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In his now classical paper on pressure gradient turbulent boundary layers, Clauser con-

Luciano Castillo

Xia Wang cluded that equilibrium flows were very special flows difficult to achieve experimentally
and that few flows were actually in equilibrium [1]. However, using similarity analysis of
Rensselaer Polytechnic Institute, Department of the Navier-Stokes equations, Castillo and George [2] defined an equilibrium flow as one
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Engineering, Troy, NY 12180 further showed that most flows were in equilibrium and the exceptions were nonequilib-

rium flows whereA #constant. Using the equations of motion and similarity analysis, it
will be shown that even nonequilibrium flows, as those over airfoils or with sudden
changes on the external pressure gradient, are in equilibrium state, but only locally.
Moreover, in the case of airfoils where the external pressure gradient changes from
favorable to zero then to adverse, three distinctive regions are identified. Each region is
given by a constant value ok,, and each region remains in equilibrium with,
=constant respectively]DOI: 10.1115/1.1789527

1 Introduction boundary layers with APG. Their so-called moving-equilibrium
rbulent boundary layers were restricted to exclude the effects of
e upstream conditions, even though many equilibrium flows and
near-equilibrium flows fell into this group.
As stated earlier, most of the previous definitions about equi-
__ O d& 1) Iibrium boundary. layers were proposed agsuming that a single
Puf dx ’ velocity scale existed. However, the classical log-law based on
this single velocity scale assumpti@re., the friction velocity did
was a constant and the velocity deficit profile normalized with theot work for all flows, especially for those with strong APG. Fur-
friction velocity, u, , was independent of the streamwise directhermore, Coles and Hirpt0] mentioned that the classical scaling
tion. Thus, the profiles should collapse into a single curve. Holaws failed for turbulent boundary layers experiencing strong
ever, most flows did not satisfy these conditions, especially flovasessure gradient and for relaxing flow where there was a sudden
near separation or separated, where the friction velagjty,was change in the external pressure gradient or boundary conditions.
approaching zero. Clausgt] further concluded that these equi- Recent results using similarity analysis of the RANS equations
librium flows were a special type of flows which were difficult toby Castillo and Georgg2] showed that the proper velocity scale
generate and maintain in equilibrium, and therefore most flovier the outer part of the boundary layer was the free stream ve-
were recognized as nonequilibrium flows. locity instead of the friction velocity. Subsequently, an equilib-
Bradshaw[ 3] showed that a necessary condition for a turbulemtum boundary layer was found to exist only when the pressure
boundary layer to maintain equilibrium was that the contributioparameterA, defined as
of the pressure gradient to the growth of the momentum deficit

Clausel 1] defined an equilibrium boundary layer with pressur%
gradient(PG) as one where the pressure parameter given as,

should be a constant multiple of the contribution from the surface 5 dp
shear stress, which was shown to be the same as Clauser’s pres- A=——— —, 2)
sure paramete. pUZds/dx dx

Townsend[4] developed a self-preserving theory which was
more rigorous than the analysis by Clau&f. Unfortunately, was a constant. Integrating the above equation, a power law rela-
Townsend 4] overconstrained the problem by assuming the exision can be obtained between the boundary layer thickrgssd
tence of a single velocity scale. Rotf&] studied the adverse the free stream velocity)... Furthermore, it was shown that the
pressure gradientAPG) flow and showed that the length scalepower coefficient was given by the pressure parameter H4,,
and the velocity scale were given a,U../u, andu, , respec- je., §~U,Y". Moreover, if the experimental data after the taken
tively. Obviously, these scalings also failed for flows with stronghgarithm was plotted, this power law must show a linear relation-
APG or near separation. Later on, a criterion giverUas= (X  ship if an equilibrium flow existed at all. Surprisingly enough,
—X)™ with m< 0 was used very often to predict the equilibriumCastillo and Georgé2] showed that this was the case for most
adverse pressure gradient boundary layer by Town§ehdEast pressure gradieriPG) flows, and the exceptions were nonequilib-
and Sawyef7] and Skae and Krogstad8]. However, there have rium flows where the pressure parameter was not a constant. In
been a lot of disagreements on the rangendh which the equi- addition, it seemed that only three values of the pressure param-
librium boundary layer should exist. Kader and Yaglg® car- eter were needed to characterize all equilibrium boundary layers.
ried out a similarity analysis on moving-equilibrium turbuleniOne was for the adverse pressure gradighPG) flow with
A=0.22, one for the favorable pressure gradigiRG flow with

