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Abstract 

Recommendations from a system to a person require thoughtful decisions. People prefer quick, 

relevant responses, ones that quickly lead to an acceptable choice. A system’s recommendations, 

however, often rely on pairwise similarity between items or between users, based on a distance 

metric. This paper advocates a broader, set-based similarity based on text descriptions of known 

items, and on the items users have found appealing in the past. The text, autonomously gathered 

from the Web, proves to be a strong indicator of similarities among sets of items, as well as a 

source of useful diversity. Empirical results provide insight into the complexities of similarity, of 

user behavior, and of cognition in the system that formulates recommendations. 

1. Introduction 

When a human expert recommends an item to someone, she gauges its suitability from a variety 
of perspectives, including item popularity, the person’s preferences, and the nature of the items 
available. At the core of recommendation, however, is similarity: similarity of items to one an-
other, and similarity of users because they request similar items. Our long-range goal is a profi-
cient and knowledgeable recommender, a system that discusses suggestions from its knowledge 

base with its user as if it were a human expert. A human expert, based on her experience and 
world knowledge, has a broad and deep perspective on how items she knows are similar to one 
another. We report here on automated recommenders whose “experience” is historical data on its 
users, and whose “world knowledge” is text descriptions written by people and available on the 
Web. Our thesis is that an intelligent recommender can autonomously construct meaningful sets 
of similar objects and can exploit them to produce plausible recommendations for its users. The 

novelty of our approach is the use of set-based, rather than pairwise, similarity. Our principal re-
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sults are that set-based similarity can be efficiently detected, and can be used to produce plausible 
(i.e., likely to be acceptable) recommendations. 

The cognitive challenge explored here is how a system represents and uses similarity. Systems 

traditionally gauge pairwise similarity with a distance metric on the feature vector values for two 
items. This in turn defines the nearest neighbor of an item, a second item whose feature vector 
values minimize its distance to those of the first. Feature values that identify items, however, do 
not always support the similarities important to people. Consider, for example, Boots, a US sol-
dier’s memoir of Vietnam. With a feature vector for title, author, and publication date, its nearest 
neighbors include three other books with the same title: a cowgirl romance novel, a fantasy about 

a magic talking cat, and a children’s story about raingear. Any reader of one is unlikely to be in-
terested in the others. A genre designation might help, but genres often prove too broad (e.g., his-
tory), too narrow (Oklahoma cowgirl-reporter romance), or too subjective (e.g., humor). Intuitive-
ly, what is lacking in the feature vector is values that represent what the books are about.  

People habitually and adroitly agglomerate large collections of items into smaller, more man-
ageable sets that are easier to reference and discuss. These sets are founded on similarity 

(Wierzbicka, 1985). In extensive experiments with people, however, human similarity judgments 
did not abide by the axioms of distance metrics (Tversky, 1977). Instead, people considered mu-
tual similarity within a set. Our work uses pairwise similarities detected in people’s item descrip-
tions to build sets of items that share common features and yet offer interesting diversity. 

 This paper introduces DRILL (Dialogue for Recommendations In Large Libraries), which lev-
erages text descriptions of the items in its knowledge base to build clusters, sets of mutually simi-

lar items. The system gauges similarity from human judgments: both user choice histories and 
text descriptions written for people by those familiar with the items. Ideally, description similarity 
would be based on the meaning of the text DRILL collects, but the semantics of text is a long-
standing challenge in natural language processing. Instead, DRILL makes a good start at similari-
ty detection from concise textual descriptions. It crawls the Web to gather descriptions of the da-
tabase items, extensively prepares this data for use by a pairwise similarity metric, forms a 

weighted graph that represents those similarities, and then identifies clusters (sets of strongly, 
mutually similar items) within it. The system also hypothesizes plausible recommendations from 
its clusters, none of which is likely to contain both a children’s story and a romance novel. 

This work shows how multiple, expository, text-based item descriptions help identify user-
appropriate items in a large database. It also shows that real-world users demonstrate pervasive 
discrepancies among what they request, what they claim to prefer, and what they choose. In such 

circumstances, DRILL’s set-based recommendations prove more effective than recommendations 
based on pairwise distance alone.  
  This work is inspired by librarians’ skill and breadth of knowledge, but it is not restricted to 
books. Like a good librarian, a recommender should structure representations that facilitate its 
task. Librarians seek to open new vistas for their patrons, to shift them gently between fiction and 
non-fiction, for example, or from one subgenre to another. Thus a recommender’s clusters must 

be neither too broad (e.g., “book”) nor too specific (e.g., “early 19th century space adventure”). A 
recommender confined to statistics or obvious feature values (e.g., author) is unlikely to strike the 
right balance between generality and specificity. Librarians often interview a user to determine 
what she has read, what books she liked, and what she liked about a particular book. As a result, 
their recommendations often range well beyond traditional genre or subject matter classification. 
Like a librarian, DRILL seeks to cast a wider net. 
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A recommender must ultimately address knowledge discovery, human choices, dialogue, natu-
ral language understanding of text, and user modeling; here we focus on the first two. “Dialogue” 
with DRILL is thus far simply a sequence of recommendations that ends when the user accepts 

one, and DRILL considers only word stems not associated with named entities. Our user model is 
realistic but simple; it is based on users’ recorded preferences and previous choices.  

The next section of this paper provides necessary background and related work. Section 3 de-
scribes DRILL, explains the construction of the large graphs DRILL explores, and outlines the 
algorithm DRILL uses to find clusters. Subsequent sections describe our experimental design, and 
present and discuss the results and future work.  

