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Similar neural responses predict friendship
Carolyn Parkinson 1, Adam M. Kleinbaum 2 & Thalia Wheatley3

Human social networks are overwhelmingly homophilous: individuals tend to befriend others

who are similar to them in terms of a range of physical attributes (e.g., age, gender). Do

similarities among friends reflect deeper similarities in how we perceive, interpret, and

respond to the world? To test whether friendship, and more generally, social network

proximity, is associated with increased similarity of real-time mental responding, we used

functional magnetic resonance imaging to scan subjects’ brains during free viewing of nat-

uralistic movies. Here we show evidence for neural homophily: neural responses when

viewing audiovisual movies are exceptionally similar among friends, and that similarity

decreases with increasing distance in a real-world social network. These results suggest that

we are exceptionally similar to our friends in how we perceive and respond to the world

around us, which has implications for interpersonal influence and attraction.
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T
he notion that people tend to resemble their friends is an
enduring intuition, as evidenced by the centuries-old
adage, “birds of a feather flock together”1. Research has

borne out this intuition: social ties are forged at a higher-than-
expected rate between individuals of the same age, gender, eth-
nicity, and other demographic categories2. This assortativity in
friendship networks is referred to as homophily and has been
demonstrated across diverse contexts and geographic locations,
including online social networks2–5. Indeed, consistent evidence
suggests that homophily is an ancient organizing principle and
perhaps the most robust empirical regularity of human sociality.
Despite pressures to divide labor and otherwise organize com-
plementary needs and roles in the kinds of social groups in which
humans evolved, social ties in small hunter-gatherer bands reflect
similarities, rather than differences, across a range of attributes,
including age, weight, body fat, handgrip strength, and coopera-
tive behavioral tendencies4. Significant examples of heterophily,
which refers to the tendency to associate with others who are
dissimilar from oneself, are markedly rarer in such groups.
Consistent with its ancient history, homophily also characterizes
the social networks of our close primate relatives6 and has been
suggested to confer advantages for cohesion, collective action, and
empathy4,6. When humans do forge ties with individuals who are
dissimilar from themselves, these relationships tend to be
instrumental, task-oriented (e.g., professional collaborations
involving people with complementary skill sets7), and short-lived,
often dissolving after the individuals involved have achieved their
shared goal8. Thus, human social networks tend to be over-
whelmingly homophilous8.

Despite robust evidence that homophily organizes human
social networks, significant lacunae remain in our understanding
of how homophily arises and functions in these networks3,6. Prior
studies of homophily have been concerned largely with physical
traits and demographic variables, such as age, gender, and class.
Importantly, additional research has demonstrated that homo-
phily extends beyond overt, demographic cues, to at least some
aspects of behavior and personality. For example, behavioral
tendencies (e.g., donations in public goods games) associated with
altruistic behavior are more similar among individuals who are
friends compared with those who are not4, consistent with sug-
gestions from evolutionary game theory that altruistic behavior
only benefits individuals if their interaction partners also behave
altruistically9,10. Remarkably, social network proximity is as
important as genetic relatedness and more important than geo-
graphic proximity in predicting the similarity of two individuals’
cooperative behavioral tendencies4. Thus, although prior research
on homophily focused largely on relatively coarse variables, such
as demographic categories, a growing body of evidence has begun
to move beyond externally evident demographic attributes, and
suggests that social network proximity can be a powerful pre-
dictor of behavioral similarity.

In addition to the cooperative behavioral tendencies described
above, some personality traits may also exhibit social assortativity.
Two of the “Big Five” personality traits—extraversion11,12 and
openness to experience12—appear to be more similar among
friends than among individuals who are not friends with one
another. However, the remaining Big Five traits do not predict
friendship formation well13. Similarities in conscientiousness and
neuroticism are not associated with friendship formation12, and
evidence for more similar levels of trait agreeableness among
friends has been found in some studies12, but not in others11.

Thus, the extant research on homophily has recently begun to
examine personality but has focused predominantly on demo-
graphic variables. It is possible that people cluster along these
dimensions because they reflect commonalities in perceiving,
thinking about, and reacting to the world. Similarity in how

individuals interpret and respond to their environment increases
the predictability of one another’s thoughts and actions during
social interactions14, since knowledge about oneself is a more
valid source of information about similar others than about dis-
similar others. This increased predictability during social inter-
actions, in turn, allows for less effortful and more confident
communication, thus fostering more enjoyable social interactions,
and increasing the likelihood of developing friendships14. In the
same vein, interacting with individuals who share similar values,
opinions, and interests may be rewarding because it reinforces
one’s own values, opinions, and interests, thus producing an
implicit positive affective response, promoting attraction to
similar others, and increasing the likelihood of developing
friendships with individuals who see the world similarly to our-
selves15. If friends are indeed exceptionally similar to one another
in terms of how they perceive, interpret, and react to their
environment, then social network proximity should be associated
with similarity of cognitive processes as they unfold in real time.
Whether or not humans tend to associate with others who see the
world similarly has yet to be tested directly.

Here we tested the proposition that neural responses to nat-
uralistic audiovisual stimuli are more similar among friends than
among individuals who are farther removed from one another in
a real-world social network. Measuring neural activity while
people view naturalistic stimuli, such as movie clips, offers an
unobtrusive window into individuals’ unconstrained thought
processes as they unfold16. Inter-subject correlations of neural
response time series during natural viewing of complex, dynamic
stimuli are associated with similarities in subjects’ interpretation
and understanding of those stimuli16–19. Thus, inter-subject
similarities of neural response time series data afford insight into
the similarity of individuals’ thought processes as they experience
the world around them. The current results suggest that neural
response similarity decreases with increasing distance between
individuals in their shared social network, such that friends have
exceptionally similar neural responses. Social network proximity
appears to be significantly associated with neural response simi-
larity in brain regions involved in attentional allocation, narrative
interpretation, and affective responding, suggesting that friends
may be exceptionally similar in how they attend to, interpret, and
emotionally react to their surroundings.

Results
Social network characterization. We first characterized the social
network of an entire cohort of students in a graduate program.
All students (N= 279) in the graduate program completed an
online survey in which they indicated the individuals in the
program with whom they were friends (see Methods for further
details). Given that a mutually reported tie is a stronger indicator
of the presence of a friendship than an unreciprocated tie, a graph
consisting only of reciprocal (i.e., mutually reported) social ties
was used to estimate social distances between individuals. The
same pattern of results to that described in our main analyses was
observed when social distance was computed based on the pre-
sence of any reported social ties (i.e., when including unreci-
procated social ties; Supplementary Note 1). The social network
of the cohort is depicted in Fig. 1. Supplementary Fig. 1 illustrates
the distribution of social distances between all dyads in the
functional magnetic resonance imaging (fMRI) sample, as well as
between all dyads in the entire cohort, and the degree distribu-
tions characterizing the fMRI study sample and entire cohort.