*This paper has been presented in the 32th AIAA Fluid Dynamics Conference aAd=—1.92, and one for the zero pressure gradigfG) flow with
Exhibit June 2426, 2002, St. Louis, Missouri. A=0. This simple definition makes it easier to study the behavior
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There is still another type of flow where+constant, i.e., the shear stress scal®g,, and the outer Reynolds normal stresses
“nonequilibrium flow,” which needs further investigation. ThisscalesRg,,andRs,, mustbe determined from the boundary layer
nonequilibrium flow occurs very often in the case of airfoilequations. The arguments inside the similarity functiohg, {
where the external pressure gradient usually undergoes from ffigs, r,,, andr,p,,) represent the outer similarity coordinate,
vorable to zero and then to adverse. Another possible case is thg/ 5,9, the Reynolds number dependend®,=du, /v, the
relaxed flows as defined by Bradshpl®2], where sudden changespressure parameted, and any possible dependence on the up-
in the external conditions lead to a flow history dependence in teeream condition¥, respectively.
downstream flow. Consequently, they exhibit a very different be- . i o ) .
havior from those expected in the classical log-law. Therefore, the2-2 Asymptotic Invariance Principle: AIP.  This principle
primary goal of this paper is to study the behavior of nonequilifn€ans that in the limit as Rex the boundary layer equations
rium boundary layers using similarity analysis of the equations 8£€0mMe independent of the Reynolds number; therefore, any func-
motion. In addition, it will be shown that although this type ofion or scaling must also be independentsof as well. Thus, in
flow cannot be considered to be in equilibrium since lbg(vs this limit Egs. (5) and (6) must also become independent of the

log(é) is nonlinear, it is still in equilibrium, but only locally. local Reynolds number, i.e.,
fop(Y, 873 A%) = fopa(Y,A %), ©)
2 Similarity Analysis Fop(Ys 8 A% ) =T ope(V,A %), (10)
The outer scales of the turbulent boundary layer must be deter- — ha —
mined from the equilibrium similarity analysis of the governing FopulYs 03 A ) = Topua(Y, A %), (11)
equations, and not chosenpriori. Castillo and Georg¢2] ap- ropu@5+;1\;*)Hropw@/\,*), (12)

plied this concept to the outer boundary layer equations in order to

determine the mean velocity and Reynolds stresses scales. @@ —. The subscript, is used to distinguish these infinite
present analysis is restricted to a 2D, incompressible turbuléfeynolds number solutions from the finite Reynolds number pro-
boundary layer, and steady state on the mean. The continditgs used in Eqs(5)—(8).

equation is given as, 2.3 Transformed Equations. Using the asymptotic func-

U 9V tions of Eqs.(9)—(12), it is possible to get a new outer scale for
WJF W=0- (3)  velocity deficit profiles and Reynolds stresses profiles, respec-
tively. Substituting Eqs(9)—(12) into Eq. (4) and clearing terms
The boundary layer equation for the outer flow/ §>0.1 typi- vyield:
cally) reduces to

y y Lap [5 de+(Um) 5 dUg, {5 dUs| , [deé
a a . 0 J 0 ax o0 ax Tor=t 1 0~ g% Tor— | T ax
UW+VW:_;W+ W[_<uv>]+ a—x[<vz>—<u2>], Uso dx Uso/ Uso dX Uso dx - Uso dX
(4) 6 du.|_, dé & dUg| y -
+ U_W YTope ™ &4_ U_ dx fopoc fopoo(Y)d?
whereU—U.,, (uv)—0 asy—=, (u?) and(v?)—0 asy—= as so so 0
well according to Tennekes and LumlIgd3]. This equation, along
with the continuity equation, describes the outer flow exactly in ~_ | Rso| , Rs_ovd_'5 / @d_é ,
the limit as the Reynolds number approaches to infinity. The Rey- | 2 Fop= 2 dx| Op= 2 gx | opu
USO USO USO