2. Background and Related Work 

DRILL is a recommender, tested here with a simulated user that models real-world data. This sec-
tion provides background on other recommenders and their metrics, user simulation for dialogue, 

and our domain of investigation, the Andrew Heiskell Library. 

2.1 Recommenders  

Most work on recommendation systems has thus far been based on users’ ratings (Bell & Koren, 

2007) and interaction with the items (Amatriain & Basilico, 2012). Most recommenders collect 
ratings (numeric scores from users about how much they like individual items) and, based on 
them, suggest items the user is expected to like. Netflix (Bell & Koren, 2007), Pandora, and Am-
azon all have recommenders that suggest items to customers based on their ratings. 

The principal paradigms for recommenders are collaborative filtering and content-based rec-
ommendation. Collaborative filtering is based on ratings, often on a scale from 1 to 5. It finds 

groups of users who have liked similar sets of items, and uses the average rating for item i from 
users similar to a user u to predict u’s preference for i. (Collaborative filtering can also be used to 
identify similar items, based on ratings they received from the same users.) Users, however, as-
sign ratings idiosyncratically, and there is no evidence that human experts process ratings to con-
struct their recommendations. Because collaborative filtering requires ratings, and because 
enough ratings may be unavailable, DRILL does content-based recommendation.  

A content-based recommender suggests to a user items most similar to items she liked in the 
past, based on a pairwise similarity metric. Given a pair of feature-value vectors that describe two 
items, similarity metrics can be applied to them in several ways (Sarwar et al., 2001). Cosine-
based similarity measures the similarity of the items as the cosine of the angle between their fea-
ture vectors. Identical feature vectors have cosine similarity 1; smaller values indicate less simi-
larity. Adjusted cosine similarity reduces the impact of extreme mean values by subtracting the 

mean feature values before it calculates the cosine.  
Although these similarity metrics were originally proposed for ratings data, they can also be 

applied to other feature representations. For example, in the set D of all documents, the tf-idf 

(term frequency–inverse document frequency) of word w in document d is  

 

                                 (1) 

 

 
Here, the term frequency tf(w,d) is how often word w appears in document d, and the document 
frequency (the denominator in equation (1)) is the number of documents that contain word w. 
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Thus tf-idf is high for a word that appears frequently in a document, if that word is not contained 
in many other documents, but is low for a word that appears in most documents. One may treat 
words in a document as features with tf-idf values, and use cosine-based similarity to detect doc-

ument similarity (Zhao & Karypis, 2005). DRILL uses cosine-based tf-idf similarity based not on 
documents’ content but on expository descriptions of that content. (Adjusted cosine similarity is 
unnecessary, since tf-idf already corrects for the norm.)  

A content-based system uses a similarity metric to make recommendations. Two ways to pro-
duce recommendations from item similarity data are weighted sum and regression (Sarwar et al., 
2001). A weighted sum recommender predicts a user’s rating for an item as the average of her rat-

ings on all other items, weighted by their similarity to the item under consideration. In a large da-
tabase, however, it is unlikely that a user has rated every item other than the one for which the 
system is to predict a rating. This is known as the sparse data problem. To address it, a regres-
sion recommender first uses linear regression on all items the user has rated to predict her missing 
ratings. Then, to predict an individual unknown rating, it averages the real or predicted rating of 
every other item, weighted by its similarity to the requested item. The domain DRILL addresses 

in the work reported here, however, has no rating data at all. 
A recommender for book purchases combined collaborative filtering with content-based rec-

ommendation paradigms from a two-layer graph (Huang et al., 2004; Huang et al., 2002). One 
layer had a node for each item, and an edge between similarly-rated items weighted by the items’ 
similarity. The other layer had a node for each user, and an edge between similar users weighted 
by the similarity of the users’ ratings. The two layers were connected by an edge between each 

user and each item she purchased. To make a recommendation for a user, a Hopfield net found 
items similar to those the user had previously purchased, and items purchased by users similar to 
her. This method did not, however, consider what a user had just requested when it suggested a 
replacement. If the requested item differed from what she usually rated highly, it still recom-
mended the nearest neighbor to her usual choices. 

Some recommenders have attempted to understand a user’s preferences beyond what can be 

immediately computed from ratings data. A conversational recommender has a dialogue with the 
user to elicit and learn preference information intended to improve the recommendation process 
over time. For example, the Adaptive Place Advisor, a recommender for restaurants, asks ques-
tions such as “What kind of food would you like?” or “What price range?” to constrain the set of 
potential restaurants when many possibilities remain (Thompson et al., 2004). If no restaurant 
matches the user’s constraints, the system asks permission to relax some constraint. During a dia-

logue, the Adaptive Place Advisor tracks both the user’s expressed preferences and which prefer-
ences she is most likely to relax, and then applies them in an attempt to make better recommenda-
tions and shorten the dialogue. DRILL does not (yet) ask questions. 
 To the best of our knowledge, only one cognitive systems approach has previously been con-
sidered for a recommender (Maanen & Marewski, 2009). That work modeled a scientist’s inter-
ests based on words that appeared in the abstracts of her publications, and assigned greater im-

portance to words that appears frequently and in more recent publications. A word was also rated 
as more important if it often appeared alongside high importance words. Publications whose ab-
stracts contained many high importance words were said to match the model of the scientist’s in-
terests, and the publications that best matched her interests were recommended. Although based 
on ACT-R, this recommender was outperformed by a simple take-the-best fast and frugal heuris-
tic (Gigerenzer & Goldstein, 1999). While DRILL’s text is like a set of abstracts, its set-based 

