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In his now classical paper on pressure gradient turbulent boundary layers, Clauser
cluded that equilibrium flows were very special flows difficult to achieve experimen
and that few flows were actually in equilibrium [1]. However, using similarity analysis
the Navier–Stokes equations, Castillo and George [2] defined an equilibrium flow as
where the pressure parameter,L5@d/~rU`

2 dd/dx!#~dP` /dx!, was a constant. They
further showed that most flows were in equilibrium and the exceptions were noneq
rium flows whereLÞconstant. Using the equations of motion and similarity analysis
will be shown that even nonequilibrium flows, as those over airfoils or with sud
changes on the external pressure gradient, are in equilibrium state, but only loc
Moreover, in the case of airfoils where the external pressure gradient changes
favorable to zero then to adverse, three distinctive regions are identified. Each regi
given by a constant value ofLu , and each region remains in equilibrium withLu
5constant, respectively.@DOI: 10.1115/1.1789527#
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1 Introduction
Clauser@1# defined an equilibrium boundary layer with pressu

gradient~PG! as one where the pressure parameter given as,

b52
d*

ru
*
2

dP`

dx
, (1)

was a constant and the velocity deficit profile normalized with
friction velocity, u* , was independent of the streamwise dire
tion. Thus, the profiles should collapse into a single curve. Ho
ever, most flows did not satisfy these conditions, especially flo
near separation or separated, where the friction velocity,u* , was
approaching zero. Clauser@1# further concluded that these equ
librium flows were a special type of flows which were difficult
generate and maintain in equilibrium, and therefore most flo
were recognized as nonequilibrium flows.

Bradshaw@3# showed that a necessary condition for a turbul
boundary layer to maintain equilibrium was that the contribut
of the pressure gradient to the growth of the momentum de
should be a constant multiple of the contribution from the surf
shear stress, which was shown to be the same as Clauser’s
sure parameter,b.

Townsend@4# developed a self-preserving theory which w
more rigorous than the analysis by Clauser@1#. Unfortunately,
Townsend@4# overconstrained the problem by assuming the ex
tence of a single velocity scale. Rotta@5# studied the adverse
pressure gradient~APG! flow and showed that the length sca
and the velocity scale were given as,d* U` /u* andu* , respec-
tively. Obviously, these scalings also failed for flows with stro
APG or near separation. Later on, a criterion given asU`5a(x
2x0)m with m,0 was used very often to predict the equilibriu
adverse pressure gradient boundary layer by Townsend@6#, East
and Sawyer@7# and Ska˚re and Krogstad@8#. However, there have
been a lot of disagreements on the range ofm in which the equi-
librium boundary layer should exist. Kader and Yaglom@9# car-
ried out a similarity analysis on moving-equilibrium turbule

*This paper has been presented in the 32th AIAA Fluid Dynamics Conference
Exhibit June 24–26, 2002, St. Louis, Missouri.
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boundary layers with APG. Their so-called moving-equilibriu
turbulent boundary layers were restricted to exclude the effect
the upstream conditions, even though many equilibrium flows
near-equilibrium flows fell into this group.

As stated earlier, most of the previous definitions about eq
librium boundary layers were proposed assuming that a sin
velocity scale existed. However, the classical log-law based
this single velocity scale assumption~i.e., the friction velocity! did
not work for all flows, especially for those with strong APG. Fu
thermore, Coles and Hirst@10# mentioned that the classical scalin
laws failed for turbulent boundary layers experiencing stro
pressure gradient and for relaxing flow where there was a sud
change in the external pressure gradient or boundary conditio

Recent results using similarity analysis of the RANS equatio
by Castillo and George@2# showed that the proper velocity sca
for the outer part of the boundary layer was the free stream
locity instead of the friction velocity. Subsequently, an equili
rium boundary layer was found to exist only when the press
parameterL, defined as

L5
d

rU`
2 dd/dx

dP`

dx
, (2)

was a constant. Integrating the above equation, a power law
tion can be obtained between the boundary layer thickness,d, and
the free stream velocity,U` . Furthermore, it was shown that th
power coefficient was given by the pressure parameter as21/L,
i.e., d;U`