nolds normal stresses gradienisgx[(v2)—(u?)] are of the sec-
ond order compared to the other terms and are usually neglecteﬂ. . .
However, they will be retained in the present similarity analysi¥nere the term involving-dP.. /dx has been cancelled by the
because in flows approaching separation, the contribution of tA/=dU=/dx term from Euler's equation for the external flow,
Reynolds normal stresses gradients is about 3@npson et al. anq thev component is obtained by the integration of the conti-
[14-16, Alving and FernholZ17], Elsberry et al[18]). Notice Uity equation.
that Eq.(4) does not take into account the case of the large surface 4 Equilibrium Similarity Conditions.  For the particular
curvature where the free stream pressure and the static pressurgga of “equilibrium” similarity solutions suggested by George
the wall are not necessarily the same. On the flat surfgmly is  [20], all the terms in the governing equations must maintain the
Of the Ol’del’ Of5 Wh||e on the curvature Surfacép/&y iS Of the same relative balance as the flow deve|0ps_ Tl'mm“bnum
order of one, Goldsteifil9]. similarity solutions exist only if all the square bracketed terms
2.1 Similarity Solutions. In order to determine the scales ofave the same dependence and are independent of the similarity
the mean flow and the turbulent quantities, similarity solutiofiPerdinatey. Thus, the bracketed terms must remain proportional
forms shown below are sought. The basic assumption is that it'f&s€ach other as the flow develops, i.e.,
possible to express any dependent variable, in this case the outers du,, & dU. (Um) 5 dUg, do (Ux) ds

deficit velocity, U—U.., the outer Reynolds shear streésy), —

and outer Reynolds normal stressés?), (v?) as a product of Uso dx Uso dx Usol Uso dxdx 1 Uso/ dx
two functions, i.e., B Reo Row 8 Reoudd "
U= U= U0 op(y,871A1%), (5) %, Uz, dx U2 dx’
—(Uv)=Rsg(X) (Y, 07 A %), (6) where “~"means “has the same dependence as.” It is clear that
— full similarity of the “equilibrium-type” is possible only if,
(U?)=ReodX)Fopu(y, 871 A1), (7)
) — Uso~U.., (15)
(0%)=Rsa (X op (¥, 87 A%), ) 45 ds
where Uy, and Ry, are the outer velocity scale and the outer Rso~U§o—~Ui—, (16)
Reynolds shear stress scale, respectively, which deperaoiy; dx dx
Rsou@ndRg,, are the Reynolds normal stresses scales correspoggy
ing to the(u?) and(v?) components, and depend only &ras ) )
well. Note that the outer velocity scald,, the outer Reynolds Rsou~Rsoy~Uso™~ U a7
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Thus, the outer equations do admit to full similarity solutions ii 0.5 -
the limit of infinite Reynolds numbegnd these solutions deter- @ Haiming & Noibury: Mild FPG ¥l
mine outer scalesNo other choice of scales can produce profile Ludwieg & Tillmenn: Mod FPG -
(of the assumed forimwhich are asymptotically independent of il St UL
the Reynolds number, at least unless they reduce to these scale + Kiine ot al.- Strang FPG | =
the limit, George and Castill21]. Fit: 1.915(5/) —1.58 4
. ) S 5 |—— Ft 1 950Em-1.83 {
2.5 Pressure Gradient Parameter. Besides the similarity .'1’
conditions for the mean velocity and Reynolds stresses, other ¢ ¥
straint for the pressure gradient can be obtained as well from 1=, L
analysis such as, = E
g o
= [}
dé & du. & dP. 18 s 0
R L  —— LI
dx U, dx pyu2 dx’ (18) q:;-
e I
Note, that the pressure gradient controls the growth rate of t |t
boundary layer. A surprising consequence of this condition is th | :'
it is s_atisfied by a power law rela_ltion bet\{veen the free strea -0 1D_D o 10 15 20
velocity and the boundary layer thickness, i.e., log, (&8
(a) Equilibrium FPG Flow: A = —1.92
s~ul, (19)
) ) ) 0.40
wheren can, to this point at least, be any nonzero constant. This Gzacin pa: Mia APd
- . . il sern: Mid APG
the familiar Falker—Skan solutions of laminar boundary layel Bractshaw: Mod APG
with pressure gradient discussed by Batchgh#|, but with 6 as A A e
the variable instead of The pressure gradient paramefeccan - crogpiy bl empmgocbe gy i
be defined as, —— FE-022m 02
Fi =02275M5+ 0115
A o dp. tant (20) 3
= ———— ——=constan =
pU2ds/dx dx ae A
or equivalently _E‘
A= o du. tant 21 i
=" U.doldx dx _constant (1)
Because equilibrium flows require=constant for similarity, Eq.
i i -0.40
(21) can be integrate@for nonzero values ol\) to obtain 0.0 10 20 3.0
log, (&)
s~u M, 22) Equilibrium APG Flow: A = 0.22