similarity allows for multiple modalities and diversity.  
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A recommendation’s plausibility lies in its relevance and reasonableness to the user. Most user 
preference models for recommenders are used to enhance collaborative filtering (Rashid et al., 
2002), but a recommender can also take advantage of user models. Knowledge-based user models 

elicit user preferences through questionnaires; behavior-based user models track patterns in user 
behavior. One recommender for academic research papers in an ontology, modeled users’ Web 
browser behavior, and used ontological inference to link user behavior to ontology elements 
(Middleton et al., 2004). A framework proposed for the user-model mediation problem combined 
multiple data models of user preference into a single model (Berkovsky et al., 2008). More so-
phisticated models of user intent are primarily statistical. They consider knowledge sources such 

as Wikipedia (Hu et al., 2009), employ contextual information (White et al., 2009), or mine query 
logs with graphical models (Pantel et al., 2012). We test DRILL here with both knowledge-based 
and behavior-based users. Our focus, however, is principally on the development of the recom-
mender, not the user model. 

2.2 User Simulation in Dialogue 

A user simulator is a program intended to behave as if it were a particular user while it engages in 
a dialogue with a recommender. User simulation is frequent in dialogue system development be-
cause it offers many practical advantages. When it produces realistic user behavior, a user simula-
tor accelerates the design process. The first proposed user simulator for spoken dialogue devel-
opment used a bigram model, where the likelihood of a simulated user action given a system ut-

terance was the frequency of that system-action pair in a corpus of real dialogues (Eckert et al., 
1997). Other, more sophisticated models have since been developed. N-gram simulators have in-
corporated features of the dialogue state (Georgila et al., 2006). Markov logic networks have 
modeled user dialogue intentions (Jung et al., 2011). Probabilistic simulators can include goals 
extracted as latent topics in a model generated from a set of real dialogues (Eshky et al., 2012). 

There is, however, no standard way to compare the quality of simulated dialogue to dialogue 

with real users. One survey of quantitative evaluations for user simulations argued the importance 
of carefully designed and tested, realistic simulated dialogues, particularly in the absence of a 
corpus of real user-system dialogues for comparison (Schatzmann et al., 2005). The work report-
ed here uses extensive real-world data to promote realism in our simulator, which is seeded with 
hundreds of histories that contain thousands of actual users’ choices.    

2.3 The Andrew Heiskell Braille and Talking Book Library 

The Andrew Heiskell Braille and Talking Book Library is a branch of The New York Public Li-
brary system and a Regional Library of the National Library Service. Heiskell’s more than 5000 
active patrons order books at least once each week by telephone, and receive them by mail. A pa-

tron often orders as many as 20 books during a single conversation with a librarian. Patrons do 
not rate books; they check them out and keep them as long as they wish. As a result, there is no 
clear indication of a patron’s opinion about any book. Most users, however, do have general pref-
erences for authors and genres recorded in the database 

The work reported here is based on a copy of Heiskell’s database, sanitized to protect the pri-
vacy of its patrons. Our copy includes 71,166 books by 28,045 authors. Some books are available 

in large print or in Braille; this work considers only the 53,616 recorded books. (There are 711 
books for which there are recordings by different readers; they have different catalog numbers.) 
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We have circulation data on 499 of Heiskell’s patrons. Because the book descriptions DRILL 
employs are in English, and because the motivation for reading in more than one language may 
be different, we restricted consideration to the 414 patrons who checked out at least one recorded 

book between 1975 and 2008, and requested only books in English. Here we consider only the 
15,749 books that are recorded in English and were chosen by at least one of those 414 users. We 
also confirmed that each user had on record at Heiskell at least one preferred author and at least 
one preferred genre that could be satisfied by one of the 15,749 items. 

3. Knowledge Discovery and Book Graphs 

This section describes how we filtered the original book database, and augmented it with text 
gleaned during extensive Web-crawling. The resultant text was preprocessed, and then represent-
ed as token vectors with tf-idf values. This data was used to construct a large graph within which 
a novel algorithm then sought sets of books related to one another by their descriptions. To em-
phasize that our approach is domain-independent, the remainder of the paper refers to items cho-
sen by users, rather than books checked out by patrons. 

3.1 Gathering Data 

An important aspect of our work is its focus on expository, descriptive text (e.g., synopses rather 
than reviews) about the items in the database. We assembled text descriptions for the 15,749 
items. The Heiskell library database includes a short description for 98% of these items 

( = 48.78 words,  = 7.40). We supplemented those descriptions with others collected by a sim-
ple Web crawler that extracted item descriptions from the HTML in Freie University’s RDF Book 
Mashup (Bizer & Gaub, 2012) and a commercial bookseller’s website (Barnes & Noble, 2012). 
Most other websites contain descriptions identical to those available on these two sites, and were 
therefore omitted. There were 1,479,933 words in the full description corpus. 

Some Heiskell descriptions were about the item’s manufacture or condition, rather than its con-

tent. To remove them, we inspected and then eliminated all Heiskell descriptions for an item that 
were identical to that for a different item (e.g., “Book” or “Commercial speed, 2-track, no braille 
or large print labels”). After the removal of duplicate descriptions, there were 25,682 descriptions 
for the 15,749 items. Of these descriptions, 25.76% came from the RDF Book Mashup, 11.51% 
from Barnes & Noble, and 62.74% from Heiskell. Items had from 0 (79 items) to 10 (1 item) de-
scriptions ( = 1.70,  = 0.91). Each description now contained from 1 to 2617 words ( = 93.97, 

 = 92.54), nearly twice what was originally available from Heiskell. 