Using only mutually reported social ties yielded a network
diameter of 6 for the entire cohort; using the existence of any
social tie, irrespective of whether it was mutually reported, yielded
a network diameter of 3. The density of the network, which is
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defined as the ratio of the number of edges to the number of
possible edges, excluding self-nominations, was 0.0451 when only
including edges based on reciprocated social ties, and was 0.146
when establishing edges based on any social tie, including
unreciprocated nominations. The total reciprocity of the graph,
which refers to the probability that personi nominated personj as
a friend if personj nominated personi as a friend, was 0.472, and
the dyad-level rate of reciprocity, which refers to the probability
of a mutually reported tie connecting members of a dyad, given
the existence of any, possibly non-mutual, tie between them, was
0.309. Out-degree ranged from 2 to 146 (M = 26.59; SD = 23.33;
median = 19), and in-degree ranged from 4 to 72 (M = 26.59; SD
= 12.73; median = 24).

Relating social network proximity to neural similarity. A subset
of students (N = 42) in the academic cohort described above
participated in a fMRI study. During the fMRI study, each subject
watched the same collection of video clips. The videos presented
in the fMRI study covered a range of topics and genres (e.g.,
comedy clips, documentaries, and debates) that were selected so
that they would likely be unfamiliar to subjects, effectively con-
strain subjects’ thoughts and attention to the experiment (to
minimize mind wandering), and evoke meaningful variability in
responses across subjects (because different subjects attend to
different aspects of them, have different emotional reactions to
them, or interpret the content differently, for example). Prior to
scanning, subjects were told that the video clips would vary in
content and that their experience in the study would resemble
watching television while someone else “channel surfed”. All
subjects experienced the same stimuli in the same order, and were
provided with the same instructions. Therefore, differences in the
similarities of subjects’ neural response time courses likely stem
from factors such as differences in subjects’ dispositions, moods,
cognitive styles, pre-existing assumptions, expectations, values,
views, and interests, as well as differences in the pre-existing

knowledge structures into which incoming stimuli are integrated.
We predicted that inter-subject similarities of neural responses
among friends would be higher than among individuals who were
farther removed from one another in the social network. Further,
we tested whether similarities of neural responses can be used to
predict the social distance between members of this social
network.

Mean response time series spanning the course of the entire
experiment were extracted from 80 anatomical regions of interest
(ROIs) for each of the 42 fMRI study subjects (Methods; Fig. 2).
For each of the 861 unique dyads in the sample, the Pearson
correlation between the time series of fMRI responses was
computed for each ROI. Pearson correlations were z-scored
across dyads for each ROI prior to analysis and visualization in
order to characterize the relative degree of synchrony in each
dyad relative to other dyads for each brain region (Figs. 3 and 4).
To test for a relationship between fMRI response similarity and
social distance, a dyad-level regression model was used. Models
were specified either as ordered logistic regressions with
categorical social distance as the dependent variable or as logistic
regression with a binary indicator of reciprocated friendship as
the dependent variable. We account for the dependence structure
of the dyadic data (i.e., the fact that each fMRI subject is involved
in multiple dyads), which would otherwise underestimate the
standard errors and increase the risk of type 1 error20, by
clustering simultaneously on both members of each dyad21,22.
Cluster-robust standard errors account for both autocorrelation
and possible heteroscedasticity in the data21; this method of
accounting for dyadic dependence is comparable with approaches
such as the quadratic assignment procedure or permutation
testing11.

For the purpose of testing the general hypothesis that social
network proximity is associated with more similar neural
responses to naturalistic stimuli, our main predictor variable of
interest, neural response similarity within each student dyad, was
summarized as a single variable. Specifically, for each dyad, a
weighted average of normalized neural response similarities was
computed, with the contribution of each brain region weighted by
its average volume in our sample of fMRI subjects. (The same
pattern of results was obtained when weighting each ROI equally,
rather than in proportion to volume as described in Supplemen-
tary Note 3, or when neural response similarities were not
normalized across subjects for each brain region prior to analysis,
as described in Supplementary Note 2.) To account for
demographic differences that might impact social network
structure, our model also included binary predictor variables
indicating whether subjects in each dyad were of the same or
different nationalities, ethnicities, and genders, as well as a
variable indicating the age difference between members of each
dyad. In addition, a binary variable was included indicating
whether subjects were the same or different in terms of
handedness, given that this may be related to differences in brain
functional organization23. All predictor variables were standar-
dized to have a mean of 0 and a SD of 1 prior to analysis.

This model revealed a significant effect of neural similarity
(ordered logistic regression: ß = -0.224; SE = 0.105; p = 0.03; N =

861 dyads) on social distance that is striking in magnitude:
holding other covariates constant, compared to a dyad at the
mean level of neural similarity and at any given level of social
distance, a dyad one SD more similar is 20% more likely to have
social distance that is one unit shorter. Of the control variables
also included in the model, differences between dyad members in
terms of gender (ordered logistic regression: ß = 0.383; SE = 0.122;
p = 0.002; N = 861 dyads) and nationality (ordered logistic
regression: ß = 0.561; SE = 0.150; p = 0.0002; N = 861 dyads) were
significantly related to social distance, whereas age (ordered

Fig. 1 Social network. The social network of an entire cohort of first-year

graduate students was reconstructed based on a survey completed by all

students in the cohort (N= 279; 100% response rate). Nodes indicate

students; lines indicate mutually reported social ties between them. A

subset of students (orange circles; N= 42) participated in the fMRI study
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logistic regression: ß = 0.128; SE = 0.137; p = 0.35), ethnicity
(ordered logistic regression: ß = 0.094; SE = 0.095; p = 0.32;
N = 861 dyads), and handedness (ordered logistic regression:
ß = 0.086; SE = 0.060; p = 0.15; N = 861 dyads) were not (Fig. 5).
To ascertain if neural similarity provided additional predictive
power, above and beyond similarity in terms of the observed
demographic variables, the full model described above was
compared with a model that did not include neural similarity
using a likelihood ratio test. Neural similarity added significant
predictive power, above and beyond observable demographic
similarity, χ2(1) = 11.112, p = 0.0009. A similar pattern of results
was obtained when social distance was defined based on both
reciprocated and unreciprocated social ties (Supplementary
Note 1).

Logistic regressions that combined all non-friends into a single
category, regardless of social distance, yielded similar results, such
that neural similarity was associated with a dramatically increased
likelihood of friendship, even after accounting for similarities in
observed demographic variables. More specifically, a one SD
increase in overall neural similarity was associated with a 47%
increase in the likelihood of friendship (logistic regression: ß
= 0.388; SE = 0.109; p = 0.0004; N = 861 dyads). Again, neural
similarity improved the model’s predictive power above and
beyond observed demographic similarities, χ2(1) = 7.36, p = 0.006.

Results of analyses conducted separately for each video clip
shown in the experiment are provided in Supplementary Table 3.
We note that videos were presented in the same order to all
subjects (to minimize inter-subject variability stemming from the
manner in which clips were presented, rather than from
endogenous differences between subjects) and that videos varied
in duration (Table 1). Therefore, comparing results across video
clips should be done with caution; these results are provided in
case they are informative for future research.