Thus, not only is there a power law relation between the boundqflx,é_ 1 Plots of log (U,) vs log (6y) for FPG and APG data. The
layer thickness and the imposéee streamvelocity, but the eX- ot is normalized with ~ U.,; and 6, for the first measured loca-
ponent is determined uniquely by the pressure gradient parameig§ Castillo and George  [2].

ie.,
1 T S o, du._

A "= UZds, fdx Ox  U.de, fdx dx ot

(25)

Therefore, an “equilibrium” boundary layein the present ap-
proachis one whereA =constant ands~U_ YA . Sinced~ o~ 9, exists at least in the limit of Rex, it is easily to
obtain

2.6 Relations Between the Length Scales amdl. The goal
in this section is to show that the pressure gradient paramieter, Ag~As ~A.

can be expressed in terms of the displacement thickidgssor
the momentum thicknes$, Using the definitions of the momen- Thus, asymptotically at least, the following relationship

(26)

tum thickness g, and the displacement thickness, , it is pos-
sible to show that~ 5~ 8, according to Castill$23]. Therefore, U ~57A~5’A6*~07A6 27)
the pressure parameter in terms of the momentum thickness is * *
exists.
But what is the relation between these pressure parameters at
the finite Reynolds number of experiments? Castjldd] and
4 dP. o du. =constant, (24) Castillo et al.[25] were able to show from experiments that all
velocity profiles for nonseparating adverse pressure gradient

Ao= pU2daldx Tdx  U.deidx dx
boundary layers could be collapsed onto a single curve using the
scaling proposed by Zagarola/Smit6], U..5, /8. They also

given as,

and in term of the displacement thickness as,
SEPTEMBER 2004, Vol. 126 / 829
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Fig. 2 Nonequilibrium boundary layers: Plots of log (U,.) vs log (6y9)

showed that the same profiles collapsed to a single curve Uking described by the same value of the pressure parameted,22?

only if the upstream conditions were fixed as shown by Walké&lso, what are the values of the pressure parameter for the FPG
and Castillo[27] and Castillo and Walkef28]. Thus all of the region or ZPG region of a nonequilibrium flow?

variation among different sets of data could be attributed to the

upstream conditions. They showed that the rajo/6 was ap- 3 Nonequilibrium Flows

proximately constant for fixed upstream conditions. Wogi2i§]
argued that for ZPG flow, a necessary consequence of the

served success of the Zagarola/Smits scaling was that the r > )
9 9 een logy..) vs logd) corresponding to each experiment de-