3.2 Building the Graphs 

To assess the similarity of pairs of items based on the words in their text descriptions, we first 

used openNLP’s open source tokenizer (http://opennlp.apache.org/) to separate an item’s descrip-
tions into individual words (tokens). A stop word (e.g., “it,” “an,” “the”) is one that encodes little 
information for our purposes. We removed stop words from these tokens, using a list of 180 
words. Next, we used Stanford University’s named entity recognizer to remove names, locations, 
and organizations from the descriptions (Finkel et al., 2005). This avoided misleadingly high sim-
ilarity scores attributable purely to named entities, particularly unusual character names. Finally, 

we applied a stemming algorithm (Porter, 1980) to the remaining tokens. It replaced such related 

http://opennlp.apache.org/
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words as “murder,” “murdering,” and “murdered” with a single token. This text processing re-
duced the 191,466 distinct words in the corpus to 61,855 tokens.  

 In DRILL, an item graph for a database has a node for each item. The word graph is an item 

graph based on similarity of the items’ descriptions. Each item’s feature vector is the tf-idf values 
of all tokens in its descriptions. The similarity score for each of the 124,007,626 (15749C2) pairs of 
distinct items was calculated as the cosine similarity of their tf-idf feature vectors. To examine the 
score distribution, scores were binned as in Figure 1. To restrict attention to reasonable similarity, 
only scores of at least 0.03 were retained. Each remaining score served as the weight for an edge 
inserted between its corresponding pair of items. The result was a weighted item graph on 15,749 

nodes and 10,726,660 edges, with density (fraction of possible edges) 8.65%, where two items 
whose descriptions contain more words with identical stems have a higher-weighted edge be-
tween them.  

The circulation graph is a second item graph on the same 15,749 nodes. Each item is repre-
sented as a 414–bit vector, where the ith bit is true if and only if the ith user once chose that item. 
The edge weights are the cosine similarity of the two items’ bit vectors; a higher edge weight in-

dicates that the two items were chosen by more of the same users. These edge weights were 
binned as in Figure 2, and only edges with a similarity score of at least 0.16 were retained. Each 
remaining score served as the weight for an edge inserted between its corresponding pair of items. 
There were 11,284,018 edges (density 9.10%). 

 
 

Figure 1. Similarity scores (edge weights) on a logarithmic scale for pairs of items in the word 

graph. 
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3.3 Finding the Clusters 

Foretell is an algorithm that searches a graph for dense subgraphs with high edge weights. (A 
cluster may, but is not required to, be a clique.) Foretell is based on Variable Neighborhood 
Search (VNS), a local search metaheuristic that moves through a sequence of increasingly large 
neighborhoods (Hansen et al., 2004). Foretell was originally developed to identify the most diffi-
cult portions of a constraint graph for constraint satisfaction solvers (Epstein & Wallace, 2006; Li 

& Epstein, 2010). Foretell has also found biologically-meaningful clusters of genes that interact 
heavily in protein-protein-interaction networks (Epstein et al., 2012). Here we use its new, 
standalone version to find clusters of similar items.  

Simplified, high-level pseudocode for Foretell as it is applied here appears in Table 1. Under 
the direction of a control file, Foretell begins with a seed, a first node for the cluster. Each time 
Foretell calls it, VNS attempts to improve the score of candidate, the cluster with the best score 

so far. On each iteration except the first, VNS shakes candidate, that is, it randomly selects any c 
nodes (except the seed) and removes them from candidate. (Shaking provides search neighbor-
hoods of varying size.) Next, VNS calls VND (Variable Neighborhood Descent) which tries to 
improve candidate in two ways. First, VND greedily adds nodes to candidate, along with any 
edges they have to nodes already in candidate. Second, VND tries to swap (interchange) a node, 
or a pair of adjacent nodes, not in candidate for one node currently in candidate, or to add a node 

adjacent to all but one or two of those in candidate. When a VNS iteration improves candidate, 

 
 

Figure 2. Similarity scores (edge weights) on a logarithmic scale for pairs of items in the circula-

tion graph. Items chosen by a single user cause the rightmost high value. 
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the revision becomes the new cluster, and c is reset to 1. When VND does not improve candidate, 
c is incremented. Termination conditions limit the time devoted to a single cluster and the number 
of VNS iterations, but allow the upper bound on c to rise as candidate grows.  

In this manner, Foretell gradually grows the best-scoring cluster it can around the seed, ran-
domly discards part of the cluster, and then tries to grow it again, until it exhausts its resources or 
can do no better. A cluster seeded on a node in an item graph is a subgraph that contains the node 
and a collection of items that are not only similar to the node itself, but also to one another. Thus, 
in the word graph a cluster seeded on a book represents a set of books with mutually similar tf-idf 
values, while in the circulation graph a cluster seeded on a book represents a set of books with 

common readers. To confirm that clusters can provide plausible recommendations, we devised 
the following experiments. 

4. Empirical Framework 

This section describes experiments in which a recommender suggests items to our simulated Au-
tomated User, AUdrey, which communicates with XML (eXtensible Markup Language) (Jung et 

al., 2009). Although the resultant dialogue is not in natural language, XML is a robust source 
from which to generate natural language, as sentences can be readily construed from its templates 
(Wilcock, 2003). This relieves our investigation from the errors endemic to natural language un-
derstanding, and allows us to focus on recommendations. The increasing presence of on-line chat 
support and the growth of Web-based browsing agents also makes this a reasonable approach.  

