction may enable interactive refinement of
search results based on certain desired axes of similarity.24

The potential use cases for a tool like SMILY can be categorized
into diagnosis, research, and education. In diagnosis, SMILY could
be a helpful tool to search for similar lesions within the same slide
or in other patients. For example, the pathologist might want to
know the frequency of that lesion or histologic feature’s
occurrence in the specimen, such as searching for the region of
highest mitotic activity and then counting mitoses in ten high-
powered fields-of-view for breast cancer.25 Searching for rare
features in other slides may be helpful in rare diagnoses, to better
understand the prognosis of other patients with similar features,
including potentially rare pathologies from historic cases with

known intervention and treatment response. For research, a
clinician might have a hypothesis: occurrence of a certain
histopathological feature in the slide is correlated with clinical
endpoints. However, an adequately powered study may require a
large number of patients, rendering the manual search for these
features highly labor intensive. SMILY could enable significant
speedups in this search via computer-assisted search. Finally,
trainees are frequently confronted with unknown lesions. Manual
searching of pathology textbooks, atlases, and other resources for
similar lesions can be time-consuming; SMILY could reduce this
process to an image-based query and manual assessment for the
most relevant result. Importantly, these searches could also
leverage large publicly available databases such as the TCGA, as
we have done here.
Indeed, with respect to specific applications such as mitotic

counting,26 approaches that have been developed specifically for
that application may result in higher accuracy for that purpose.
However, developing and implementing specific but separate
approaches for every possible task of interest is impractical. Some
challenges are: expensive data collection and labeling, difficulty of
workflow integration and potential legal or commercial issues, and

Fig. 4 Confusion matrix from SMILY search. An element in row i, column j indicates the fraction of search results for query i that result in a “hit”
based on the top-5 score for the category j. a Confusion matrix for the results from Fig. 3a: histologic feature match in prostate specimens.
b Confusion matrix for histologic feature match across prostate, breast, and colon specimens. To improve visual contrast and highlight trends
better, only discrete colors and rounded-off values are used

Table 2. Summary of data used in the studies with pathologists

Dataset Organ site Categories assessed No. of patchesa queried
by SMILY

No. of patchesa queries by
random search (negative
control)

Scoring system (see Methods)

Organ-
specific

Prostate 9 histologic features 270 by 2 pathologists 90 by 2 pathologists 0 or 100 for histologic
feature match

Multi-organ Prostate,
breast, colon

10 histologic features 410 by 2 pathologists 145 by 2 pathologists 2 scores: 0 or 100 for
histologic feature match, and
0 or 100 or “unclear” for
organ match

Gleason
grading

Prostate Non-tumor and Gleason
Patterns 3,4,5 (NT, GP3,
GP4, GP5)

250 by 2 pathologists 90 by 2 pathologists 0 to 100 for tumor grade and
histologic feature match

The database used for this study is identical to Table 1, while the query set was subsampled to retain a tractable number for manual evaluations
aWhether search results were returned by SMILY versus random were randomized based on the ratios specified in this table and so the final numbers of

patches are approximate
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lack of machine learning, software or hardware expertize for
development or implementation. As such, the availability of a
general-purpose tool like SMILY that can be used in multiple
applications, can be helpful despite having lower accuracy than an
application-specific tool.
An interesting aspect of SMILY is that the core neural network

algorithm was not trained using histopathology images. Instead,
the network was trained using a dataset of images, including
people, animals, and man-made and natural objects (see
Methods). Thus, our approach does not require the use of large,
pixel-annotated datasets such as those used for breast cancer
mitotic figure detection,27 breast cancer metastasis,28 or “image-
level” labels such as those extracted from pathology reports.29