9, 16 be exactly a constant, but the constant differed for d'ﬂere't%\ﬁribed below. Figure 3 shows the same experimental data using
upstream conditions. The length scadlg was calculated like the the momentum thickness, as the length scale. Consequently, the
displacement thickness, but only using dataside y5>0.1.  pressure parametet and A, are obtained. Notice that is an
Clearly, an equilibrium flow exists only if the data show a lineajhtegral value over the whole profile, wheredss just a local
relation between the logarithmic length scales and the logarithmjg|ue at a certain positiofi.e., S5 OF dqg). Therefore, there are
free stream velocity. Also, the slope should correspond to tigss errors associated with the calculationdathan dgg OF Sgs.
value of each pressure paramefiee., A, Ay, andA ; ). Previous Notice that Fig. 3 shows a better linear relation betweenUgy(
investigation by Castillo and Geord#] suggested that the pres-vs log() than log{..) vs log(é) in Fig. 2.
sure parameter is given by=0.22 for APG equilibrium flow and  For the nonequilibrium data from Schubauer and Klebanoff
A=-1.92 for FPG equilibrium flow as shown in Fig. 1. Figurg30] (1420<Re,<76 700), and Simpson et dl15] (1380<Re,
1(a) shows various FPG experimental data of lag(U..;) versus <18 700), the external PG changes from FPG to ZPG and then
log(&8/#). In order to compare the results from different experifrom ZPG to APG with eventual separation. It is obvious that
ments, the free stream velocity,. , and the boundary layer thick- these flows are not in equilibrium since globally the pressure pa-
ness,s, were normalized byJ.; and 6;, where the subscrigt rameter is not a constant. However, they remain in equilibrium
means the first downstream location. Since all the datdeast locally. Another interesting fact is that there are three distinctive
away from the entrance and exttave approximately the sameregions: one for FPG withh\ ,= —0.44 (for Schubauer and Kle-
slope, it is clear thatn=-1.92 is a suitable description of thesebanoff [30]), A ,=—0.8 (for Simpson et al[15]); one for ZPG
data even though the strength of the pressure gradient varies fraith A ;= —0.03 (for Schubauer and Klebandf80]), A ,2=0 (for
mild, moderate to strong FPG. A similar behavior occurs for APGimpson et al[15]); and one for the APG region with ,=0.22
flows with different strengths of pressure gradient shown in Fifor both cases.
1(b). Clearly, A=0.22 describes properly most of equilibrium A similar behavior occurs for the experimental data from Sim-
APG flows. But, can the APG region of a nonequilibrium flow begson et al[31] (2240<Re,<38 000) as shown in Figs(® and

pFigures 2 and 3 show some cases of nonequilibrium turbulent
ndary layers. Figure 2 displays a nonlinear relationship be-
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Fig. 3 Nonequilibrium boundary layers: Plots of log (U..) vs log (6)

3(c). For this experimental data, there are two distinctive regiongson, Castillo et al[11] showed that the pressure parametgrfor
one for the FPG and one for the APG region. Each region s&parated flows was close to 0.21. Table 1 summarized all results
locally in equilibrium, and is characterized by a constant pressufrem the equilibrium flows of Castillo and Georgg] and Wang
parameterA ,= —0.61 for the FPG region and ,=0.22 for the [32], the results from separated flows in the analysis of Castillo
APG region, respectively. Meanwhile, for the measurements ef al.[11], and the results from the present investigation.
relax flow from Bradshaw12] (8593<Re,<22582) shown in
Figs. 2d) and 3d), the flow still remains in equilibrium with . . . Lo .
Ay=0.22 even when it undergoes a sudden change in pressure ZagarolaSmits Scaling Using Similarity Analysis
gradient from ZPG to APG. Most recently, Castillo and Walk¢28] showed that using the
In addition, notice that for the experimental data from SchuwZagarola/Smits scaling26] for all APG flows, velocity deficit
bauer and Klebanoff30] and Simpson et al[15,31], the flow profiles collapse into a single curve, which is an indication that all
eventually separates and it is indicated in Figs. 2 and 3. MoreovARG flows (at least equilibrium flowscould be characterized by
the experimental data by Simpson et[db,31] show a long range a single profile. Since the pressure parameter is a constant with
of separation. A y=0.21 or 0.22 for all equilibrium and nonequilibrium boundary
Clearly, A j=0.22 exists for the APG region of nonequilibriumlayers with APG, it means that it is possible to represent APG
flows, which is same as the pressure paramé&téor equilibrium  flows for equilibrium boundary layers with one profile and for
boundary layers as reported by Castillo and Ge¢&jeln addi- nonequilibrium flows with the similar approaches.

Table 1 Pressure parameter for equilibrium and nonequilibrium flows

Experiments APG
Equilibrium flows A ,: Castillo Bradshaw Mild and Mod APG, Clauser Mild and 0.21+0.04
and Georgd2], Wang[32] Mod APG, Ludwig and Tillman strong APG and

Mod APG; SKae and Krogstad APG, Marusic
APG, and Elsberry et al. Strong APG.