Table 1. High-level pseudocode for Foretell and VNS, as described further in the text. 
 
 

Foretell(seed, control)    

Initialize cluster as graph with one node, seed, and no edges 

do until termination conditions met 
  clusterVNSclusterneighborhood, control)  
 
VNS(cluster, neighborhood, control) 
candidate  copy(cluster) 

 bestScore  clusterScorer(cluster)   
 c  1 
 do until termination conditions met 

  if c ≠ 1 
   shake(candidate, c) 
  do until termination conditions met 

   improve candidate with VND 
  if score of improved candidate is higher than bestScore 
   cluster  candidate  
   bestScore  clusterScorer(cluster) 
   c  1 

   else   c  c + 1 

     candidate  copy(cluster) 
 return cluster 
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Each experiment evaluates a recommender’s ability to offer items that match a user’s known 
preferences, recorded at Heiskell as favorite authors and favorite genres. For each (quite simple) 
dialogue, AUdrey takes as its persona, one of the 414 users in the database. This persona includes 

a user identifier, the items the user has chosen in the past, and the user’s known preferences, rec-
orded at Heiskell as favorite authors and favorite genres. The dialogue scenario is as follows: the 
recommender asks AUdrey for its identity, AUdrey provides identification for its persona, 
AUdrey randomly selects and requests an item its persona once chose, and the recommender re-
ports that the item is unavailable. Then the recommender offers alternative items one at a time un-
til AUdrey accepts one. Every experiment used the same 100 personae randomly chosen from the 

database.  
The recommenders tested here used either pairwise or set-based similarity. In preparation of-

fline, DRILL calculates the pairwise word-based and circulation-based similarity between each 
pair of items, and constructs the item graphs, as described in Section 3. It then uses Foretell, with 
each book in turn as a seed, to build clusters in the word graph and clusters in the circulation 
graph. For pairwise similarity, recommenders NN-w and NN-c offer AUdrey the requested item’s 

nearest neighbors in decreasing order of word-based or circulation-based similarity, respectively. 
For set-based similarity, we tested several variants of DRILL. They all reference sets that repre-
sent books with similar text descriptions, sets that represent books with similar circulation histo-
ries, or both. 

The experimental parameters are the recommender and how AUdrey decides whether or not to 
accept a recommendation. We tested three acceptance conditions. Under accept-by-author 

AUdrey accepts only items written by one the current persona’s favorite authors, under accept-
by-genre it accepts those in at least one of its favorite genres, and under accept-by-history it ac-
cepts only items the persona once chose. Every recommender knows the users’ identities, and the 
items’ authors, titles and text descriptions. 

Every DRILL recommender uses set-based similarity to assemble prospects (plausible recom-
mendations), and then offers them one at a time in decreasing order of pairwise similarity to the 

requested item. A DRILL recommender is labeled either w or c. A w indicates that its initial pro-
spects are the set of all items that appear in any word-based cluster with the requested item; a c 
indicates that it uses circulation-based clusters for its initial prospects instead. In addition, an f in-
dicates that it filters prospects by recorded user preferences: by the persona’s author preferences 
in accept-by-genre experiments, and by the persona’s genre preferences in accept-by-author ex-
periments. Once a DRILL recommender exhausts its initial prospects, the default is to offer items 

from outside the cluster at random, unless a suffix indicates otherwise. A + indicates that, after 
the initial prospects, additional prospects are those in any cluster with the item most recently cho-
sen by the user but not yet offered. (As necessary, sets of prospects are generated from the next 
most recently chosen item. If it exhausts the persona’s circulation history, DRILL+ will resort to 
randomly-selected items.) An n indicates that, after the initial prospects, additional ones are the 
most similar, selected as the corresponding NN would. (+n behaves first as + and then as n.) De-

pending upon their suffixes, DRILL recommenders know either circulation-based or word-based 
similarities and clusters, DRILL+ recommenders know circulation history, and DRILL-f recom-
menders know the persona’s preferences that are not in the acceptance condition. (Note that ac-
cept-by-history is applicable only to DRILL-w, because the other recommenders have access to 
the user’s choice history.)  
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5. Results 

The salience of DRILL’s clusters is gauged here in two ways. First, we inspect the contents of 

some clusters to understand their diversity and variation. Second, we report on whether clusters 
over a large set of items lead to recommendations acceptable to AUdrey.  

5.1 Clusters 

In the word graph, Foretell found sets of books similar not only to each seed, but similar to one 

another as well. Under a 20-second per cluster cutoff on 15,749 nodes and nearly 11 million edg-
es, Foretell generated one cluster seeded on each node. The clusters averaged 24.46 items ( = 
2.56). Their edge weights ( = 0.05,  = 0.02) were no different from those of the word graph ( 
= 0.05,  = 0.25). These clusters were often cliques or nearly so; cluster density averaged 
94.85%, despite 8.65% density in the graph as a whole.  
 In the circulation graph, Foretell quickly found larger and denser clusters, again with high edge 

weights. The circulation graph on 15,749 nodes has more than 11 million edges. Within the same 
20-second cutoff, Foretell found clusters with mean size 53.18 ( = 10.05) and density 99.61%, 
that is, they were almost always cliques. In a graph with mean edge weight 0.26 ( = 0.10), circu-
lation-based cluster weights were higher 0.28 ( = 0.10, p < .001).  