21/L . Moreover, if the experimental data after the tak
logarithm was plotted, this power law must show a linear relatio
ship if an equilibrium flow existed at all. Surprisingly enoug
Castillo and George@2# showed that this was the case for mo
pressure gradient~PG! flows, and the exceptions were nonequili
rium flows where the pressure parameter was not a constan
addition, it seemed that only three values of the pressure par
eter were needed to characterize all equilibrium boundary lay
One was for the adverse pressure gradient~APG! flow with
L>0.22, one for the favorable pressure gradient~FPG! flow with
L>21.92, and one for the zero pressure gradient~ZPG! flow with
L50. This simple definition makes it easier to study the behav
of boundary layers. Most recently, Castillo et al.@11# showed that
even flows approaching separation or at separation obeyed
simple relation, and hence remained in equilibrium.
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There is still another type of flow whereLÞconstant, i.e., the
‘‘nonequilibrium flow,’’ which needs further investigation. Thi
nonequilibrium flow occurs very often in the case of airfo
where the external pressure gradient usually undergoes from
vorable to zero and then to adverse. Another possible case i
relaxed flows as defined by Bradshaw@12#, where sudden change
in the external conditions lead to a flow history dependence in
downstream flow. Consequently, they exhibit a very different
havior from those expected in the classical log-law. Therefore,
primary goal of this paper is to study the behavior of nonequi
rium boundary layers using similarity analysis of the equations
motion. In addition, it will be shown that although this type
flow cannot be considered to be in equilibrium since log(U`) vs
log~d! is nonlinear, it is still in equilibrium, but only locally.

2 Similarity Analysis
The outer scales of the turbulent boundary layer must be de

mined from the equilibrium similarity analysis of the governin
equations, and not chosena priori. Castillo and George@2# ap-
plied this concept to the outer boundary layer equations in orde
determine the mean velocity and Reynolds stresses scales
present analysis is restricted to a 2D, incompressible turbu
boundary layer, and steady state on the mean. The contin
equation is given as,

]U

]x
1

]V

]y
50. (3)

The boundary layer equation for the outer flow (y/d.0.1 typi-
cally! reduces to

U
]U

]x
1V

]U

]y
52

1

r

dP`

dx
1

]

]y
@2^uv&#1

]

]x
@^v2&2^u2&#,

(4)

whereU→U` , ^uv&→0 asy→`, ^u2& and^v2&→0 asy→` as
well according to Tennekes and Lumley@13#. This equation, along
with the continuity equation, describes the outer flow exactly
the limit as the Reynolds number approaches to infinity. The R
nolds normal stresses gradients,]/]x@^v2&2^u2&# are of the sec-
ond order compared to the other terms and are usually negle
However, they will be retained in the present similarity analy
because in flows approaching separation, the contribution of
Reynolds normal stresses gradients is about 30%.~Simpson et al.
@14–16#, Alving and Fernholz@17#, Elsberry et al.@18#!. Notice
that Eq.~4! does not take into account the case of the large sur
curvature where the free stream pressure and the static pressu
the wall are not necessarily the same. On the flat surface,]p/]y is
of the order ofd while on the curvature surface,]p/]y is of the
order of one, Goldstein@19#.

2.1 Similarity Solutions. In order to determine the scales o
the mean flow and the turbulent quantities, similarity soluti
forms shown below are sought. The basic assumption is that
possible to express any dependent variable, in this case the
deficit velocity, U2U` , the outer Reynolds shear stress,^uv&,
and outer Reynolds normal stresses,^u2&, ^v2& as a product of
two functions, i.e.,

U2U`5Uso~x! f op~ ȳ,d1;L;* !, (5)

2^uv&5Rso~x!r op~ ȳ,d1;L;* !, (6)

^u2&5Rsou~x!r opu~ ȳ,d1;L;* !, (7)

