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Abstract

For resource-constrained IoT systems, data collection is one of the fundamental operations to reduce the energy
dissipation of sensor nodes and improve the network lifetime. However, an anomaly or deviation will exert a great
influence on the quality of data collected, especially for a data aggregation scheme. By taking into account data-
aware clustering and detection of anomalous events, a similarity-aware data aggregation using a fuzzy c-means
approach for wireless sensor networks is proposed. Firstly, by using a fuzzy c-means approach, the clustering
process can be performed to organize sensors into clusters based on data similarity. Next, an effective support
degree function is defined for further outlier diagnosis. Afterwards, the appropriate weight of valid data can be
obtained by taking advantage of the probability distribution characteristics of normal samples within a certain
period. Finally, the aggregation result in the cluster can be estimated. Practical database-based simulations have
confirmed that the proposed data aggregation method can achieve better performance than traditional methods
in terms of data outlier detection accuracy and relative recovery error.
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1 Introduction
Wireless sensor networks (WSNs) are typically com-
posed of many small and low-cost sensor nodes with re-
source constraints, such as low memory capacity, less
computational complexity, low communication band-
width, and limited power. This new type of network
demonstrates the characteristics of low cost, wide distri-
bution, small volume, and flexible self-organizing [1].
With the rapid development, it has been successfully ap-
plied in the consumer electronics market and more and
more widely used in the fields of target tracking, intelli-
gent transportation, health prognosis, industrial automa-
tion, and so on. However, due to the WSN’s imperfect
nature, the sensor nodes need to be deployed densely to
compensate for the quality of data collected [2, 3].
Nonetheless, for process-monitoring applications, high
frequent sensing and the transmission of readings result
in a large number of redundant samples, which may lead
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to the waste of the node’s energy and bandwidth re-
source as well as the reduction of the network lifetime.
Therefore, how to employ spatiotemporal correlation of
the readings between sensor nodes and develop efficient
data redundancy reduction for saving the energy of the
sensors are urgent problems.
Data aggregation is an effective method to solve the

above problems [4]. The basic idea is to aggregate the
samples of multi-sensors with a certain degree of redun-
dancy rather than transmit raw data. It means that some
nodes will act as aggregator to eliminate redundant data
received from other sensor nodes and achieve desirable
results for data accuracy. In practical application, the
monitoring indicators, such as temperature, humidity,
flow rate, or pressure, will demonstrate smooth and
steady change in the majority of cases [5]. Once a sud-
den event occurs, the surrounding sensor nodes are gen-
erally able to detect the situation and obtain the
readings synchronously. Therefore, the samples with
large deviations from individual nodes may have a
greater impact on the overall fusion results and influ-
ence the quality of data collected [6]. In this paper, we
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1374-8&domain=pdf
mailto:xiongnaixue@gmail.com
http://creativecommons.org/licenses/by/4.0/


Wan et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:59 Page 2 of 11
focus on spatio-temporal correlation of the readings in
cluster-based WSNs. In particular, we cope with
data-aware clustering and detection of anomalous
events, and we use fuzzy c-means approach to organize
sensors into clusters based on data similarity.
2 Methods
This study originates from the need for detecting spatial
outliers in terms of the spatial correlations among neigh-
boring sensor reading, which can get more accurate fu-
sion results. Our approach uses the spatial temporal
correlations of sensor’s samples to detect outliers locally.
Compared with previous works, our contributions are

presented as follow:

� We propose a novel similarity-aware data aggregation
using fuzzy c-means approach for wireless sensor
networks.

� We propose a theoretical analysis to determine the
optimization of cluster formation.