Inspection of individual clusters offers insights into expository text-based descriptions and 

what might be recommended from them. For example, consider the unusually small cluster (size 

14) from the word graph that was seeded on The Jackie Robinson Reader. All but one book is 

about baseball or another sport, but their range is considerable. Some are fiction. Some focus on 

minority players, others on young ones. A second cluster was seeded on The Letter, an award-

winning romance novel; its 31 books are all love stories. The cluster includes other classic ro-

mance novels (e.g., Steel’s Bittersweet) and prize-winning, more traditional novels (e.g., Straub’s 

Mr. X). Some are dramatic, others are funny, and several are about love from beyond the grave. 

There are even a few self-help books on how to find love.  

Finally, because Foretell is non-deterministic, we examined the consistency with which it for-
mulates clusters. We ran it ten times for 20 seconds each on the word graph, with Harry Potter 
and the Order of the Phoenix as the seed. The resultant ten clusters ranged in size from 26 to 29 
and were nearly cliques (density  = 96.40%,  = 0.22), again with mean edge weight 0.06 ( = 

0.24). Of the 45 different items that appeared in these ten clusters, 19 appeared in all 10, and 26 
appeared in more than five. Furthermore, Spearman’s rank correlation coefficient on the edge 
weights to the seed in these 10 clusters was 0.96. This indicates that, whether or not precisely the 
same nodes were present, the similarity of nodes to the seed was strongly consistent across runs. 

In summary, Foretell’s clusters consistently capture sets of items with similarities that are sig-
nificantly more prevalent than those recorded by pairwise similarity. For circulation-based clus-

ters, these similarities are also above average. Moreover, the contents of these clusters appear to 
reflect the breadth and coherence of a human expert. 

5.2 Dialogues  

Acceptance conditions and personae vary in how difficult they are to satisfy. Together they define 
a target, a set of items satisfactory to the user. Our users’ preferred genres and authors, however, 
define targets that vary considerably in size, because some genres are more specific and some au-
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thors are better represented. Users’ recorded author preferences average 0.40% of all items and 
never exceed 1.85%, but genre preferences average 33.84% and range as high as 88.94%. Histor-
ical preferences represent extensive borrowing over many years; they average 2.18% and range as 

high as 9.37%.  
Table 2 reports recommendation efficiency, the average number of offers in a dialogue until 

AUdrey accepts one. There were, however, considerable discrepancies between users’ requests 
and their recorded preferences. Overall, only 32.24% of all items circulated to our 100 users 
matched their recorded genre preferences, and 10.97% matched their recorded author preferences. 
Table 2 therefore distinguishes between consistent requests (that match at least one preference in 

the persona’s acceptance criterion) and inconsistent ones (that match no preference). (For accept-
by-history, all requests are consistent.) To compensate for target size, we also calculated recom-
mendation precision, the average number of offers in a dialogue before AUdrey accepts one, 
weighted by the likelihood that a random recommendation would succeed on each persona. (Data 
omitted.) All comparisons here are statistically significant at least at p < 0.05. 

For the smaller targets posed by preferred authors, circulation-based recommenders are more 

effective than word-based ones, but only when the request is consistent with the persona’s rec-
orded preferences. In any other circumstances, word-based clusters are a safe, and often a better, 
choice. For requests inconsistent with preferred authors, recommendations from DRILL+-w and 
DRILL+wf were the most efficient and precise; no others had both qualities. For preferred genres, 
for all requests, and for inconsistent requests, the word-based recommenders are more efficient 
and more precise than all the circulation-based recommenders. Indeed the circulation-based rec-

ommenders are notably less efficient and less precise than random. For consistent requests ac-
cepted by genre, however, many recommenders are more efficient and precise than random, with 
no significant difference among them. Finally, for requests accepted by history, DRILL-w is more 
efficient and more precise than random.  

Table 2. Recommendation efficiency during attempts to match the recorded preferences for 

AUdrey’s persona. These values do not consider task difficulty, and smaller values are better. 
Bold values are better than Baseline (the expected number of offers for random recommenda-
tions). A shaded value is (equally) best in its column. 
 

 Accept by author Accept by genre Accept by history  

 All data Consistent Inconsistent All data Consistent Inconsistent All data 

Baseline 1201.23 422.96 1395.79 6.37 2.94 13.32 289.35 

DRILL-w 737.29 27.65 914.70 8.50 2.27 21.15 178.61 

DRILL-wf 966.46 344.05 1122.06 8.79 2.00 22.58 — 

DRILL-wn 708.21 69.20 867.96 9.59 2.25 24.48 — 

DRILL+-w 435.83 139.40 509.94 12.99 2.27 34.76 — 

DRILL+-wf 399.10 92.45 475.76 12.79 2.00 34.70 — 

DRILL+-wn 746.36 201.70 882.53 19.36 2.25 54.09 — 

NN-w 792.04 58.60 975.40 7.59 2.38 18.15 — 

DRILL-c 779.33 3.10 973.39 51.03 2.07 150.42 — 

DRILL-cf 760.94 29.05 943.91 50.36 1.30 149.97 — 

DRILL-cn 552.75 3.10 690.16 57.50 2.07 170.03 — 

DRILL+-c 549.30 3.10 685.85 60.79 2.07 180.00 — 

DRILL+-cf 576.88 29.05 713.84 60.00 1.30 179.08 — 

NN-c 550.98 3.45 687.87 76.01 2.04 226.18 — 
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In summary, the efficiency of a recommender depends not only on the size of the target its ac-
ceptance condition presents, but also on whether or not the request is consistent with the user’s 
recorded preferences and historical behavior. Unless the target is small and the request consistent, 

word-based clusters provide the most plausible recommendations. 