To gain insight into what brain regions may be driving the
relationship between social distance and overall neural similarity,
we performed ordered logistic regression analyses analogous to
those described above independently for each of the 80 ROIs,
again using cluster-robust standard errors to account for dyadic
dependencies in the data. This approach is analogous to common
fMRI analysis approaches in which regressions are carried out

independently at each voxel in the brain, followed by correction
for multiple comparisons across voxels. We employed false
discovery rate (FDR) correction to correct for multiple compar-
isons across brain regions. This analysis indicated that neural
similarity was associated with social network proximity in regions
of the ventral and dorsal striatum, including the right nucleus
accumbens (ordered logistic regression: ß = −0.231; SE = 0.058;
p = 0.006, FDR-corrected; N = 861 dyads), right caudate nucleus
(ordered logistic regression: ß = −0.279; SE = 0.081; p = 0.01, FDR-
corrected; N = 861 dyads), left caudate nucleus (ordered logistic
regression: ß = −0.231; SE = 0.071; p = 0.01, FDR-corrected;
N = 861 dyads), and left putamen (ordered logistic regression:
ß = −0.244; SE = 0.071; p = 0.01, FDR-corrected; N = 861 dyads),
the right amygdala (ordered logistic regression: ß = −0.209; SE =
0.064; p = 0.01, FDR-corrected; N = 861 dyads), the right superior
parietal lobule (ordered logistic regression: ß = −0.418; SE = 0.121;
p = 0.01, FDR-corrected; N = 861 dyads), and left inferior parietal
cortex (ordered logistic regression: ß = −0.385; SE = 0.100;
p = 0.006, FDR-corrected; N = 861 dyads). Regression coefficients
for each ROI are shown in Fig. 6, and further details for ROIs that
met the significance threshold of p< 0.05, FDR-corrected (two-
tailed) are provided in Table 2.

To compare overall (i.e., weighted average) neural similarities
across levels of social distance, Kolmogorov–Smirnov tests were
used. Results indicated that average overall (weighted average)
neural similarities were significantly higher among distance 1
dyads than dyads belonging to other social distance categories (D
= 0.19, p = 0.02; N = 861 dyads). Distance 2 dyads were marginally
more similar to one another than dyads in the other social
distance categories (D = 0.094, p = 0.06; N = 861 dyads). Distance
3 dyads were significantly less similar than dyads in the other
social distance categories (D = 0.12, p = 0.004; N = 861 dyads), and
distance 4 dyads were not significantly different in overall neural
response similarity from dyads in the other social distance
categories (D = 0.075, p = 0.67; N = 861 dyads). All reported
p-values are two-tailed.

To ensure that differences documented with
Kolmogorov–Smirnov tests were due to differences in the
location (rather than shape) of distributions, we conducted
Wilcoxon rank-sum tests, which are specifically sensitive to the

Time

Subject 1 Correlate

corresponding

time series

Subject 2

Volumetric segmentation Cortical parcellationStructural image Cortical reconstruction

a

b

Fig. 2 Computing inter-subject time series correlations. a Eighty anatomical regions of interest (ROIs) were derived for each individual using the FreeSurfer

image analysis suite53. Segmentation of cerebral cortex, subcortical white matter, and deep gray matter volumetric structures (e.g., hippocampus,

amygdala, and putamen) was performed on the high-resolution scan of each individual’s brain volume. These structures are signified by color in the image

demonstrating volumetric segmentation (e.g., the left and right cerebral cortex are shown in magenta and purple, respectively). Next, a cortical surface

model was reconstructed and parcellated into anatomical units, which are signified by different colors in the cortical parcellation scheme illustrated on the

far right. b For each individual, the average response time series within each ROI was extracted during video viewing. Next, the correlation between the

time series extracted from each pair of corresponding ROIs was computed for each unique pair of subjects
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difference in locations of two distributions, and which provided
convergent results. Weighted average neural similarities were
significantly higher among distance 1 dyads than among dyads
from the other social distance categories (W = 30 570, p = 0.004;
N = 861 dyads). The same was true for distance 2 dyads (W = 91
356, p = 0.008; N = 861 dyads). Distance 3 dyads were less similar
overall than dyads belonging to the other social distance
categories (W = 79 062, p = 0.0002; N = 861 dyads). Distance 4
dyads did not differ significantly from dyads in the remaining
social distance categories (W = 36 918, p = 0.63; N = 861 dyads).
Pairwise analyses suggested that distance 1 dyads were signifi-
cantly more similar to one another than distance 3 (W = 16 598, p
= 0.00036; N = 475 dyads) and distance 4 (W = 3856, p = 0.016; N
= 163 dyads) dyads, but not distance 2 dyads (W = 10 116, p =
0.13; N = 349 dyads). Distance 2 dyads were more similar than
distance 3 dyads (W = 67 759, p = 0.00074; N = 698 dyads).
Perhaps reflecting the large variability among distance 4 dyads,
distance 4 dyads did not differ significantly from distance 2 (W =

15 695, p = 0.15; N = 386 dyads) or distance 3 dyads (W = 19 631,
p = 0.47; N = 512 dyads). All reported p-values are two-tailed.
Permutation tests that involved randomly shuffling fMRI data
across subjects while holding the topological structure of the
network connecting subjects constant provided convergent
results, as described in Supplementary Note 5 and Fig. 7.

Figures 3 and 4a–c illustrate the average relative level of neural
similarity among dyads within each social distance category for
each individual brain region. In order to illustrate how overall
neural similarity varies as a function of social distance while
holding all control variables (i.e., handedness, age, gender,
ethnicity, and nationality) constant, deviation-coded point
estimates were computed and are illustrated in Fig. 4d. Deviation
coding provides, for each social distance, a point estimate and
confidence interval of the difference in neural similarity from the
average of the other social distance categories; complete details
appear in the Supplementary Methods.

Out-of-sample prediction. We also tested whether it was possible
to predict friendship status based on similarity of fMRI response
time series across brain regions. If so, it should be possible to
build a predictive model of social distance by training an algo-
rithm to recognize patterns of neural similarities associated with
various social distance categories from a subset of dyads’ data.
This model should then correctly generalize to predicting the
social distances characterizing new dyads.

Eighty-element vectors of neural similarities were extracted for
all 861 dyads of fMRI subjects. Given that the current data set is
imbalanced across social distance categories (e.g., there are far
fewer distance 1 dyads than distance 3 dyads), data resampling
and folding procedures were used to create a series of balanced
training and testing data sets such that all dyads were included in
analyses (see Methods for further details). Within the training
data set for each data fold, a grid search procedure24 was used to
select the C parameter of a linear support vector machine (SVM)
learning algorithm that would best separate dyads according to
social distance. Following hyper-parameter tuning, the classifier
was trained on the entire training data set within a given data fold
to predict the social distances characterizing dyads based on
corresponding patterns of inter-subject neural time course
similarity. Finally, the predictive performance of this classifier
was evaluated on data from the testing data set within the data
fold, which was comprised of data from dyads to which the model
had not previously been exposed. This procedure was performed
for each data fold, and then cross-validated predictive perfor-
mance was averaged across data folds (see Methods for further
details).
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Fig. 3 Inter-subject similarities for each brain region at each level of social