^v2&5Rsov~x!r opv~ ȳ,d1;L;* !, (8)

where Uso and Rso are the outer velocity scale and the out
Reynolds shear stress scale, respectively, which depend onx only;
Rsou andRsov are the Reynolds normal stresses scales corresp
ing to the ^u2& and ^v2& components, and depend only onx as
well. Note that the outer velocity scale,Uso , the outer Reynolds
828 Õ Vol. 126, SEPTEMBER 2004
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shear stress scale,Rso , and the outer Reynolds normal stress
scales,Rsou andRsov mustbe determined from the boundary laye
equations. The arguments inside the similarity functions (f op ,
r op , r opu , and r opv) represent the outer similarity coordinate,ȳ
5y/d99, the Reynolds number dependence,d15du* /n, the
pressure parameter,L, and any possible dependence on the u
stream conditions,* , respectively.

2.2 Asymptotic Invariance Principle: AIP. This principle
means that in the limit as Re→` the boundary layer equation
become independent of the Reynolds number; therefore, any f
tion or scaling must also be independent ofd1 as well. Thus, in
this limit Eqs. ~5! and ~6! must also become independent of th
local Reynolds number, i.e.,

f op~ ȳ,d1;L;* !→ f op`~ ȳ,L,* !, (9)

r op~ ȳ,d1;L;* !→r op`~ ȳ,L,* !, (10)

r opu~ ȳ,d1;L;* !→r opù ~ ȳ,L,* !, (11)

r opv~ ȳ,d1;L;* !→r opv`~ ȳ,L,* !, (12)

as d1→`. The subscript̀ is used to distinguish these infinit
Reynolds number solutions from the finite Reynolds number p
files used in Eqs.~5!–~8!.

2.3 Transformed Equations. Using the asymptotic func-
tions of Eqs.~9!–~12!, it is possible to get a new outer scale fo
velocity deficit profiles and Reynolds stresses profiles, resp
tively. Substituting Eqs.~9!–~12! into Eq. ~4! and clearing terms
yield:

F d

Uso

dU`

dx
1S U`

Uso
D d

Uso

dUso

dx G f op`1F d

Uso

dUso

dx G f op`
2 2F U`

Uso

dd

dx

1
d

Uso

dU`

dx G ȳ f op`8 2Fdd

dx
1

d

Uso

dUso

dx G f op`8 E
0

ȳ

f op`~ ỹ!dỹ

5F Rso

Uso
2 G r op`8 2FRsov

Uso
2

dd

dxG r opv`8 1FRsou

Uso
2

dd

dxG r opù8 ,

(13)

where the term involving2dP` /dx has been cancelled by th
rU`dU` /dx term from Euler’s equation for the external flow
and theV component is obtained by the integration of the con
nuity equation.

2.4 Equilibrium Similarity Conditions. For the particular
type of ‘‘equilibrium’’ similarity solutions suggested by Georg
@20#, all the terms in the governing equations must maintain
same relative balance as the flow develops. Theseequilibrium
similarity solutions exist only if all the square bracketed term
have the samex dependence and are independent of the simila
coordinate,ȳ. Thus, the bracketed terms must remain proportio
to each other as the flow develops, i.e.,

d

Uso

dUso

dx
;

d

Uso

dU`

dx
;S U`

Uso
D d

Uso

dUso

dx
;

dd

dx
;S U`

Uso
D dd

dx

;
Rso

Uso
2

;
Rsov

Uso
2

dd

dx
;

Rsou

Uso
2

dd

dx
, (14)

where ‘‘;’’ means ‘‘has the samex dependence as.’’ It is clear tha
full similarity of the ‘‘equilibrium-type’’ is possible only if,

Uso;U` , (15)

Rso;Uso
2

dd

dx
;U`

2
dd

dx
, (16)

and

Rsou;Rsov;Uso
2 ;U`

2 . (17)
Transactions of the ASME
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Thus, the outer equations do admit to full similarity solutions
the limit of infinite Reynolds number,and these solutions deter
mine outer scales. No other choice of scales can produce profi
~of the assumed form!, which are asymptotically independent o
the Reynolds number, at least unless they reduce to these sca
the limit, George and Castillo@21#.