6. Discussion 

Given the results above, how should a recommender proceed? That depends upon the target. If a 

user is easy to satisfy (a large target, as with accept-by-genre) and presents an inconsistent re-

quest, then a random suggestion could suffice — given our users’ recorded genre preferences, on 

average at least one in three offers should be accepted about half the time. If a user’s request is 

consistent for a large target, or if a user is more difficult to satisfy (presents a small target, as with 

accept-by-author), the recommender should use some variant of DRILL. If the system knows that 

a particular user’s requests are generally consistent (certainly a learnable feature), the recom-

mender should use DRILL-c. If, on the other hand, the recommender knows that this user’s re-

quests are generally inconsistent, it should use either DRILL-w or DRILL+-w. Without any indi-

cation of consistency, given the prevalence of inconsistent requests and the c recommenders’ poor 

performance on them, our data indicates that a word-based DRILL is the best option tested.  

Clusters succeed, we believe, because their set-based similarity offers a more cohesive set of 
prospects. In contrast, the individual items identified by NN are similar to the requested book but 
not necessarily at all similar to one another. DRILL assembles its prospects based on clusters, 

which are intended to model the kind of similarity Tversky (1977) detected in people. Word-
based clusters capture similarities in the way one person would describe a book to another; circu-
lation-based clusters capture similarities with respect to the readers a book attracts. Furthermore, 
because DRILL uses every cluster in which the requested book appears, it is able to address simi-
larity along multiple dimensions. For example, a humorous sports book would draw from both its 
genres. 

Intuitively, a recommender pursues the dialogue’s target, here a set of similar items posed by 
the persona and the acceptance condition. Clusters model sets of similar items, and as the user’s 
target narrows, DRILL is more effective. Although Foretell rarely gathers together many items by 
the same author, it assembles sets of items whose text descriptions are a useful indication of their 
similarity from the perspectives of the original synopses. The removal of named entities often 
separates highly-related items, such as those in a series, but that relationship would be readily 

available from the database. Instead, the absence of named entities allows items to cluster in some 
broader sense. To measure intra-cluster similarity, we compared all pairs of items in each cluster. 
For author, similarity was 1 if they had the same author, else 0. For genre, we averaged cosine 
similarity between the boolean genre vectors for each item. Given the relatively few books writ-
ten by any author ( = 1.95,  = 3.01), average author similarity was expectedly low, about 
0.001. By genre, however, average intra-cluster similarity was 0.28. This indicates that items 

clustered by their text descriptions are somewhat likely to be of the same genre, and are therefore 
predictive of the user’s genre preference, whether or not it is recorded in the database. (We note, 
however, that genres are notoriously subjective, both in their definition and their assignment.) 

Most people want diversity; indeed, Netflix now deliberately fosters diversity in its recommen-
dations (Amatriain & Basilico, 2012). User simulation for a recommender therefore requires vari-
ety, implemented here by AUdrey’s use of preferences for genre and author from real-world users 
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at Heiskell. The recorded preferences here, however, often had little bearing on actual behavior; 
work in other domains has confirmed that human behavior elsewhere is similarly inconsistent. 
This makes evaluation of recommenders difficult. 

User preferences are often multi-modal; for example, a user may enjoy both science fiction and 
cookbooks. To understand how people distribute their choices within large target sets, we exam-
ined each user’s consistency across her circulation history in two ways. The cosine similarity of 
the boolean vectors that record the item genre(s) in a chronologically consecutive pair of items 
chosen by a user chose was 0.41, while the similarity for all pairs of items a user has ever chosen 
was 0.37 (p < .01). Thus users are somewhat more consistent over consecutive choices than in 

their overall choices. Recall that when DRILL+ exhausts the cluster seeded on the requested item, 
it gathers prospects from clusters in which the most recently chosen item lies, with recourse to 
immediately preceding chosen items. This explains why DRILL+ performs less well than DRILL 
on inconsistent requests accepted by genre. If the user has chosen k items, but the prospects from 
the kth item are misleading, DRILL+ gathers prospects from the k-1st item, which are more likely 
to be similar to the prospects from the kth than to the request itself. As a result, prospects from 

immediately preceding choices are likely to be similarly unacceptable.  
 There is a delicate balance here between minimum similarity and cluster size. Recall that a cut-
off determined which edges item graphs retained. Because edge weights in the circulation graph 
average 0.28, compared to 0.05 in the word graph, we also tested a sparser graph (cutoff 0.15, 
density 0.2%) that eliminated additional low-similarity relationships. It consisted of a single con-
nected component plus 1124 isolated nodes, around which there can be no clusters. Foretell 

formed substantially smaller clusters in this graph ( = 9.17,  = 2.66). Smaller clusters, or no 
word-based cluster at all (for six of our 100 dialogues’ isolated-node requests), provide fewer ini-
tial prospects before DRILL resorts to random offers or DRILL+ goes to the circulation history. 
(We do not report the data here.)  
 A recommender should offer a manageable set of plausible alternatives when a request is in-
herently unsatisfiable (e.g., another book in a completed series) or is satisfied by an intolerably 

long list of items. DRILL currently creates a sequence of offers too long for human tolerance. We 
tallied dialogue success as the frequency with which AUdrey accepted an offer within a tolerance 
threshold t, the number of offers it received before it would have abandoned the dialogue. Con-
sistent requests were easier to satisfy within t = 3 by circulation-based recommenders. Incon-
sistent ones were rarely satisfied, but more often by genre under DRILL+-w and NN-w. Exposito-
ry text under this more stringent requirement remains the best approach.  