distance. Inter-subject correlations of neural response time series for each

of the 861 dyads were obtained for each of 80 anatomical regions of

interest (ROIs). In order to illustrate how relative similarities of responses

in each brain region varied as a function of social distance, inter-subject

time series similarities (i.e., Pearson correlation coefficients between

preprocessed fMRI response time series) were normalized (i.e., z-scored

across dyads for each region) prior to averaging across dyads for each brain

region within each social distance category. Warmer colors indicate

relatively similar responses for a given brain region; cooler colors indicate

relatively dissimilar responses for that brain region. Please note that

because similarities have been normalized across dyads for each brain

region, values depicted in this figure should be compared across social

distance levels for each brain region, rather than across brain regions within

or across social distances
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As shown in Fig. 8, the classifier tended to predict the correct
social distances for dyads in all distance categories at rates above
the accuracy level that would be expected based on chance alone
(i.e., 25% correct), with an overall classification accuracy of
41.25%. Classification accuracies for distance 1, 2, 3, and 4 dyads
were 48%, 39%, 31%, and 47% correct, respectively. As illustrated
in the confusion matrix in Fig. 8a, for all social distance
categories, the correct distance label was predicted most often,
with confusions (i.e., incorrect predictions) occurring most
frequently in columns adjacent to the elements along the
diagonal. The latter pattern of results reflects the fact that in

cases where the classifier assigned the incorrect social distance
label to a dyad, it tended to be only one level of social distance
away from the correct answer: when friends were misclassified,
they were misclassified most often as distance 2 dyads; when
distance 2 dyads were misclassified, they were misclassified most
often as distance 1 or 3 dyads, and so on. Permutation testing was
performed in order to test if overall cross-validated classification
accuracy significantly exceeded chance. Specifically, the distribu-
tion of classification accuracies that would be achieved based on
chance alone was obtained by repeating the classification analysis
after having randomly shuffled the distance category labels in the
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training data 1000 times. The results of this permutation testing
procedure are visualized in Fig. 8b, and suggest that the overall
classification accuracy was significantly higher than what would
be expected based on chance, p = 0.004 (N = 861 dyads; see
Methods for further details).

Discussion
The results reported here are consistent with neural homophily:
people tend to be friends with individuals who see the world in a
similar way. Neural responses during unconstrained viewing of
movie clips were significantly more similar among friends than
among people farther removed from one another in their real-
world social network. More generally, people who responded
more similarly to the videos shown in the experiment were more
likely to be closer to one another in their shared social network,
and these effects were significant even when controlling for inter-
subject similarities in demographic variables, such as age, gender,
nationality, and ethnicity. In addition, predictive models trained
to discern social distance based solely on patterns of inter-subject
neural response similarity were able to accurately generalize to
novel data, correctly predicting the friendship status and social
distance of new pairs of individuals based only on those dyads’
patterns of neural response similarities.

Much previous research has shown that humans tend to
associate with others who are similar to themselves in terms of a
wide range of characteristics, including demographic information
(e.g., age, gender, and ethnicity)2, certain personality traits and
behavioral tendencies11,12, and even aspects of our genotypes25,26.
The current findings extend this research by demonstrating that
covert mental responses to the environment, as indexed by neural
processes evoked naturalistically during undirected viewing of
videos, are exceptionally similar among friends.

Brain areas where response similarity was associated with
social network proximity included subcortical areas implicated in
motivation, learning, affective processing, and integrating infor-
mation into memory, such as the nucleus accumbens, amygdala,
putamen, and caudate nucleus27–29. Social network proximity was
also associated with neural response similarity within areas
involved in attentional allocation, such as the right superior
parietal cortex30,31, and regions in the inferior parietal lobe, such
as the bilateral supramarginal gyri and left inferior parietal cortex
(which includes the angular gyrus in the parcellation scheme
used32), that have been implicated in bottom-up attentional
control, discerning others’ mental states, processing language and
the narrative content of stories, and sense-making more gen-
erally33–35. Many of these regions have previously been demon-
strated to become tightly coupled when subjects are similarly
emotionally engaged, such as the amygdala, ventral striatum, and
inferior parietal cortex36; when people are provided with shared

contexts for understanding a situation, such as the inferior par-
ietal lobe in the vicinity of the temporoparietal junction33; or
when people adopt similar psychological perspectives, such as the
superior and inferior posterior parietal cortex37. We hesitate to
make strong inferences about the specific mental processes that
underlie the results observed here, given that many of these
regions are functionally heterogeneous. However, the current
results suggest that social network proximity may be associated
with similarities in how individuals attend to, interpret, and
emotionally react to the world around them.

We did not directly compare the results obtained in the current
study to those that might be obtained by using behavioral mea-
sures, such as explicit questions about subjects’ reactions to
experimental stimuli, or self-report measures of individual dif-
ference variables. Therefore, we cannot ascertain if comparable
results could have been achieved without the use of neuroima-
ging. That said, we suggest that the paradigm used here offers
several benefits compared with other methods of assessing simi-
larities in how individuals respond to their environment. First,
the rich, engaging, and dynamic stimuli used likely recruit a
relatively large proportion of the emotional and cognitive pro-
cesses that characterize everyday mental life, and do so unob-
trusively in a relatively ecologically valid manner38. This is
beneficial not only because it allows subjects’ mental processes to
unfold without interruption; it also allows for the neural processes
underlying such processes to be measured contemporaneously, as
they transpire, rather than asking subjects to reflect on those
processes after they occur and report on those reflections to
experimenters. A large body of social psychological literature has
demonstrated that our ability to accurately introspect about our
own mental processes is often limited39. We appear to lack
conscious access to many aspects of mental processing40, limiting
the efficacy of self-report measures for capturing many psycho-
logical phenomena. In contrast, neuroimaging facilitates the
measurement of aspects of mental processing to which we lack
conscious access, but that nevertheless impact behavior41. Simi-
larly, compared with self-report, the validity of responses
obtained using the current paradigm is less likely to be threatened
by subjects’ attempts to present themselves in a socially desirable
manner, which can distort experimental results in a variety of
ways42. In addition, measuring fMRI responses from the whole
brain simultaneously confers the benefit of concurrently mea-
suring brain activity associated with diverse aspects of mental
processing. Rather than being limited to a few targeted questions,
using data recorded from the entire brain during natural viewing
allows for neural processing to be captured associated with
whatever emotional (e.g., amusement, disgust, sadness, desire,
and fear) and cognitive (e.g., attention to different aspects of the
stimulus; interpretations of a video as they are informed by
subjects’ pre-existing assumptions, knowledge, and values; and

Fig. 4 Inter-subject similarities by social distance. a–c Average dyadic fMRI response time series similarities overlaid on a cortical surface model (a lateral

view; b medial view; c ventral view). In order to illustrate how relative similarities of responses in each brain region varied as a function of social distance,

inter-subject time series similarities (i.e., Pearson correlation coefficients between preprocessed fMRI response time series) were normalized (i.e., z-scored

across dyads for each region) prior to averaging across dyads for each brain region and overlaying results on an inflated model of the cortical surface for

each social distance category. Warmer colors indicate relatively similar responses for a given brain region; cooler colors indicate relatively dissimilar

responses for that brain region. Please note that because similarities have been normalized across dyads for each brain region, values depicted in this figure

should be compared across social distance levels for each brain region, rather than across brain regions within or across social distances. Please see Fig. 3

for presentation of results that include subcortical gray matter structures. Ant.= anterior; Post.= posterior; L= left; R= right. d Deviation-coded point

estimates and 95% CIs for weighted average neural similarities, after accounting for inter-subject similarities in control variables (demographic variables

and handedness) are shown for distance 1 (deviation-coded point estimate= 0.23, 95% CI [0.07, 0.41]), distance 2 (deviation-coded point estimate=

0.03, 95% CI [−0.11, 0.17]), distance 3 (deviation-coded point estimate= −0.20, 95% CI [−0.30, −0.09]), and distance 4 (deviation-coded point estimate

= −0.07, 95% CI [−0.29, 0.14]) dyads. Deviation coding measures the difference in overall neural similarity between dyads within each social distance

category and the average overall neural similarity of dyads in the other social distance categories, after removing the effects of control variables. For further

details on deviation coding, please refer to the Supplementary Methods. Cortical surface visualizations were created using PySurfer58
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waxing and waning levels of overall attentional engagement)
responses happen to be elicited, at whatever time points those
responses happen to be recruited. Even if it was possible to assess
the same information using self-report questionnaires, it would
presumably be necessary to use an extremely large battery of
questions in order to do so.