� We conduct extensive simulations to demonstrate
the performance of the algorithms. Simulation
results show that our proposed method can achieve
better performance than traditional methods in
terms of data outlier detection accuracy and relative
recovery error.
3 Related work
The traditional methods of data aggregation can be clas-
sified into two major categories: random theory-based
and artificial intelligence-based approaches [7, 8]. The
former includes the weighted average method, least
square method, the Bayesian estimation, D-S evidence
theory, and so on. The latter uses artificial neural net-
work, fuzzy reasoning, or rough set to eliminate the
anomalous data.
Izadi et al. [9] presented a fuzzy-based data fusion ap-

proach for WSNs to mitigate redundant data and reduce
energy consumption. The authors utilized a fuzzy logic
controller to obtain the confidence factor, and then the
true value is distinguished and transmitted to the cluster
head (CH) for multi-sensor data fusion. Fu [10] pro-
posed double CHs model for secure and accurate data
fusion, in which each cluster maintains dual CHs ac-
cording to the reputation evaluation. All CHs make data
fusion and transmit the results to the base station (BS),
and the dissimilarity coefficient can be obtained by BS
according to the fusion results. If the dissimilarity coeffi-
cient exceeds the threshold, the CH will be put into the
blacklist and rotate the CH selection immediately. Xiang
et al. [11] proposed a data aggregation method based on
the compressive sensing theory. Particularly, they
adopted diffusion wavelets to make the raw sensor data
sparse to decrease the communication overload as well
as the computational complexity.
Furthermore, there are several strategies proposed in

order to mitigate the energy hole problem. Sun et al.
[12] proposed a data aggregation method of wireless
sensor networks using artificial neural networks. The
data fusion tree is established to reduce the packets flow
and can update the leaf nodes dynamically. Aikaraki
et al. [13] introduced a joint design of data aggregation
with the routing technology, and presented a grid-based
routing and aggregator selection scheme to achieve low
energy dissipation and low latency without sacrificing
quality. By investigating data fusion with communication
constraint between the fusion center and each sensor,
Xu et al. [14] presented a data fusion mechanism for tar-
get tracking in wireless sensor networks based on quan-
tized innovations and Kalman filtering. By adding some
delay time, all the data collected by relay node can be
fused at one time so as to reduce the energy consump-
tion. Aiming to ensure the data quality, Li et al. [15] pro-
posed various metrics for QoS (quality of service) in the
process of data aggregation, including lifetime, data
delay, and retransmission rate. Also, the approach is dis-
cussed to ensure above QoS metrics in details.
Moreover, data outliers give rise to a very important

impact on the correctness of data fusion results and the
efficiency of IoT systems. In order to ensure the correct-
ness of fusion results, the data outliers caused by such as
software defects, occasionally failed communication, low
battery, or malfunction on hardware should be excluded
to avoid impact on the aggregation results. Actually,
most of the monitoring targets or the occurrence of ex-
ternal events usually will be random and unexpected.
With regard to the data outliers from anomalous events,
the readings should be identified exactly. Krishnama-
chari et al. [16] proposed a distributed algorithm for
fault-tolerant event region detection in wireless sensor
networks, which can determine whether a node is abnor-
mal. Besides, by exploiting the anomaly probability from
adjacent nodes, only a few bit messages are sufficient to
achieve fault-tolerant localization as events occurred.
Tan et al. [17] presented a prediction model of data flow
based on linear autoregressive analysis and further pro-
posed a real-time detection algorithm for outliers identi-
fication and compression processing. Fernandes et al.
[18] propose an autonomous profile-based anomaly de-
tection system using principal component analysis and
flow analysis to mitigate the impact of false data injec-
tion. By making inference of end-to-end measurements
collected by relay nodes, Zheng et al. [19] proposed a
trust-assisted framework for detecting and localizing
network anomalies in a hierarchical sensor network,
which also can obtain a flexible tradeoff between infer-
ence accuracy and probing overhead. Hu et al. [20]
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presented outlier detection methods based on a neural
network for WSNs, which exploited historical data to
train the neural network to determine whether the ac-
tual measured value into the prediction interval so as to
distinguish the data anomalies.