Separation flows\ ,: Castillo, Newman strong APG, Alving and Fernholz, Ludwig and Tillman, 0.21+0.01
Wang and Georggll] Simpson et al. 1977, Simpson et al. 1981
Nonequilibrium flowsA ,: Schubauer and Klebanoff FPG-ZPG-APG 1944, 0.22

Bradshaw ZPG-APG 1965, Simpson et al.
FPG-APG 1977, Simpson et al. FPG-ZPG-
APG 1981
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Fig. 4 APG velocity profiles using Zagarola /Smits scaling: nonequilibrium flows and equilib-
rium flows

Using the similarity ideas outlined in the previous sections, the * o
empirical velocity scaling of Zagarola/Smit§26], Us, [5*]’“[5G]f Fop=(Y,A)dy, (30)
=U..(4, /6), will be derived in this section. It is assumed that the 0
function f,, can be expressed as a product of two functions, i.e., o )
where a small contribution from the inner layer has been ne-
— bk .. — glected. It is easy to show that E®O) is exact in the limit of the
fop(y, 67 A*) =G (8" *)Fope(YiA). (28) infinite Reynolds number. Now, since EEO) is in similarity
The first termG(5*;*) contains the dependence on the Rey_/ariables, the integral part depend Arat most, which itself must
nolds numbergs™, and the upstream conditiofiswhile the sec- be mdgpendelr:tfoﬁ. The_refored,_étaTdtﬁh* thSt have the same
ond termF,,..(y;A) contains the normalized dependence on thq_}epen ence. It follows immediately that,
distance from the wally, and the pressure parametdr, This
pro_file, Fop-, represents tht_e asymptotic velocity profil_e _in Fhe G(8, 19). (31)
limit as Re—oe. It is this profile that must reduce to a similarity

solution of the RANS equations as required by the asymptoqcne functionG can be combined with Eq$4) and (28) to yield
invariance principle. Hence, this asymptotic profile must be ind 1e outer velocity scale of Zagarola/Smits, .—U (5, 15). Note
0 YeelUx .

pendent of Reynolds number, but its shape may be different fpr fact that the Za : : !
) garola/Smits scaling contains the Reynolds
ZPG, FPG, and APG turbulent flows depending on the values §fmber dependence term, /5, which means that the boundary

the pressure parametet, Note, that a similar decomposition ofI o
> . _layer is indeed Reynolds number dependent, exactly as argued by
the profile was used by Wosnik and Geofg8] for ZPG bound Castillo and Georg2] and George and Castill@1].

ar)l/:(l)a:yfrzse. incompressible flow, the displacement thickness | Castillo and Walker[28] showed thatd, /5~ constant in the
given by ! ifnit of the infinite local Reynolds number, but argued that the

constant might depend on the upstream conditions. This result
obeys the Asymptotic Invariance Principle, which requires that
any properly scaled similarity function must be asymptotically
independent of Reynolds number. Thus, in the limitéds— o,
G—G..(*) only. Therefore, if the proposed separationfgf is

The function,G(6",*), can be determined by substituting Eqyvalid, all of the effects of upstream conditions should be removed
(28) into the definition for the displacement thickness E2f): by the Zagarola/Smits scaling. Or conversely, if the Zagarola/

ux5*=fw(ux—U)dy. (29)
0
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Smits scaling proves successful, then the separation of solution u, = friction velocity, u, = 7, 7p

must be at least approximately valid in the limit 85— <. 6 = boundary layer thickness, e.@go

It is important to note that sincé, /5— constant ass” — o, S, = displacement thicknesgg(1—U/U..)dy
the Zagarola/Smits scaliny,..(J, /5), reduces to the GC scaling, 8" = local Reynolds number dependende,, /v
Uw, in the same limit. ThUS, both tHﬂx and Uoob‘* /16 Scalings A = pressure parameter&/(puid 5/dx)(d Pw/dx)

are consistent with the equilibrium similarity analysis. The latter, As

— 2
of course, also removes the upstream and local Reynolds number  * — pressure parameterd( /pU:.dd, /dx)(dP../dx)

effects, if the hypothesis of EG28) is correct. This can be con- o = pressure parameterg/pUZdo/dx)(dP.. /dx)
trasted with the analysis of Claus¢i] which requires that 0 = momentum thicknesg;(U/U..)(1—U/U..)dy
U.é, /5~u, . Obviously, if this classical result is correct, there * = unknown upstream conditions

should be no difference between the ZS-scaled profiles and those PG = pressure gradient

usingu, , contrary to the finding of Zagarola and Smii]. ZPG = zero pressure gradient

Figure 4 shows the velocity profiles normalized by the FPG = favorable pressure gradient
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