On the other hand, while the naturalistic neuroimaging para-
digm used here confers many advantages, a more specific
understanding of precisely which cognitive and emotional pro-
cesses underlie these effects will likely require complementary
follow-up studies involving behavioral measures and more con-
strained experimental paradigms. In addition, a single sequence
of stimuli was used for the current study in order to provide a
common context throughout all time points in the experiment for
all subjects. Future studies may wish to adopt experimental
designs that allow for drawing inferences about exactly what
kinds of stimuli are particularly important for predicting patterns
of real-world social ties.

Interestingly, although increased distance between individuals
in the social network was associated with decreased neural
response similarity overall, the level of neural response similarity
among distance 4 dyads was highly variable and did not differ
significantly from that of distance 2 or 3 dyads. There are at least
two reasons why the pattern of results observed up to a distance
of three may have dissipated at distance 4. First, it is possible that

individuals at distances greater than three simply do not
encounter one another frequently enough to have the opportunity
to become friends. Therefore, the collection of dyads character-
ized by a social distance of four or more may include some dyads
that would be compatible and others that would be incompatible
as friends. A second, not mutually exclusive, possibility pertains
to the “three degrees of influence rule” that governs the spread of
a wide range of phenomena in human social networks43. Data
from large-scale observational studies as well as lab-based
experiments suggest that wide-ranging phenomena (e.g., obe-
sity, cooperation, smoking, and depression) spread only up to
three degrees of geodesic distance in social networks, perhaps due
to social influence effects decaying with social distance to the
extent that the they are undetectable at social distances exceeding
three, or to the relative instability of long chains of social ties43.
Although we make no claims regarding the causal mechanisms
behind our findings, our results show a similar pattern.

Do we become friends with people who respond to the
environment similarly, or do we come to respond to the world
similarly to our friends? Although the results of the current study
suggest that friends have exceptionally similar neural responses to
naturalistic stimuli, due to this study’s cross-sectional nature, we
cannot ascertain, based on these results alone, whether neural
response similarity is a cause or consequence of friendship. Thus,
future longitudinal studies should measure whether inter-subject
neural response similarities predict subsequent friendship for-
mation among members of evolving social networks. We antici-
pate that such studies will find that the exceptional similarity of
neural responses among friends reflects both homophily and
social influence processes. A large body of research demonstrates
that people in our immediate environment influence how we
think, feel, and behave44,45, and humans’ embeddedness within
social networks causes these social influence effects to reverberate
outward in social ties, and thus, to extend beyond those indivi-
duals with whom we interact with directly46. At the same time,
similar people may tend to become connected at higher rates
because they find themselves in common situations47. Similarly,
pre-existing similarities in how individuals tend to perceive,
interpret, and respond to their environment can enhance social
interactions and increase the probability of developing a friend-
ship via positive affective processes and by increasing the ease and
clarity of communication14,15. Future research should extend the
current findings by adopting longitudinal experimental designs
that afford insight into the extent to which the results observed
here reflect homophily, social influence processes, or a combi-
nation of these phenomena.

In summary, the current results suggest that friends are
exceptionally similar to one another in terms of how they per-
ceive, interpret, and react to the world around them, as reflected
in unobtrusive measurements of mental processes as they unfold
over time. Proximity in terms of social ties in a real-world social
network was associated with similarity in fMRI response time
series in brain regions implicated in attending to and interpreting
the sensory environment, as well as emotional responding. These
data also demonstrate that it is possible to predict whether or not
two individuals are friends, as well as more nuanced social dis-
tance information (i.e., geodesic distance in a real-life social
network) based only on the similarity of temporal patterns in
their neural responses during free viewing of complex, real-world
scenes. Time courses of individuals’ neural responses to con-
tinuous, naturalistic stimuli provide information-rich signatures
of those individuals’ responses to the stimuli, which are pre-
sumably shaped by characteristics of those individuals’ disposi-
tions, pre-existing knowledge, views, opinions, interests, and
values. These signatures can be used to identify individuals who
are likely to be friends, as well as individuals who are likely to be
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Fig. 5 Regression coefficients from models predicting social distance and

friendship status. Regression coefficients correspond to weighted average

neural response similarities and dissimilarities in control variables. a

Illustration of regression coefficients from an ordered logistic regression

model in which social distance was predicted based on the similarity of

participants’ neural response time series, as well as dissimilarities in control

variables. b Illustration of regression coefficients from a logistic regression

model in which friendship status was predicted based on the similarity of

participants’ neural response time series, as well as dissimilarities in control

variables. Error bars indicate standard errors of the regression coefficients

estimated using multi-way clustering to account for dyadic dependencies in

the data set. ***p< 0.001, **p<0.01, *p< 0.05
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indirectly connected via mutual friends, in a real-world social
network.

Methods
Social network characterization. Subjects in part 1 of the study (social network
characterization) were 279 (89 females) first-year students in a graduate program at
a private university in the United States who participated as part of their course-
work on leadership. The total size of the graduate cohort was 279 students (i.e., all
students in the cohort participated in the leadership course); a 100% response rate
was obtained for part 1 of the study, which was done in accordance with the
standards of the local ethical review board. The social network survey was admi-
nistered during November of students’ first academic year in the graduate program,
which began the preceding August. Therefore, subjects had been on campus
together for 3–4 months prior to completing the social network survey, and
friendships reported on the survey would have been formed either during subjects’
first few months on campus or prior to entering the graduate program.

In order to characterize the social network of all first-year students, an online
social network survey was administered. Subjects followed an e-mailed link to the
study website where they responded to a survey designed to assess their position in
the social network of students in their cohort of the academic program. The survey
question was adapted from Burt48 and has been previously used in the modified
form used here11,49,50. It read, “Consider the people with whom you like to spend
your free time. Since you arrived at [institution name], who are the classmates you
have been with most often for informal social activities, such as going out to lunch,
dinner, drinks, films, visiting one another’s homes, and so on?” A roster-based
name generator was used to avoid inadequate or biased recall. Classmates’ names
were listed in four columns, with one column corresponding to each section of
students in the graduate program. Students’ names were listed alphabetically within
section. Subjects indicated the presence of a social tie with an individual by placing
a checkmark next to his or her name. Subjects could indicate any number of social
ties, and had no time limit for responding to this question. The social network of
the cohort is illustrated in Fig. 1. The social network survey used here only inquired
about students’ interactions with other members of their academic cohort. Subjects
undoubtedly have interactions with individuals outside of their cohort of
classmates that this survey did not measure (e.g., with family members, prior
colleagues, friends from before they entered the program, etc.). We note that the
current study was conducted at a relatively small and remotely located institution
where subjects’ contacts outside of campus likely play a smaller role in their daily
lives compared to their quotidian, face-to-face interactions with their classmates.
That said, social distances between some subjects who did not report friendships
with one another may be underestimated due to indirect connections through
individuals outside of the graduate cohort.