4 Network model and cluster formation
4.1 Network model
We consider a cluster-based architecture for a wireless
sensor network, where all sensor nodes can monitor the
given condition and periodically send its collected data
to its CH. Most researches demonstrate that clustering
is considered as an efficient topology control method in
WSN to improve the scalability and lifetime of the whole
system [21]. By dividing the network, sensor nodes will
be grouped into different clusters based on certain rules
and each cluster has a cluster head [22]. CH is respon-
sible for managing the cluster and receiving the set of
collected data from its member node during a certain
period. Also, in order to improve the efficiency of data
fusion, CH should have the ability to employ statistical
detection based on the sensor readings. It can detect
spatial outliers that deviate from normal data, thus en-
suring the accuracy of data fusion.
In addition, the following assumptions about the net-

work’s topology are suggested:

1. At each period, the sensor nodes acquire the
monitoring readings at a fixed sampling rate with m
measures.
2. The original attribute information collected from the
sensor nodes can be fuzzified into a set of membership
functions.
3. In each cluster, the member nodes collect data in a
periodic manner. Subsequently, all member nodes will
send their data to the appropriate CH for data aggregation
at the end of a round.

4.2 Cluster formation algorithm
In this section, we discuss the cluster formation based
on data similarity by using fuzzy c-means approach.
Compared to other topologies, cluster-based network
topology is recently considered to be more effective for
aggregating data packets separately. In addition, most of
the existing data aggregation techniques based on clus-
tering topology are dedicated to an event-driven data
model. Many hierarchical cluster formation algorithms
focus on the distance between nodes, residual energy,
geographic coverage, and so forth. In contrast, the main
purpose of our proposed method is to clear and amelior-
ate the collected data and provide the best information
to end users [23]. From a statistical point of view of the
correlation, the perceived data of same time slot can
demonstrate spatial-temporal correlation in the adjacent
monitoring region. If the monitoring indicators of per-
ceptual physical objects in the region do not show great
fluctuation, there will be minimal deviation of the data
collected by the sensor nodes with close geographical lo-
cation [24]. Therefore, cluster formation algorithm can
make use of the spatial-temporal correlated environmen-
tal data and partition the adjacent sensor nodes with
similar data instances into one cluster and different to
objects in other groups.
The fuzzy c-means (FCM) algorithm was proposed by

Bezdek [25] and has been used in cluster analysis, pat-
tern recognition, image processing, and so forth. FCM is
a clustering method derived from unsupervised learning,
which uses fuzzy theory to divide a set of data points
into a set of fuzzy clusters according to certain partition-
ing criteria [26]. Suppose a WSN that consist of N-sen-
sor nodes randomly distributed over an area of S × S
meters. By using of the sensor’s respective geographical
location and collected data initially, the BS computes the
cluster centers and allocates sensor nodes to the clusters
by applying the FCM algorithm.
Each node is assigned a degree of membership uij to a

cluster Ck rather than completely being a member of
other clusters. According to [27], to achieve adequate
coverage rate, the optimal number of K clusters should
be determined by

K ¼ ln 1−δð Þ
ln 1−3

ffiffiffi
3

p
R2=2S2

� �
& ’

ð1Þ

where S represents the side length of square region, R
represents the sensor’s communication radius, and δ de-
notes the coverage rate to be assured.
Assuming that sensor node si and sj locate in the same

cluster, Xi and Xj represent their collected data sets dur-
ing a fixed period. xij denotes the measure generated by
the sensor si at the time slot j, and m is the number of
samples in the fixed period. In the periodic data collec-
tion model, in order to minimize data redundancy and
still guarantee the accuracy of fusion results, studying
the variance between measurements is an analytical way
to choose appropriate nodes to form clusters. According
to information entropy theory, the entropy value of all
samples at time j can be obtained by

e j ¼ −
1
lnm

Xm
i¼1

xij lnxij ð2Þ

where 0 ≤ ej ≤ 1.
Since the utility value of the index is proportional to

its impact on fusion results, the weight value of variable
j can be defined as
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ω j ¼ 1−e jXm
j¼1