2.5 Pressure Gradient Parameter. Besides the similarity
conditions for the mean velocity and Reynolds stresses, other
straint for the pressure gradient can be obtained as well from
analysis such as,

dd

dx
;

d

U`

dU`

dx
;

d

rU`
2

dP`

dx
. (18)

Note, that the pressure gradient controls the growth rate of
boundary layer. A surprising consequence of this condition is
it is satisfied by a power law relation between the free stre
velocity and the boundary layer thickness, i.e.,

d;U`
n , (19)

wheren can, to this point at least, be any nonzero constant. Th
the familiar Falker–Skan solutions of laminar boundary lay
with pressure gradient discussed by Batchelor@22#, but with d as
the variable instead ofx. The pressure gradient parameterL can
be defined as,

L[
d

rU`
2 dd/dx

dP`

dx
5constant (20)

or equivalently

L[2
d

U`dd/dx

dU`

dx
5constant. (21)

Because equilibrium flows requireL5constant for similarity, Eq.
~21! can be integrated~for nonzero values ofL! to obtain

d;U`
21/L . (22)

Thus, not only is there a power law relation between the bound
layer thickness and the imposedfree streamvelocity, but the ex-
ponent is determined uniquely by the pressure gradient param
i.e.,

n52
1

L
. (23)

Therefore, an ‘‘equilibrium’’ boundary layerin the present ap-
proach is one whereL5constant andd;U`

21/L .

2.6 Relations Between the Length Scales andL. The goal
in this section is to show that the pressure gradient parameteL,
can be expressed in terms of the displacement thickness,d* , or
the momentum thickness,u. Using the definitions of the momen
tum thickness,u, and the displacement thickness,d* , it is pos-
sible to show thatu;d;d* according to Castillo@23#. Therefore,
the pressure parameter in terms of the momentum thicknes
given as,

Lu[
u

rU`
2 du/dx

dP`

dx
52

u

U`du/dx

dU`

dx
5constant, (24)

and in term of the displacement thickness as,
Journal of Fluids Engineering
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Ld* [
d*

rU`
2 dd* /dx

dP`

dx
52

d*
U`dd* /dx

dU`

dx
5constant.

(25)

Sinceu;d;d* exists at least in the limit of Re→`, it is easily to
obtain

Lu;Ld
*
;L. (26)

Thus, asymptotically at least, the following relationship

U`;d2L;d
*

2Ld
* ;u2Lu (27)

exists.
But what is the relation between these pressure parameter

the finite Reynolds number of experiments? Castillo@24# and
Castillo et al.@25# were able to show from experiments that a
velocity profiles for nonseparating adverse pressure gradi
boundary layers could be collapsed onto a single curve using
scaling proposed by Zagarola/Smits@26#, U`d* /d. They also

Fig. 1 Plots of log „U`… vs log „d99… for FPG and APG data. The
plot is normalized with U` i and u i for the first measured loca-
tion Castillo and George †2‡.
SEPTEMBER 2004, Vol. 126 Õ 829
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Fig. 2 Nonequilibrium boundary layers: Plots of log „U`… vs log „d99…
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showed that the same profiles collapsed to a single curve usingU`
only if the upstream conditions were fixed as shown by Wal
and Castillo@27# and Castillo and Walker@28#. Thus all of the
variation among different sets of data could be attributed to
upstream conditions. They showed that the ratiod* /d was ap-
proximately constant for fixed upstream conditions. Wosnik@29#
argued that for ZPG flow, a necessary consequence of the
served success of the Zagarola/Smits scaling was that the
d̃* /d be exactly a constant, but the constant differed for differ
upstream conditions. The length scaled̃* was calculated like the
displacement thickness, but only using dataoutside y/d.0.1.