In addition, demographic data about each subject’s gender, ethnic identity, and
country of citizenship were obtained from the school’s registrar. Personally
identifying information was removed from these data; subjects’ demographic, social
network, and neuroimaging data were linked only by anonymous ID numbers.

Social network analysis was performed using the R package igraph51,52. An
unweighted, undirected graph consisting only of reciprocal (i.e., mutually reported)
social ties was used to estimate social distances between individuals. For example,
an undirected edge would connect two actors, personi and personj, only if personi
and personj each nominated the other as a friend. If personi nominated personj, but
personj did not nominate personi, or vice versa, these actors were not considered
friends for the purposes of this study. Social distance was operationalized as the
smallest number of intermediary, mutual social ties required to connect two
individuals in the network (i.e., geodesic distance). Pairs of individuals who both
named one another as friends were assigned a social distance of one. An individual
would be assigned a distance of two from a given subject if he or she had a mutually
reported friendship with that subject’s friend, but not with the subject him or
herself, and so on. The distribution of social distances for all pairs of fMRI study
subjects is provided in Supplementary Fig. 1.

fMRI study subjects. Forty-two subjects (12 female; 3 left-handed) aged 25–32
(M = 27.98; SD = 1.72) who had completed part 1 of the study completed a sub-
sequent neuroimaging study (part 2). Students were informed during class about
the opportunity to participate in an fMRI study involving viewing visual stimuli.
They were informed that they would receive $20 per hour as compensation for
their time, as well as anatomical images of their brains. All students who were
interested in participating and were not affected by standard safety-related con-
traindications for MRI (e.g., the presence of metallic implants) participated in the
neuroimaging study. All subjects were fluent in English and had normal or
corrected-to-normal vision. Because subjects were not allocated to experimentally
defined groups in the current study, blinding investigators to between-subject
conditions and random assignment of subjects to conditions were not applicable.
Subjects provided informed consent in accordance with the policies of the local
ethical review board. Data collection for the neuroimaging study began mid-way
through February during subjects’ first academic year in the graduate program, and
all scanning was completed within 2 weeks. Therefore, all neuroimaging data was
collected ~3 months after the collection of the social network data.

fMRI data acquisition. Subjects were scanned using a 3 T Philips Achieva Intera
scanner with a 32-channel head coil. An echo-planar sequence (35 ms echo time
(TE); 2000 ms repetition time (TR); 3.0 mm × 3.0 mm × 3.0 mm resolution; 80 × 80
matrix size; 240 × 240mm field of view (FOV); 35 interleaved transverse slices with
no gap; 3.0 mm slice thickness) was used to acquire functional images. Stimuli were
presented over the course of six functional runs. Functional runs consisted of 204,
276, 194, 147, 189, and 108 dynamic scans, for a total functional data acquisition
time of approximately 33.7 min, excluding time between functional runs. A high-
resolution T1-weighted anatomical scan was also acquired for each subject (8.2 s
TR; 3.7 ms TE; 240 × 187 FOV; 0.938 mm × 0.938 mm × 1.0 mm resolution) at the
end of the scanning session. Foam padding was placed around subjects’ heads to
minimize head motion.

Table 1 Summary of video clips shown in the fMRI study

Clip Description Duration (s)

1 ‘An Astronaut’s View

of Earth’

An astronaut discusses viewing Earth from space, and in particular, witnessing the effects of climate

change from space. He then urges viewers to mobilize to address this issue

223

2 Google Glass review A journalist wears a Google Glass headset for a day and weighs the pros and cons of being an ‘early

adopter’ of this technology

88

3 ‘Crossfire’ Two journalists debate the appropriateness of President Obama’s use of humor in a speech; excerpts

from the speech are shown

89

4 ‘All I Want’ A sentimental music video depicting a social outcast with a facial deformity seeking companionship 305

5 Wedding film A homemade film depicting scenes from two men’s wedding ceremony and subsequent celebration

with family and friends

120

6 Scientific

demonstration

An astronaut at the International Space Station demonstrates and explains what happens when one

wrings out a waterlogged washcloth in space

118

7 ‘Food Inc.’ An excerpt from a documentary discussing how the fast food industry influences food production and

farming practices in the United States

178

8 ‘We Can Be Heroes’ An excerpt from a mockumentary-style series in which a man discusses why he nominated himself for

the title of Australian of the Year

202

9 ‘Ban College Football’ Journalists and athletes debate whether or not football should be banned as a college sport 195

10 Soccer match Highlights from a soccer match 91

11 Baby sloth sanctuary A documentary about caring for baby sloths at a sanctuary in Costa Rica 200

12 ‘Ew!’ A comedy skit in which grown men play teenage girls disgusted by things around them 169

13 ‘Life’s Too Short’ An example of ‘cringe comedy’ in which a dramatic actor is depicted unsuccessfully trying his hand at

improvisational comedy

106

14 ‘America’s Funniest

Home Videos’

A series of homemade video clips depicting examples of unintentional physical comedy arising from

accidents

101
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Fig. 6 Testing associations between neural response similarity and social distance by brain region. As described in the main text, ordered logistic regression

analyses were carried out for each brain region in which social network distances were modeled as a function of local neural response similarities and

dyadic dissimilarities in control variables (gender, ethnicity, nationality, age, and handedness). Negative regression coefficients for neural response

similarity indicate that greater neural response similarity was associated with decreased social distance. Regression coefficients for the effects of neural

response similarity on social distance for each cortical ROI are shown overlaid on a lateral, b medial, and c ventral views of the cortical surface. Ant.=

anterior; Post.= posterior. In each view, the left hemisphere is displayed on the left. Cortical surface visualizations were created using PySurfer58. Warmer

colors indicate negative regression coefficients (i.e., where greater neural response similarity was associated with social network proximity), whereas

cooler colors indicate positive regression coefficients (i.e., where greater neural response similarity was associated with increased social distance). d