1−e j
� � ð3Þ

Next, the weighted Euclidean distance between the
reading of node si and centroid point vk of cluster Ck

can be expressed as

Dis si; vkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ω j xij−vkj
� �2vuut ð4Þ

where vkj indicates the reference value of the centroid
point at time j in cluster Ck.
Next, the objective function should be proposed to en-

hance the quality of the clusters and allocate sensor
nodes into their most appropriate one [28]. By using
FCM, the objective function, which will operate with it-
erative procedures, can be formulated as follows:

min J X;U ;C1;C2;⋯;CKð Þ ¼
XK
k¼1

XN
i¼1

uυ0ki Dis si; vkð Þ½ �2

ð5Þ

s:t:
XK
k¼1

uki ¼ 1; 1≤ i≤N ; uki∈ 0; 1½ �; 1≤k≤K ; 1≤ i≤N ;

XN
i¼1

uki∈ 0;N½ �; 1≤k ≤K :

where uki denotes the degree of membership being
assigned to node si to join in the cluster Ck. U denotes
the membership matrix of uki. υ0 is a weighting exponent
on each fuzzy membership that determines the amount
of fuzziness of the resulting classification, and is set to 2.
By using the Lagrange’s multiplier to optimize formula

(18), the problem is equivalent to find the minimum
value of the Eq. (6).

F U ; λð Þ ¼
XK
k¼1

XN
i¼1

wiu
υ0
ki Dis si; vkð Þ½ �2 þ

XN
i¼1

λ
XK
k¼1

uki−1

 !

ð6Þ
where wi indicates the weight value in process of data
aggregation. It can be set as 1/N initially, and be updated
by formula (22) at the end of each sampling period.
Note that the first order partial derivative should be

equal to 0, i.e., ∂F/∂λ = 0 and ∂F/∂uki = 0. Then, we have

∂F=∂λ ¼ 1−
XK
k¼1

uki ¼ 0 ð7Þ

uki ¼ λ

wi Dis si; vkð Þ½ �2 ð8Þ

Thus, uki can be determined as
uki ¼ wi Dis si; vkð Þ½ �2XK
k¼1

wi Dis si; vkð Þ½ �2
ð9Þ

Similarly, suppose that ∂F/∂vk = 0, the reference vector
of the centroid point in cluster Ck can be given as

vk ¼

XN
i¼1

wiu
2
kiXi

XN
i¼1

wiu
2
ki

ð10Þ

5 Data aggregation
5.1 Data outlier detection
Outliers are often known as anomaly or deviation, which
can even mislead systems into unsafe conditions.
Whether the quality of data collected by WSNs is reli-
able and accurate or not will influence the performance
of the whole system [29]. Therefore, data outliers should
be detected and isolated in time so as to ensure the val-
idity of data aggregation result and fusion efficiency. For
clustered WSN, it is impossible for CH to determine the
validity of the data sent by its members. However, the
geographical relationship between the readings of sensor
nodes within a certain physical spatial range or cluster
may be an effective means to identify outliers through
credible tests of the masses. In this sub-section, an ef-
fective support degree function is defined for further
outlier diagnosis is introduced, which is based on a
standard statistical distribution model and makes use of
the measures between neighboring nodes.
As mentioned above, due to the spatial-temporal cor-

relation in the adjacent monitoring region, the measure-
ments between node si and sj at the same sampling
period will show relatively small differences. Hence, the
support degree from node sj to si can be expressed as
consistency between the samples Xi and Xj.
First, to eliminate the influence of the measurement

scale, the normalization processing of raw data is intro-
duced to make a relatively objective comparison between
measurement sets collected by different sensor node.
The original attribute of raw data may belong to positive
index or negative index. First, linear transformation of
raw data can be given by

x0ij ¼ xij=x̂ j; if x j is positive index
x0ij ¼ x̂ j=xij; if x j is negative index

�
ð11Þ

where x̂ j denotes the ideal value for the samples at the
time slot j, and x0ij is the proximity of xij to ideal values.