Clearly, an equilibrium flow exists only if the data show a line
relation between the logarithmic length scales and the logarith
free stream velocity. Also, the slope should correspond to
value of each pressure parameter~i.e.,L, Lu , andLd

*
). Previous

investigation by Castillo and George@2# suggested that the pres
sure parameter is given byL>0.22 for APG equilibrium flow and
L>21.92 for FPG equilibrium flow as shown in Fig. 1. Figu
1~a! shows various FPG experimental data of log(U` /U`i) versus
log(d/ui). In order to compare the results from different expe
ments, the free stream velocity,U` , and the boundary layer thick
ness,d, were normalized byU` i and u i , where the subscripti
means the first downstream location. Since all the data~at least
away from the entrance and exit! have approximately the sam
slope, it is clear thatL>21.92 is a suitable description of thes
data even though the strength of the pressure gradient varies
mild, moderate to strong FPG. A similar behavior occurs for AP
flows with different strengths of pressure gradient shown in F
1~b!. Clearly, L>0.22 describes properly most of equilibrium
APG flows. But, can the APG region of a nonequilibrium flow
, SEPTEMBER 2004
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described by the same value of the pressure parameter,L>0.22?
Also, what are the values of the pressure parameter for the F
region or ZPG region of a nonequilibrium flow?

3 Nonequilibrium Flows
Figures 2 and 3 show some cases of nonequilibrium turbu

boundary layers. Figure 2 displays a nonlinear relationship
tween log(U`) vs log~d! corresponding to each experiment d
scribed below. Figure 3 shows the same experimental data u
the momentum thickness,u, as the length scale. Consequently, t
pressure parameterL and Lu are obtained. Notice thatu is an
integral value over the whole profile, whereasd is just a local
value at a certain position~i.e., d95 or d99). Therefore, there are
less errors associated with the calculation ofu than d99 or d95.
Notice that Fig. 3 shows a better linear relation between log(U`)
vs log~u! than log(U`) vs log~d! in Fig. 2.

For the nonequilibrium data from Schubauer and Kleban
@30# (1420,Reu,76 700), and Simpson et al.@15# (1380,Reu
,18 700), the external PG changes from FPG to ZPG and t
from ZPG to APG with eventual separation. It is obvious th
these flows are not in equilibrium since globally the pressure
rameter is not a constant. However, they remain in equilibri
locally. Another interesting fact is that there are three distinct
regions: one for FPG withLu520.44 ~for Schubauer and Kle-
banoff @30#!, Lu520.8 ~for Simpson et al.@15#!; one for ZPG
with Lu520.03 ~for Schubauer and Klebanoff@30#!, Lu50 ~for
Simpson et al.@15#!; and one for the APG region withLu50.22
for both cases.

A similar behavior occurs for the experimental data from Si
pson et al.@31# (2240,Reu,38 000) as shown in Figs. 2~c! and
Transactions of the ASME
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Fig. 3 Nonequilibrium boundary layers: Plots of log „U`… vs log „u…
sults

illo

all

with
ry
PG
or
3~c!. For this experimental data, there are two distinctive regio
one for the FPG and one for the APG region. Each region
locally in equilibrium, and is characterized by a constant press
parameterLu520.61 for the FPG region andLu50.22 for the
APG region, respectively. Meanwhile, for the measurements
relax flow from Bradshaw@12# (8593,Reu,22 582) shown in
Figs. 2~d! and 3~d!, the flow still remains in equilibrium with
Lu50.22 even when it undergoes a sudden change in pres
gradient from ZPG to APG.

In addition, notice that for the experimental data from Sch
bauer and Klebanoff@30# and Simpson et al.@15,31#, the flow
eventually separates and it is indicated in Figs. 2 and 3. Moreo
the experimental data by Simpson et al.@15,31# show a long range
of separation.

Clearly,Lu>0.22 exists for the APG region of nonequilibrium
flows, which is same as the pressure parameterL for equilibrium
boundary layers as reported by Castillo and George@2#. In addi-
s Engineering
ns:
is

ure
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sure
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tion, Castillo et al.@11# showed that the pressure parameterLu for
separated flows was close to 0.21. Table 1 summarized all re
from the equilibrium flows of Castillo and George@2# and Wang
@32#, the results from separated flows in the analysis of Cast
et al. @11#, and the results from the present investigation.