Regions where neural similarity was significantly predictive of social distance, above and beyond the effects of control variables (p< 0.05, FDR-corrected,

two-tailed) are shown in yellow, with marginally significant regions (p< 0.08) shown in blue, and all other regions shown in gray. Error bars indicate

cluster-robust standard errors of the regression coefficients

Table 2 Brain regions where neural similarity was significantly predictive of social distance above and beyond similarities in

control variables

Hemi Region ß SE p-value (uncorrected) FDR-corrected p-value

R Nucleus accumbens −0.23 0.058 0.000077 0.0055

L Inferior parietal cortex −0.38 0.10 0.00014 0.0055

R Superior parietal cortex −0.42 0.12 0.00056 0.011

R Caudate nucleus −0.28 0.081 0.00064 0.011

L Putamen −0.24 0.071 0.00068 0.011

L Caudate nucleus −0.23 0.071 0.0011 0.014

R Amygdala −0.21 0.064 0.0012 0.014

L Supramarginal gyrus −0.26 0.098 0.0076 0.076

R Supramarginal gyrus −0.27 0.10 0.0090 0.076

Regions where neural similarity was significantly predictive of social distance (p< 0.05, FDR-corrected, two-tailed) are shown; marginally significant results (p< 0.08) are italicized. Ordered logistic

regression analyses were carried out for each brain region using multi-way clustering to account for dyadic dependencies in the data. Negative regression coefficients indicate that greater neural

response similarity was associated with decreased social distance

FDR false discovery rate, Hemi hemisphere, L left, R right
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fMRI study paradigm. Prior to being scanned, subjects were informed that they
would be watching a series of videos while in the scanner. Subjects were informed
that these videos would be brief and would vary in content, and that the experience
of participating in the study would be analogous to passively watching television
while someone else “channel surfed.” Videos were presented in the same order to all
subjects in order to avoid inducing inter-subject response variability that would be
attributable simply to differences in the manner in which clips were presented in
the experiment (e.g., if a serious video happened to be preceded by a comedic clip
for some subjects and not others). Given that the current study aimed to test if
subjects’ positions relative to one another in their social networks are associated
with neural response similarity, rather than to contrast responses to particular
stimuli, the benefits of using a single trial order for all subjects were judged to
outweigh potential costs. After the scanning session had concluded, the experi-
menter interviewed each subject to determine if he or she had previously seen any
of the video clips used in the experiment.

fMRI study stimuli. Stimuli consisted of 14 videos presented with sound over the
course of six fMRI runs. Videos ranged in duration from 88 to 305 s (Table 1).
Three principal criteria were used to select video clips as stimuli. First, we sought to
select stimuli that subjects in our sample would be relatively unlikely to have seen
before. This was done in order to avoid inducing differences in inter-subject cor-
relations due to simple familiarity with the stimuli, given that friends may be more
likely to have seen the same videos prior to the experiment compared with pairs of
individuals who are not friends with one another.

Second, we sought to select engaging stimuli. We reasoned that insufficiently
engaging stimuli would be likely to evoke mind wandering, which would likely
involve idiosyncratic thoughts unrelated to the experiment, and thus would
introduce unwanted noise into estimates of inter-subject correlations and their

relationships to social distance. In contrast, stimuli that effectively engage an
audience do so by directing and constraining viewers’ thoughts and associated
neural activity. As such, professionally directed movies and television shows elicit
more reliable responses within and across subjects than unedited video footage or
series of static photographs38. Such videos are engineered to engage viewers’
attention and drive their inferences by inducing particular reactions and
interpretations at specific times, and thus, are well-suited for experiments seeking
to induce a shared series of cognitive states across subjects18.

Third, we sought to select stimuli that, while engaging, would also introduce
meaningful variability in inter-subject correlations. We reasoned that for the
purposes of the current study, uninformative inter-subject variability in neural
response time series data would arise largely from using stimuli that failed to
effectively engage subjects, and thus, failed to constrain their thoughts and
attention. In contrast, meaningful inter-subject variability in neural response time
series data would arise from using stimuli that produced diverging inferences and
patterns of attentional allocation in different sets of viewers. We sought to select
stimuli that minimized uninformative inter-subject variability by engaging subjects’
attention, but at the same time, promoted meaningful inter-subject variability by
evoking divergent reactions across subjects. For example, videos were chosen that
might be interpreted as sweet by some subjects, but cloying or “sappy” by others
(e.g., a sentimental music video), that would appeal to different styles of humor
(e.g., physical comedy, wry humor, “cringe” comedy, and sophomoric or “lowbrow”
humor), and that presented one or both sides of an argument that subjects might
resonate with or respond to with criticism (e.g., a debate about whether college
football should be banned). Brief descriptions of all 14 videos are presented in
Table 1.

The majority of subjects (29 of 42) had not seen any of the video clips used in
the fMRI study prior to participating, and the average number of clips subjects had
seen before was low (M= 0.41 clips out of 14; SD = 0.70). For the majority of
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these permutation tests indicated that distance 1 dyads (N= 63) were more similar than would be expected based on chance (p= 0.03), distance 2 dyads
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videos used as experimental stimuli (i.e., 9 of 14), there were no dyads whose
members had both seen the clip prior to scanning. Of the remaining video clips,
two had previously been seen by two subjects (i.e., by both members of a single
dyad, or 0.12% of all dyads), two had been seen previously by three subjects (i.e., by
both members of three dyads, or 0.35% of dyads), and one clip had been seen
previously by four subjects (i.e., by both members of six dyads, or 0.70% of the 861
total dyads). Please refer to Supplementary Table 1 for a complete summary of
subjects’ reported familiarity with the 14 video clips used as experimental stimuli,
and Supplementary Note 4 for a replication of our main analyses excluding dyads
whose members had both seen any of the same stimuli prior to participating in the
fMRI study.

Defining anatomical ROIs. Anatomical regions were delineated by applying the
FreeSurfer anatomical parcellation algorithm53 to each subject’s high-resolution
anatomical scan (Fig. 2a). Briefly, this process includes the digital removal of non-
brain tissue, automated segmentation of the cerebral cortex, subcortical white
matter, brainstem, cerebellum, and deep gray matter volumetric structures (e.g.,
amygdala, hippocampus, and putamen), generation of a model of each subject’s
cerebral cortical surface, and automated parcellation of each subject’s cortical
surface model into anatomical units based on his or her cortical folding patterns.
The Desikan–Killiany cortical atlas32 as implemented in FreeSurfer 5.353 was used
to assign anatomical labels to each subject’s cortical surface model. This gyral-
based atlas defines a gyrus as tissue between two adjacent sulci. As such, a parti-
cular gyral label in this atlas (e.g., left inferior temporal gyrus) corresponds to both
the associated gyrus and the adjacent banks of its limiting sulci. This procedure
yielded 34 atlas labels for each hemisphere, as well as 6 labels corresponding to
subcortical structures within each hemisphere. Thus, in total, 80 anatomical ROIs
were defined for each subject (Supplementary Table 2 and Fig. 3 for a complete list
of ROIs).

Preprocessing of fMRI data. Preprocessing of fMRI time series data was per-
formed using AFNI54. For each run, functional data were despiked using the AFNI
program 3dDespike to remove transient, extreme signal fluctuations not attribu-
table to biological phenomena. Next, each subject’s functional scans were aligned to
his or her anatomical scan using a six-parameter rigid body least squares trans-
formation. Motion parameters from this volume registration step were saved for
later removal from the signal time series as regressors of no interest. The first two
volumes of each run were discarded in order to avoid including data potentially
characterized by large signal changes prior to tissue reaching a steady state of
radiofrequency excitation. Each voxel’s time series was scaled to its mean within
each run.