Then, the normalized value of sample xij can be repre-
sented as
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yij ¼ x0ij=
Xn
i¼1

x0ij ð12Þ

In order to characterize that mutual support relation-
ship between sensor nodes, the support degree can be
defined as

pij ¼

Xm
k¼1

yik−ŷk
� �

yjk−ŷk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

yik−ŷk
� �2Xm

k¼1

yjk−ŷk
� �2s ð13Þ

where ŷk represents the mean value.
According to the above function, the support degree

matrix P of the measures from all nodes in a cluster can
be obtained

P ¼
1 p12 ⋯ p1n

p21 1 ⋯ p2n
⋮ ⋮ ⋱ ⋮

pn1 pn2 ⋯ 1

2
664

3
775 ð14Þ

where pi1, pi2, ⋯, pin are support degree of the samples
collected by si from the member nodes in the same clus-
ter, and n indicates the number of member nodes. By in-
tegrating the evaluation of all neighboring nodes, the
comprehensive support degree of Xi can be calculated as

Ti ¼ 1
n

Xn
j¼1

pij ð15Þ

Since Ti is relative to the amount of support degree
from other member nodes or its nearest local neighbors,
it indicates normal level compared to the majority of
sensor readings. When a sensor sends abnormal data
due to noise errors or malicious attacks, the readings
will obviously deviate from the measures of other sen-
sors. As a result, its comprehensive support is very
small. Unless a large area of intra-cluster nodes fail sim-
ultaneously, the probability of that exceptional case will
be very low and can be neglected.
Suppose that the comprehensive support of data Xi is

Ti, if Ti ≥ ζ, Xi is determined as normal data. Otherwise,
the data will be regarded as outliers. Among them, the
parameter ζ is set as the availability threshold value.
When the value of Ti is less than the threshold value ζ,
the corresponding readings Xi will be processed to miti-
gate the influence on the aggregation result.

5.2 Data aggregation strategy
In this section, we present the data aggregation strategy
to ensure the accuracy of the aggregation result. Before
aggregation process, the data being collected from mem-
ber nodes will be sent entirely to the cluster head, which
can conduct outlier detection based on the centralized
approach. If the data being received is valid, it will be
put into data aggregation process. Otherwise, they
should be rejected immediately. Therefore, the two types
of memory buffers can be embedded in CH and corre-
sponding parameter a and b is set to count the number
of normal and outlier data uploaded by each member
node. Under certain conditions, the probability distribu-
tion of normal and outlier data will be approximate to
the posterior probability distribution with binomial
model, which can obey the beta distribution. Therefore,
the beta distribution characteristics can be employed to
evaluate the data validity.
Set χ as the posterior probability of a random event,

the probability of distribution can be obtained based on
the Bayesian statistics as

P χja; bð Þ ¼ P χ; a; bð Þ
P a; bð Þ

¼
aþ b
a

� 	
χa 1−χð Þb

R 1
0

aþ b
a

� 	
χa 1−χð Þbdχ

¼ χa 1−χð ÞbR 1
0 χ

a 1−χð Þbdχ
ð16Þ

where 0 ≤ χ ≤ 1, a > 0, b > 0.
The probability density function of the parameter (a,

b) can be expressed as

f χja; bð Þ ¼ χa−1 1−χð Þb−1R 1
0 u

a−1 1−uð Þb−1du
¼ Γ aþ bð Þ

Γ að ÞΓ bð Þ χ
a−1 1−χð Þb−1

ð17Þ
Thus, we have

P χja; bð Þ ¼ χa 1−χð Þb
f aþ 1; bþ 1ð Þ ð18Þ

As a result, the reliability of the monitored samples of
the determined node will obey the beta distribution with
parameters a + 1 and b + 1.