4 ZagarolaÕSmits Scaling Using Similarity Analysis
Most recently, Castillo and Walker@28# showed that using the

Zagarola/Smits scaling@26# for all APG flows, velocity deficit
profiles collapse into a single curve, which is an indication that
APG flows ~at least equilibrium flows! could be characterized by
a single profile. Since the pressure parameter is a constant
Lu>0.21 or 0.22 for all equilibrium and nonequilibrium bounda
layers with APG, it means that it is possible to represent A
flows for equilibrium boundary layers with one profile and f
nonequilibrium flows with the similar approaches.
Table 1 Pressure parameter for equilibrium and nonequilibrium flows

Experiments APG

Equilibrium flowsLu : Castillo
and George@2#, Wang@32#

Bradshaw Mild and Mod APG, Clauser Mild and
Mod APG, Ludwig and Tillman strong APG and
Mod APG; Skåre and Krogstad APG, Marusic
APG, and Elsberry et al. Strong APG.

0.2160.04

Separation flowsLu : Castillo,
Wang and George@11#

Newman strong APG, Alving and Fernholz, Ludwig and Tillman,
Simpson et al. 1977, Simpson et al. 1981

0.2160.01

Nonequilibrium flowsLu : Schubauer and Klebanoff FPG-ZPG-APG 1944,
Bradshaw ZPG-APG 1965, Simpson et al.
FPG-APG 1977, Simpson et al. FPG-ZPG-
APG 1981

0.22
SEPTEMBER 2004, Vol. 126 Õ 831



832 Õ Vol. 126
Fig. 4 APG velocity profiles using Zagarola ÕSmits scaling: nonequilibrium flows and equilib-
rium flows
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Using the similarity ideas outlined in the previous sections,
empirical velocity scaling of Zagarola/Smits@26#, Uso
5U`(d* /d), will be derived in this section. It is assumed that t
function f op can be expressed as a product of two functions,

f op~ ȳ,d1;L;* !5G~d1;* !Fop`~ ȳ;L!. (28)

The first termG(d1;* ) contains the dependence on the Re
nolds number,d1, and the upstream conditions,* , while the sec-
ond termFop`( ȳ;L) contains the normalized dependence on
distance from the wall,ȳ, and the pressure parameter,L. This
profile, Fop` , represents the asymptotic velocity profile in th
limit as Re→`. It is this profile that must reduce to a similarit
solution of the RANS equations as required by the asympt
invariance principle. Hence, this asymptotic profile must be in
pendent of Reynolds number, but its shape may be different
ZPG, FPG, and APG turbulent flows depending on the value
the pressure parameter,L. Note, that a similar decomposition o
the profile was used by Wosnik and George@33# for ZPG bound-
ary layers.

For the incompressible flow, the displacement thickness
given by

U`d* 5E
0

`

~U`2U !dy. (29)

The function,G(d1,* ), can be determined by substituting E
~28! into the definition for the displacement thickness Eq.~29!:
, SEPTEMBER 2004
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@d* #'@dG#E
0

`

Fop`~ ȳ,L!dȳ, (30)

where a small contribution from the inner layer has been
glected. It is easy to show that Eq.~30! is exact in the limit of the
infinite Reynolds number. Now, since Eq.~30! is in similarity
variables, the integral part depend onL at most, which itself must
be independent ofx. Therefore,d and d* must have the samex
dependence. It follows immediately that,

G}~d* /d!. (31)

The functionG can be combined with Eqs.~4! and ~28! to yield
the outer velocity scale of Zagarola/Smits,Uso5U`(d* /d). Note
the fact that the Zagarola/Smits scaling contains the Reyn
number dependence term,d* /d, which means that the boundar
layer is indeed Reynolds number dependent, exactly as argue
Castillo and George@2# and George and Castillo@21#.

Castillo and Walker@28# showed thatd* /d→constant in the
limit of the infinite local Reynolds number, but argued that th
constant might depend on the upstream conditions. This re
obeys the Asymptotic Invariance Principle, which requires t
any properly scaled similarity function must be asymptotica
independent of Reynolds number. Thus, in the limit asd1→`,
G→G`(* ) only. Therefore, if the proposed separation off op is
valid, all of the effects of upstream conditions should be remov
by the Zagarola/Smits scaling. Or conversely, if the Zagaro
Transactions of the ASME
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Smits scaling proves successful, then the separation of solu
must be at least approximately valid in the limit asd1→`.