 DRILL-w’s ability to predict what a user once chose (accept-by-history) based only on the 
word-graph cluster for a request means that descriptions of the requested item are similar to de-
scriptions of what the user chose in the past. Although the style and tone of a book could be ex-
cellent predictive similarities, those are well beyond the current reach of natural language pro-
cessing. For example, sentiment analysis, an active area of natural language processing research, 
relies on specialized lexicons, such as the Dictionary of Affect in Language (DAL) created by a 

psychologist to enrich the feature representation of text (Whissell, 2009). When DAL’s lexical 
dimensions of positivity, activation, and imagery were applied to text descriptions for similar ob-
jects from another domain, however, text descriptions with high DAL similarity were associated 
with items that human judges considered quite different.  

Both the n and the f recommenders have yet to deliver on their promise. The n recommenders 
were motivated by the high standard deviations that still deny apparently lower values in Table 2 

any statistical significance. Because n recommenders eliminate random selection after the pro-
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spects are exhausted, they were expected to provide a measure of clarity. Instead, on large targets, 
randomness often proved a better choice. The intent of the f recommenders was to exploit the 
kind of knowledge librarians solicit and use, for example, to consider whether even a prize-

winning horror book is a plausible offer for a reader of romance novels. We expect that a larger 
sample will ultimately support this premise, but for now the evidence remains anecdotal.  

Small targets are the most challenging, and that is where a combination of salient features 
proves most effective. Mere feature similarity based on traditional item attributes must fail when 
a user exhausts the items with a preferred value (e.g., an author), but word-based similarity can 
continue to generate plausible prospects. Moreover, when DRILL+ tries first by word-based simi-

larity and then by circulation similarity, its performance under accept-by-author improves for all 
requests and for inconsistent requests.   

DRILL is an ongoing project. The original version of Foretell created disjoint clusters, chose its 
own seeds, and preferred large, dense clusters — high-weight edges were only a secondary con-
sideration. The new version accepts from its control file other functions that specify how to score 
a cluster, in what respect VND should be greedy, and when to terminate search on a cluster. We 

have begun to test versions that emphasize high-weight edges and density more than size during 
cluster formation, and incorporate additional domain knowledge.  

Current work extends DRILL to have more sophisticated interaction with its users, including 
the ability to discuss the nature of a cluster and perhaps a prototype. Future work will study the 
impact of a minimum score on cluster size and salience, and cluster on other metrics (e.g., such as 
Library of Congress subject headings). We intend to investigate synonym identification through 

WordNet to treat related stems (e.g., “kill” and “murder”) as similar tokens. We also plan to eval-
uate cluster salience with human users, and to integrate other features of items (e.g., author, copy-
right year, and the named entities thus far extracted but ignored), particularly to order prospects. 
Other important avenues of exploration are the combination of prospects from clusters seeded on 
the same item but constructed under different metrics, detection of clusters in a graph whose 
nodes are users (for which the circulation graph is a prototype), the simulation of human users 

with more elaborate preference models, and preference elicitation during a dialogue for use with f 
recommenders.  

Experimental design in this area raises significant issues about how to construct evaluation 
metrics for recommendation and how to apply them to both real and simulated users. This work 
highlights the importance of target size and inconsistent human behavior in evaluation. The role 
of weak similarities is ill understood, and also requires further study. 

7. Conclusion 

Clearly, recommenders must contend with users who are not only impatient but also multimodal, 
idiosyncratic, and often inconsistent with both their own recorded preferences and recent behav-
ior. To address this conflict between recommendation breadth (variety among offers) and effi-
ciency, DRILL casts a wider net — it draws its prospects from multiple clusters to represent mul-

tifaceted items and to support users with eclectic preferences. Human experts often recommend 
similar shifts to users who have exhausted a set of closely related items; DRILL’s clusters allow it 
to simulate such an expert’s plausible recommendations. 

Human perception of similarity differs significantly from the pairwise distance between feature 
vectors on which many systems rely (Tversky, 1977). DRILL’s novel approach exploits pairwise 
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relationships to detect set-based similarity with a breadth and flexibility that collaborative filter-
ing and content-based recommenders lack. In particular, DRILL’s clusters for expository descrip-
tions gleaned from the Web prove surprisingly prescient. We believe that they move toward cate-

gories that people perceive because they are based on human-generated text and human behavior. 
In a domain of substantial scale and complexity, the word-based clusters prove sufficiently varied 
to satisfy a range of targets presented by simulated users.  

The results reported here make clear that more selective users necessitate a more intelligent 
recommender. In particular, DRILL+ gauges similarity with a combination of word-based and 
circulation-based knowledge, which better addresses highly-selective users and inconsistent re-

quests. Moreover, DRILL’s structured representations could readily support dialogue about simi-
larities among items, based on the word stems that underlie their similarity scores, and provide a 
rich evaluation platform for cognitive measures of similarity in people. DRILL is a first step to-
ward a system that collaborates with its user to detect and respond to her interests. As ultimately 
envisioned, DRILL is set-based, interactive, proactive, and self-aware. 

This research moves toward the autonomous construction of metaknowledge derived from 

word-based similarity of expository text. As such, it is applicable to any domain with sufficient 
expository text that describes items of interest, including movies, music, and vendors’ catalog 
items. It does not require ratings. Its clustering is not limited to similarity as represented by text 
or historical choice; it can be applied to other item graphs as well. Meanwhile, curated, clustered 
text descriptions for database items, particularly when combined with a history of choices, here 
prove a useful indicator of the preferences of (simulated) human users.  
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