Although the network was not exposed during training to imaging

characteristics from different laboratories or slide scanners, the
study images we tested SMILY on were digitized on several
scanners (Aperio, 3DHISTECH, and Hamamatsu), different magni-
fications (× 40 and × 20), different color spaces (RGB and YUV), and
different compressions schemes (JPEG and JPEG2000). In principle,
the development of a similar histopathology “similarity” dataset
could further improve the embeddings learned by the model, and
is the subject of future work. The results of using several other
“pre-trained” neural networks are presented in Supplementary
Fig. 5.
CBIR has been studied extensively in medical imaging,9,10,30 and

in histopathology for both slides14,18 and image
patches.11–13,15,19,20,31 However, the models underlying these CBIR
systems require pathologist-annotated labels for development,

Fig. 5 Evaluation of SMILY from studies with pathologists. The pathologists evaluated search results, blinded to whether the results were
retrieved by SMILY versus a negative control, random selection. The similarity scoring rubrics are detailed in the “Prospective studies with
pathologists” subsection in the Methods. a Histologic feature match in prostate specimens. b Histologic feature match in prostate, breast, and
colon specimens. c Organ site match in prostate, breast, and colon specimens. d Overall match score (Table 3) in prostate specimens for
similarity in histology and prostate cancer Gleason grade. Error bars indicate 95% confidence intervals (Methods)

Table 3. Overall match quality score for multi-aspect similarity evaluation

Score Criteria

0 If the presence/absence of tumor in both patches do not match and they look visually different

25 If the presence/absence of tumor in both patches do not match and but histologic features match

50 If the presence of tumor in both patches match but not the tumor grade

75 If the diagnostic grades match or both patches are normal (e.g. Gleason grade for prostate)

100 If the diagnostic grades match or both patches are normal (e.g. Gleason grade for prostate) in addition to at least one histologic feature match

N. Hegde et al.
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which is both costly and non-scalable. These annotations also in
turn restrict the concept of similarity to be along a few
predetermined axes, such as cancer grade and histologic features.
In prior work, lookup accuracies ranged from 60 to 80% for breast,
prostate, necrotic and leukocyte organ sites and histologic
features.13,15 By contrast, SMILY achieved comparable perfor-
mance without the use of application-specific labeled data for
development, and thus can potentially be applied to applications
without labeled training data. Specifically, although the neural
network underlying SMILY was trained using supervised learning
based on non-histopathological images (Methods), the histo-
pathology annotations we collected were used exclusively for
evaluating SMILY and not training. Alternative histopathology
CBIR approaches in the absence of labeled training data include
SIFT, kernel and Fourier functions.17,32 We have performed a
quantitative comparison with SIFT to evaluate the added value of
using a neural network-based system like SMILY for automatic
feature extraction, showing a significant improvement in lookup
accuracy across multiple image retrieval experiments.
The large size of each histopathology image and the scale of

typical histopathology databases (103–106 images) raise important
technical considerations for real-world use. First, the embedding
of each patch needs to be calculated as a one-time computation
cost. This incurs a delay to compute the embeddings for the
103–106 patches in each newly digitized slide before the slide can
be searched across. Second, these embeddings need to be stored
to avoid repeated embedding computation. Although this over-
head was only 0.4% per gigabyte-sized image in our studies, this
storage requirement increases with the number of magnifications
of interest, and density of sampling each slide. Finally, the search
phase requires comparing the query image embedding with
millions or billions of other embeddings. For example, a naive
implementation of this process on the entirety of the publicly
available The Cancer Genome Atlas (TCGA, contains over
33,000 slides) dataset33 will incur an impractical, half-minute
latency on a modern desktop computer. To support real-world
usage, we have optimized this process to require only seconds on
a web interface (Methods).
This study contains limitations, such as those discussed in-depth

above regarding accuracy of a similar image search tool and
limitation of a general-purpose search tool versus application-
specific tools. In addition, the number of slides could be increased
to better capture the breadth of tissue processing conditions and
resulting images. We have evaluated “similarity” in terms of

histologic features, organ site, and prostate cancer grade, but
there are other axes of similarities that SMILY will need to be
further validated on. Additional studies will be needed to fully
assess and improve the intraobserver and interobserver variability
for pathologists’ scoring of “similarity”. Lastly, future work will also
need to tackle the ‘refinement’’ of search results along specific
similarity axes of interest, to enable more targeted image-based
search for histopathology.