It is important to note that sinced* /d→constant asd1→`,
the Zagarola/Smits scaling,U`(d* /d), reduces to the GC scaling
U` , in the same limit. Thus, both theU` andU`d* /d scalings
are consistent with the equilibrium similarity analysis. The latt
of course, also removes the upstream and local Reynolds num
effects, if the hypothesis of Eq.~28! is correct. This can be con
trasted with the analysis of Clauser@1# which requires that
U`d* /d;u* . Obviously, if this classical result is correct, the
should be no difference between the ZS-scaled profiles and t
usingu* , contrary to the finding of Zagarola and Smits@26#.

Figure 4 shows the velocity profiles normalized by t
Zagarola/Smits scaling for the APG experimental data of Br
shaw @34# initially at ZPG developing into a sudden modera
APG, the Bradshaw@12# data for relaxed flow, the Clauser@1#
data for moderate APG, the Newman@35# experimental data with
eventual separation and finally the Schubauer and Klebanoff@30#
data for nonequilibrium flow. Notice that the experimental da
from Clauser@1# and Newman@35# are in equilibrium. However,
the other three measurements are nonequilibrium flows bec
the pressure parameter is not a constant. Also, for the mea
ment by Schubauer and Klebanoff@30#, the flow eventually sepa
rates. In spite of all the differences, the APG velocity profi
collapse into nearly one single curve. Figure 4~a! shows some of
the profiles from equilibrium boundary layers as given by Cast
and George@2#. Clearly, there is a single velocity profile for th
equilibrium APG flow while normalized by the Zagarola/Sm
scaling. The nonequilibrium deficit profiles are shown in Fig. 4~b!.
Notice that there is nearly a single profile for these nonequilibri
flows as described by the single pressure parameterLu . Figure
4~c! includes the equilibrium and nonequilibrium APG flows a
the profiles follow nearly only one curve too.

5 Summary and Conclusions
Using similarity analysis for nonequilibrium flows, the ma

results of the present investigation can be summarized as:
1. Nonequilibrium boundary layers, defined asLuÞconstant,

remain in equilibrium, but only locally with a pressure parame
Lu5constant, for each region.

2. Each local region is characterized by a constant pres
parameter. For the FPG region of a nonequilibrium flow, the pr
sure parameter varies from20.44 up to20.8. For the ZPG region
of a nonequilibrium flow, the pressure parameter is nearly z
The APG region of the current nonequilibrium flow has the va
of aboutLu>0.22, which is the same as the pressure param
for the equilibrium flow in terms ofL.

3. It has been found that nearly a single velocity profile exi
for all APG flows including equilibrium and nonequilibrium flow
when scaled by the Zagarola/Smits scaling.

In conclusion, flows that are exposed to sudden exte
changes in pressure gradient~PG! still remain in a local equilib-
rium. Moreover, the similarity theory proves to be a powerful to
to understand PG flows and their tendency to remain in equ
rium state.
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Nomenclature

Rso 5 outer Reynolds stress scale for^uv&
Rsou 5 outer Reynolds stress scale for^u2&
Rsov 5 outer Reynolds stress scale for^v2&
Uso 5 outer velocity scale
U` 5 free stream velocity

U`2U 5 mean velocity deficit
U`d* /d 5 Zagarola/Smits scaling
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u* 5 friction velocity, u* 5Atw /r
d 5 boundary layer thickness, e.g.,d99

d* 5 displacement thickness,*0
`(12U/U`)dy

d1 5 local Reynolds number dependence,du* /v
L 5 pressure parameter, (d/rU`

2 dd/dx)(dP` /dx)
Ld

* 5 pressure parameter, (d* /rU`
2 dd* /dx)(dP` /dx)

Lu 5 pressure parameter, (u/rU`
2 du/dx)(dP` /dx)

u 5 momentum thickness,*0
`(U/U`)(12U/U`)dy

* 5 unknown upstream conditions
PG 5 pressure gradient

ZPG 5 zero pressure gradient
FPG 5 favorable pressure gradient
APG 5 adverse pressure gradient
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