In addition to motion parameters extracted during volume registration, time
series from voxels corresponding to white matter and ventricles were extracted for
later inclusion as regressors of no interest, as signal fluctuations in white matter
and cerebrospinal fluid largely reflect noise due to subject motion, instrument
instabilities, and physiological artifacts, such as cardiac and respiratory effects55,56.
White matter and ventricle masks were extracted based on each subject’s
FreeSurfer segmentation file. These masks were eroded to avoid inclusion of gray
matter voxels by excluding any voxels with one or more non-white matter
neighbors from the white matter mask, and any voxels with two or more non-
ventricle voxel neighbors from the ventricle mask. A relatively less conservative
erosion threshold was applied to the ventricle masks to ensure that all subjects’
ventricle masks contained voxels; these thresholds were chosen based on the
recommendations provided by afni_restproc.py. Data were spatially smoothed

separately within gray matter and non-gray matter masks using a 4-mm full width
at half maximum Gaussian smoothing kernel. The average time series from each
run was extracted from the ventricle mask for use as a global regressor of no
interest. In addition, a local regressor of no interest was computed for each voxel by
taking the average time series of white matter voxels within a 15-mm radius of that
voxel. The temporal derivatives of each regressor of no interest (i.e., motion
parameters extracted during volume registration, average ventricle signal, and local
white matter signal) were computed for use as additional regressors of no interest.
Next, a third-order polynomial was removed from all regressors of no interest to
avoid the inclusion of competing polynomial terms during the subsequent
regression.

Finally, nuisance signals (i.e., motion parameters, average ventricle signal, local
white matter signal, and their derivatives) and a third-order polynomial were
regressed out of the preprocessed time series of each voxel for each run for each
subject. The goal of this procedure was to remove signal changes dues to subject
motion, physiological artifacts (e.g., respiration and cardiac effects), and
instrument instabilities in order to provide a better estimate of signal fluctuations
due to neural processing. Nuisance variable regression is often employed to
attenuate temporal autocorrelation characterizing fMRI response time series, which
can bias estimates of error variance and thus, the significance of test statistics
describing those time series, due to an underestimation of the true degrees of
freedom57. In the current study, however, the relative magnitudes of correlation
coefficients between corresponding time series (which, unlike corresponding p-
values would not be biased by temporal autocorrelation within individual time
series) were entered into separate statistical analyses investigating how dyadic
similarity varied as a function of social distance. Thus, removing the effects of the
nuisance variables as described above served primarily to decrease noise in the data
unrelated to cognitive and affective processing of the stimuli. For each subject,
these preprocessed time series data were concatenated across all six experimental
runs. The average preprocessed time series from each of the 80 anatomical ROIs
was extracted for each subject (i.e., data were averaged across all voxels within a
given ROI at each time point for each subject).

Due to coverage issues, five subjects were missing data for 1 or more ROI.
Specifically, two subjects were missing data for a single ROI, one subject was
missing data for 2 ROIs, one subject was missing data for 6 ROIs, and one subject
was missing data for 21 ROIs. Missing data were concentrated primarily in the
temporal lobes (Supplementary Table 2).

Extracting dyadic similarities of fMRI response time series. Given that there
were 42 subjects in the fMRI component of the study, there were 861 unique
(undirected) dyads of fMRI subjects. For each of these 861 dyads, the Pearson
correlation between the time series of their fMRI responses was computed for each
of 80 anatomical ROIs (Fig. 2). For 1259 of these 68 880 total data points (i.e.,
861 subject pairs×80 anatomical ROIs), at least one subject in the dyad lacked data
for the corresponding ROI (Supplementary Table 2). In such cases, the correlation
value for this dyad was imputed as the average correlation value for that ROI from
all remaining dyads. The resulting similarity vectors for each of the 80 anatomical
ROIs were normalized to have a mean of zero and a SD of 1 (Fig. 3).

Predicting social distance based on neural similarities. As described in the
main text, we tested if it would be possible to predict whether two individuals were
friends, friends of friends, or farther apart in the social network based on the
similarities of their fMRI response time series. If so, it should be possible to build a
predictive model of social distance by training an algorithm to recognize patterns
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of neural similarities associated with various social distance categories from a
subset of dyads’ data. This model should then correctly generalize to predicting the
social distances characterizing new dyads given data summarizing the similarity of
those dyads’ fMRI responses to naturalistic stimuli (i.e., from the eighty-element
vectors that summarize the similarities of neural responses for each dyad). Given
that the current data were imbalanced across social distance categories (i.e., n = 63
for distance 1 dyads; n = 286 for distance 2 dyads; n = 412 for distance 3 dyads; and
n = 100 for distance 4+ dyads), data resampling and folding procedures were used
to create a series of balanced data folds such that all dyads were included in the
analyses, as described in more detail below.

First, the data set was divided into eight training and test folds using the
StratifiedKFold function in scikit-learn24, which ensures equivalent percentages of
samples of each class across training and test folds. To attenuate problems of class
imbalance, sampling techniques such as undersampling (i.e., omitting examples of
over-represented classes from the data set) and oversampling (i.e., adding copies of
examples from under-represented classes to the data set) are often used.
Undersampling can entail excluding a large amount of data from analyses (e.g., in
the current study, including only 63 examples of each category would entail using
only 252 dyads’ data, effectively excluding 609 dyads—71% of the total data set).
Oversampling ensures that all examples (here, all dyads’ data) are included in
analyses. Here oversampling was implemented within each training fold to
generate equal numbers of dyads of each social distance category within each
training fold. Distance categories containing relatively few dyads within each
training fold were made equivalent in size to the larger social distance categories by
iteratively sampling randomly without replacement from the examples of the
corresponding distance category within that training fold until there was an
equivalent number of data points from each category within the training fold. This
approach ensures that no data points are entirely excluded from analysis, while
ensuring that any overfitting resulting from oversampling will not artificially inflate
cross-validated model performance, since oversampling is performed only within
each training fold and performance is ultimately assessed within the previously
held-out testing data from each fold.

Within the training data of each data fold, a grid search procedure was
implemented in scikit-learn24 to select the hyper-parameter (i.e., the value of the C
parameter from a grid of logarithmically spaced values between 0.001 and 1000) of
a linear SVM learning algorithm that would best separate items in the training data
set according to social distance. More specifically, the training data within each
data fold was subdivided into eight additional data folds that were each partitioned
into training and validation data sets, and the C value that performed most
accurately on validation data across folds within the training data was selected as
the best estimator for that data fold. The best estimator was then retrained on all
training data from the given data fold, and its out-of-sample predictive
performance was tested on the left-out testing data for that data fold. This process
was repeated iteratively for each data fold. Results in the main text reflect the
average cross-validated predictive performance across data folds.

To compare the actual cross-validated predictive performance to what would be
expected based on chance alone, permutation testing was used. The procedure
described above was repeated 1000 times while randomly shuffling the labels
corresponding to the data in each training fold to estimate a null distribution of
cross-validated prediction accuracies corresponding to what would be achieved by
random guessing. The distribution and mean of the cross-validated predictive
accuracies achieved in the randomly permuted data are illustrated in Fig. 8b.

Data visualization was performed using the python packages PySurfer58,
seaborn,59 and Matplotlib60, as well as the R packages igraph52 and ggplot261.

Code availability. The code used for the analyses also is available upon request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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