METHODS

Neural network architecture

SMILY is based on a convolutional neural network architecture called a
deep ranking network.34 We chose to use neural networks for this task
because of their success in recent years in image-related tasks such as
classification and object detection, by learning the discriminative features
instead of needing to be specifically designed.35 Briefly, the deep ranking
network is based on an embedding-computing module that compresses
input image patches (of dimensions width x height x channels) into a fixed-
length vector. This module contains layers of convolutional, pooling, and
concatenation operations. During training, the network was fed labeled
sets of three images: a reference image I of a certain class, a second image
I+ of the same class, and a third image I- of a different class. The network
then uses the modules to compute the embeddings of each of the three
images. The network is then trained to assign a lower distance between
the embeddings of (I, I+) than the embedding distances of (I, I-). Our
network was trained on about 500,000,000 “natural images” (e.g., dogs,
cats, trees, man-made objects etc) from 18,000 distinct classes. In this way,
the network learned to distinguish similar images from dissimilar ones by
computing and comparing the embeddings of input images.34,36 This
network was successfully leveraged to generate embeddings that
discriminated between cellular phenotypes in high-content screening.37

Building the SMILY embedding database

For the experiments described in this paper, we used slides from The
Cancer Genome Atlas (TCGA).21 TCGA was used because it is publicly
available and widely used for histopathology studies. TCGA tissue samples
were collected with approval of local Institutional Review Boards (IRBs),
with the informed consent of patients. Ethics review and IRB exemption for
the use of de-identified images in this study was obtained from Quorum
Review IRB (Seattle, WA).
Additional details about each experiment’s dataset are provided in the

respective study sections. SMILY uses the embedding-computing module
from the deep ranking network (Fig. 1) to compress input image patches
(300 × 300 pixels 3-channel RGB (red-green-blue) images) into embeddings
vectors of size 128. As histopathology images are orientation-independent,

Fig. 6 Visualizations of the embeddings of image patches in the SMILY database. Each dot represents an image patch. a Colored by organ site,
indicating that patches from the same organ were distributed among different clusters. b Colored by histologic feature, indicating a more
distinct separation between histologic features
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we additionally generate the four 90-degree rotations of each input image,
and the mirrored and rotated versions for a total of eight orientations, and
correspondingly eight 128-sized embeddings per image patch, a 260-fold
dimensionality reduction. Even in the absence of any additional
compression, storing these embeddings required a reasonable additional
0.4% storage overhead compared to storing the original images alone.
To create image patches at a given image magnification (e.g., high

magnifications like × 40 and × 20, or medium magnification like × 10), we
extracted thousands of non-overlapping patches per category (Table 1).
For a real use case, overlaps can be used to ensure each histologic feature
is contained entirely in a patch of the appropriate magnification, instead of
being potentially bisected into two patches.

Querying the database

To retrieve matches from the database, SMILY first computes the
embedding for a selected query image patch, and then compares that
embedding with the embeddings stored in the database. For this work, our
comparison function was the L2 distance across pairs of 128-sized
embedding vectors. To handle the eight orientations (see above), we
filtered the search results such that the most similar orientation was
returned, and only one orientation for each distinct image patch was
presented in each set of search results. In addition, to enhance diversity of
the search results, we filtered the results to ensure that no results were
within 1,000 pixels of each other.
Our experiments (described below) required large numbers of embed-

ding comparisons, ranging from 40,000 to 90,000. To enable efficient
lookups, we used k-dimensional (k-d) trees38 with a leaf size of 40 and
depth of 6; this is customizable to fit computation resources and speed
requirements. To further optimize lookup speed, we parallelized the
comparisons across multiple machines (Results). These steps provided a
lookup time sublinear in the number of comparisons.

SMILY’s user interface

SMILY was implemented as a web-based whole-slide viewer (Fig. 2). To
conduct a search, a user selects a rectangular image patch between 200
and 400 pixels in height and width. For a query patch that is not 300 × 300
pixels, SMILY resizes to 224 × 224 pixels using bilinear interpolation before
computing the embedding. The embedding is then used to search the
database based on the current magnification in the selected region, and
the results are displayed as a customizable number of image patches.
Optionally, any existing pixel-level annotations or slide-level metadata
such as the original diagnosis can be displayed as well.