P χjaþ 1; bþ 1ð Þ ¼
χa 1−χð Þb

B aþ 1; bþ 1ð Þ ; 0 < χ < 1

0; otherwise

8<
:

ð19Þ
Therefore, the mathematical expectation E(χ) of beta

distribution can be given as

E χð Þ ¼ aþ 1
aþ bþ 2

ð20Þ

Considering the effect of data retransmission caused
by channel quality, the uncertainty of the readings being



Table 1 Simulation parameters

Parameter Value

Area size 500 × 500m

Number of sensor nodes N 81

Node’s communication range 40 m

Transmission channel Wireless channel

Propagation model Normal path loss model

Data packet size 32 bytes

Bandwidth 200 kilobytes per second

Radio layer CC2420 radio layer

Queue size 50 packets

δ 0.6~0.9

ζ 0.1~0.9

Outlier probability 5%, 10%, 15%

υ0 2

m 50
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collected by the determined node can be attenuated by
introducing time attenuation factor. Accordingly, the
time attenuation factor should be defined as

θ ¼ Tdi=Tdave ð21Þ
where Tdi denotes the packet transmission delay of node
si, and Tdave denotes the average packet transmission
delay of all member nodes.
Thus, formula (8) can be modified to:

E χð Þ ¼ aþ 1
aþ θbþ 2

ð22Þ

The revised mathematical expectation can be defined
as the weight value in process of data aggregation, and
wi = Ei(χ) will be allocated to member nodes.
Finally, the aggregation result in the cluster can be es-

timated by

X� ¼
Xn
i¼1

wiXi ð23Þ

6 Experiments
In this section, practical database-based simulations have
been conducted to evaluate the performance of our
method. Firstly, the datasets are derived from the real
sensed data collected from 54 Mica2Dot sensors de-
ployed in the Intel Berkeley Research Lab between Feb-
ruary 28 and April 5, 2004 [30]. The sensed data
included humidity, temperature, light, and voltage values
collected. In the experiments, we first selected some
measurements of temperature from the sensor nodes 36
until 43, for the time period from March 18, 2004, to
March 20, 2004, corresponding to 2000 log rows. We do
not take into account the other features (humidity, light,
and voltage). The quantity of data is about 2.3 million
readings; it was collected using the TinyDB in-network
query processing system, built on the TinyOS platform.
Based on the dataset, we add a given mass of outliers to
simulate the occurrence of events, which can make the
data fluctuate to a certain extent.
To evaluate the performance of our approach, we use

the TOSSIM tool [31]. TOSSIM is a TinyOS simulation
tool which simulates WSN physical and link layer fea-
tures accurately. This allows validating the solution
under realistic WSN deployment conditions. In each
test, we repeat the simulation for 30 times and compute
the mean of results. The key simulation parameters are
summarized in Table 1.
In the experiment scenarios, outliers are simulated

randomly, and 100 values of temperature are generated
and then added to the dataset. In terms of the evaluation
metrics, detection accuracy rate is defined as the ratio of
outliers being detected to all outliers, and false alarm
rate represents the ratio of normal data mistakenly de-
tected as outliers.
First, our objective is to study the detection of abnor-

mal data in accordance to our proposed method. Figure 1
shows the detection accuracy rate when varying δ and ζ.
Since the support degree can differentiate the normal
data and outliers, it can effectively guarantee the data ac-
curacy when handling the aggregation process. This
truth is clearly shown in Fig. 1 when the sensor node ap-
plies the aggregation phase and when δ and ζ increases.
In addition, it can be noticed that the detection accuracy
rate can be significantly improved as ζ increases. The
reason is that once the node’s support degree cannot be
satisfied with the threshold’s requirement, its readings
will not be preserved and submitted to CH for data fu-
sion. It is beneficial to the accuracy of the final fusion
results.
Figure 2 shows the false alarm rate when varying δ

and ζ. Indeed, we can find that the overall trend of
false alarm rate is opposite to that of the detection ac-
curacy rate, especially when δ is larger, the fluctuation
is more obvious. The higher value of δ means that
more clusters will be distributed in the monitoring re-
gion. For fixed number of total sensor nodes, it will
cause the reduction of the number of members in a
single cluster and make the determination of outliers
more stringent. In addition, the increase of threshold ζ
leads to higher level for support degree, and the sam-
ples with large deviation can easily be judged to be in-
valid. In the case of a monitoring indicator that
suddenly changes dramatically and only a few nodes
perceived it, their readings will be treated as anomal-
ous data owing to low support degree. Thus, the de-
tection accuracy rate will be increased.



Fig. 1 Detection accuracy rate. The detection accuracy rate reflects the ratio of outliers being detected to all outliers
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Figure 3 shows the deviation degree of aggregation re-
sult as a function of threshold ζ. Based on the obtained
results, we can notice that ζ moves from the extreme
values of 0.1 and 0.9 towards the optimal value 0.6.
When the threshold is either too low or too high, the
final fusion result is not ideal. This is due to the high ac-
curacy and low false alarm rate of differentiating normal
data and outliers in terms of appropriate availability
threshold. Low threshold setting may result in low de-
tection rate and thus affecting the accuracy of the final
Fig. 2 False alarm rate. The false alarm rate demonstrates the ratio of norm
fusion result. Conversely, excessive value of specified
threshold will make the criteria more rigorous, and the
normal measurement will be identified as outlier. More-
over, if such a situation occurs in a continuous time, it
will inevitably lead to a sharp decline in the weight of
these valid data in data fusion processing and thus af-
fecting the data accuracy.
Next, we further study the impact of different outlier

probability on relative recovery error and make a compari-
son with KPFF [32] and DSADC [33]. Recovery accuracy
al data mistakenly detected as outliers



Fig. 3 Deviation degree of aggregation result. Appropriate threshold can be beneficial to detect outliers locally based on the spatial temporal
correlations of the sensor’s samples
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is a normally used metric to evaluate the quality of data
aggregation algorithms [34]. In this paper, recovery accur-
acy is mathematically defined by relative recovery error
(RRE), which is the relative difference between original
and recovered data matrices. Figures 4, 5 and 6 demon-
strate the instant RRE along the timeline.
The obtained results show clearly that applied support

degree in such a way is very effective. It also maintains
adaptability with different outlier probability. From the
Fig. 4 RRE with outlier probability (5%). Recovery accuracy is a normally us
experiment results, it can be seen that the RRE curves of
both KPFF and DSADC algorithms fluctuate dramatic-
ally. But we can still observe that nearly 90% RRE values
of similarity-aware data aggregation using fuzzy c-means
approach (SDAF) are below those of DSADC. The error
of the fusion results obtained by SDAF is smaller than
other methods especially as outlier probability increases.
In the process of data aggregation, outlier samples can
be identified effectively by diagnosis mechanism in
ed metric to evaluate the quality of data aggregation algorithms



Fig. 5 RRE with outlier probability (10%). RRE can reflect the effectiveness to the aggregation result by data outliers
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SDAF, and the outlier-free readings are further aggre-
gated and transmitted to the CH. Therefore, it can re-
duce the effectiveness to the aggregation result by data
outliers and avoid the possibility of misleading systems
into unsafe conditions.

7 Conclusions
To minimize the energy consumption by redundant data
and reduce the expense of transmissions to the sink,
data aggregation technology is very essential for WSNs.
Fig. 6 RRE with outlier probability (15%). The results demonstrate adaptabi
Data anomaly or deviation will exert a great influence on
the quality of aggregated results. In this paper, we have
proposed a similarity-aware data aggregation using a
fuzzy c-means approach in clustered WSNs. By investi-
gating the spatio-temporal correlations of sensor data
and local detection of anomalous events, we presented a
cluster formation algorithm based on fuzzy c-means ap-
proach. Then, we define an effective support degree
function for further outlier diagnosis. Finally, based on
statistical analysis of the outlier or outlier-free sensor
lity with different outlier probability
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data, the readings aggregation is conducted. Overall, the
simulation results show that the proposed method can
achieve better performance than traditional methods in
terms of data outlier detection accuracy and relative re-
covery error.
In our future work, we plan to conduct the research

on the analysis of outlier detection in terms of character-
istics like the multi-dimension, detection mode, architec-
tural structure, and correlation extraction.
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