Evaluations

To evaluate the utility of SMILY, we conducted several experiments by
building a SMILY database using the TCGA dataset, and then conducting
studies to examine the quality of SMILY image search results.

Large-scale quantitative studies

Our large-scale quantitative experiments were based on regions annotated
by pathologists with various labels (Table 1). In each case, pathologists
annotated slides with various histologic features (up to ten categories:
artery, capillary, fat, lymphatic vessel, lymphocyte, nerve, normal epithe-
lium, smooth muscle, stroma, vein) or Gleason patterns (four categories:
non-tumor and three Gleason patterns). Annotations were performed by
three pathologists using the Hamamatsu NDPview2 whole-slide image
viewer,39 using the free-hand outlining and labeling tool. The pathologists
were requested to annotate about 80% of each slide, and to look for and
annotate rarer histologic features as data collection proceeded and
significant skew emerged between categories. Because of the large size of
each slide and the complexity in the appearance of each feature of
interest, annotations were not 100% precise. Instead, annotations were
requested to be precise enough to have ~70% “purity” with respect to the
label of interest. A sample of these annotations are shown in the leftmost
image in Fig. 1. These annotations were used only for evaluating SMILY,
and not for developing the SMILY embedding neural network.
Patches of size 300 × 300 pixels for each histologic feature or Gleason

pattern category were then extracted based on the annotations and stored
in the SMILY database along with their embeddings computed at the
appropriate magnification. To avoid class imbalance for these experiments,
we subsampled hundreds to thousands of patches without replacement

for each category (Table 1). One exception was for the experiments
assessing both Gleason pattern and histologic feature match, where the
patches were filtered for only those that contained both types of
annotations.

Prospective studies with pathologists

In addition to the large-scale studies, we conducted similar studies by
asking pathologists to rate the quality of search results. As our annotations
(for the large-scale quantitative studies) were non-exhaustive, these
studies with pathologists allowed regions containing multiple labels (but
annotated only as one label) to be assessed correctly. The same database
from the large-scale quantitative studies were used, but the query data
were subsampled to hundreds instead of thousands, to retain a tractable
number of search results for manual evaluation by pathologists. To mimic
the use case of a user assessing multiple search results for a single query,
each query generated four search results, and the pathologist rated each
of the four results (the scoring system for each experiment is described
below). The final average score for each study is the average score across
all search results for all queries.
We used several scoring rubrics for similarity. Similarity along histologic

feature, organ, and Gleason pattern were assessed analogously to the
large-scale studies using binary scores (100 for “match” and 0 for “not-
match”). For an overall “match quality score” combining multiple axes, we
devised a 100-point score in 25-point increments (Table 3). A few samples
of the user interface for the histologic feature and organ similarity
assessment are presented in Supplementary Fig. 3.
In total, three anatomic pathologists from diverse backgrounds

participated in this study: 1 U.S. board-certified, 1 non-U.S. board-certified,
and 1 U.S. residency-trained. As a negative control to ensure that our
pathologists were not artificially rating SMILY search results highly, 25% of
the queries returned search results from random selection (i.e., all four
images were from SMILY or all four images were randomly selected). The
pathologists were blinded to the source of the search results: SMILY versus
random.

Statistical analysis

To assess the statistical significance of our results, we used the McNemar
test for differences in “binary” accuracy metrics, and the Mann–Whitney U-
test for differences in non-binary accuracy metrics (avoiding assumptions
of normality). Because of the large size of each study, most differences
were statistically significant except where noted in one instance (nerve in
histologic feature match). 95% confidence intervals were computed using
the Clopper Pearson interval for binary metrics (which use the top-5
accuracy to summarize the results of each query) and ± 1.96 standard error
for the non-binary accuracy metrics (which are averaged for the search
results for each query).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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