Similarity-Aware Indexing for Real-Time Entity Resolution

Peter Christen Ross Gayler David Hawking
School of Computer Science Scoring Solutions Funnelback Pty Ltd
Australian National University Veda Advantage Dickson ACT 2601, Australia
Canberra ACT 0200, Australia Melbourne VIC 3000, david.hawking@acm.org

peter.christen@anu.edu.au Australia

ross.gayler@vedaadvantage.com

ABSTRACT

Entity resolution, also known as data matching or record
linkage, is the task of identifying records from several data-
bases that refer to the same entities. Traditionally, entity
resolution has been applied on static databases, for example
to find records that relate to the same patient in different
health databases. Most research in entity resolution has con-
centrated on either improving the matching quality, making
entity resolution scalable to very large databases, or reduc-
ing the manual efforts required throughout the resolution
process. Increasingly, however, many organisations are faced
with the challenge of having large databases that contain en-
tities, and a stream of query records that have to be matched
with these databases in real-time, such that the best match-
ing records are retrieved. Example applications include on-
line law enforcement and national security databases, public
health surveillance and emergency response systems, finan-
cial verification systems, and online retail stores.

In this paper, a novel inverted index based approach for
real-time entity resolution is presented. At build time, sim-
ilarities between attribute values are computed and stored
to support the fast matching of records at query time. The
presented approach differs from other recently developed
approaches to approximate querying, in that it allows any
similarity comparison function, and any ‘blocking’ function,
both possibly domain specific, to be incorporated.

Experimental results on a large real-world database indi-
cate that the total size of all data structures of this novel in-
dex approach grows sub-linearly with the size of the database,
and that it allows matching of query records in sub-second
time, more than two orders of magnitude faster than a tra-
ditional entity resolution index approach.

Categories and Subject Descriptors

H.3.3 [Information Systems|: Information Storage and
Retrieval—Information Search and Retrieval; H.3.1 [Infor-
mation Systems]: Information Storage and Retrieval—
Content Analysis and Indezing.

Accepted as poster at CIKM'09, November 2—-6, 2009, Hong Kong

General Terms

Algorithms, Experimentation, Performance.

Keywords

Data matching, record linkage, scalability, similarity query,
approximate string matching, inverted indexing.

1. INTRODUCTION

Increasingly, many applications that deal with data man-
agement and analysis require that data from different sources
is matched and aggregated before it can be used for further
processing. The aim of data matching is to identify and
match all records that refer to the same real world entities.
These entities can, for example, be customers, patients, tax
payers, travellers, students, businesses, consumer products,
or bibliographic citations. While statisticians and health re-
searchers commonly name the task of matching records as
data or record linkage, computer scientists and the database
and business oriented IT communities speak of entity reso-
lution, data or field matching, data cleansing, data inte-
gration, duplicate detection, data scrubbing, list washing,
object identification, or merge/purge processing.

Traditionally, techniques for matching records that corre-
spond to the same entities have been applied in the health
sector and within the census [14, 21, 28]. Increasingly, how-
ever, entity resolution is now being used within and be-
tween many organisations in both the public and private
sectors in a large variety of application domains. Examples
include finding duplicates in business mailing lists, biblio-
graphic databases (digital libraries) and online stores; crime
and fraud detection within finance and insurance companies
as well as government agencies; compilation of longitudinal
data for social research; or the assembly of terrorism watch
lists for improved national security.

Because real-world data rarely contains unique entity iden-
tifiers across all the databases to be matched, most entity
resolution approaches compare records using the informa-
tion available in the databases that partially identify enti-
ties, such as their names, address details, or dates of birth.
For each of the partially identifying attributes compared be-
tween two records, a similarity is calculated. These simi-
larities are then used collectively to classify each compared
record pair as a match, non-match, or possible match [14, 16,
28]. The matching process is often challenged because real
world data is dirty, i.e. contains missing or out-of-date at-
tribute values, variations and errors, values that are swapped
between attributes, or data that is coded differently [26].

Traditional entity resolution approaches assume that two
or more static databases are to be matched in batch mode,
in order to produce a new matched data set. Increasingly,
however, entity resolution is required in an online, real-time
environment, where query records have to be matched with
one or several large databases, and the most similar records
are to be retrieved. Omne example application of current
interest is health surveillance and emergency response sys-
tems, where the aim is to find all records that relate to a
certain individual, for example a patient showing symptoms
of an infectious disease, from a variety of databases. In
order to find other individuals that might have been in con-
tact with that patient, a search needs to be conducted in
an airline database, to find the details of other people who
have travelled with the patient; the database of the patient’s
employer, to find potentially infected co-workers; the school
database of the patient’s children, and so on. In many cases,
the search for matching records will rely upon personal de-
tails, like the name, address and date of birth of the patient,
and thus be subject to errors and variations, as well as out-
of-date information. Accurate and real-time approximate
matching techniques are required for such situations.

The application domain of specific interest to the authors
is consumer financial services. Entity resolution is increas-
ingly important in this domain as such services are being
delivered remotely. Once a consumer has established an ac-
count with a financial institution, she or he is normally re-
quired to use an unambiguous identity token, like an account
number. However, the initial establishment of a consumer’s
identity is difficult. The normal approach taken is entity res-
olution of identifying information, as provided by the con-
sumer, against one or more databases of related identify-
ing information. The information provided is often subject
to variability and error, requiring an approximate match-
ing process. As this process will be driven by automated
systems that require sub-second responses, automated and
accurate matching, scalability, and real-time entity resolu-
tion are major technical challenges for such systems.

This paper presents work that is aimed towards the de-
velopment of such systems. The basic idea of achieving real-
time entity resolution is to combine similarity calculations
used for approximate matching with inverted index tech-
niques that are commonly used in the field of information
retrieval, for example for large-scale Web search engines [3,
29, 32]. In the past decade, with the popularity and com-
mercial success of such search engines, a large amount of
research and development on optimisation techniques has
been conducted in this field [3, 32]. Some of these optimisa-
tion techniques are used in the work presented in this paper
to facilitate real-time entity resolution of large databases.

The contributions of this paper are a novel index approach
suitable for real-time entity resolution. This approach signif-
icantly improves the matching speed over a similar approach
recently presented by two of the authors [9]. Compared to
this earlier approach, which was between two and one hun-
dred times faster than a traditional index approach for entity
resolution, the novel technique presented here is consistently
over two orders of magnitude faster than the traditional in-
dex approach. An important aspect of the novel approach
presented here is that it allows any similarity comparison
function, and any encoding function for ‘blocking’ [2], both
possibly domain specific, to be incorporated. Most other
approximate matching approaches developed in recent times

are limited to specific similarity functions (such as edit dis-
tance, or Jaccard or cosine similarity), and therefore may
not be suitable for entity resolution in applications that re-
quire specific encoding and comparison functions.

The remainder of this paper is structured as follows. Next,
in Section 2, an overview of related research is provided. The
proposed novel index approach for real-time entity resolution
is then presented in Section 3, and experimentally evaluated
in Section 4 using a large real-world database. The results of
these experiments are discussed in Section 5, and the paper
is concluded with an outlook to future work in Section 6.

2. RELATED WORK

Research into entity resolution is being conducted in vari-
ous domains, including data mining, machine learning, infor-
mation retrieval, artificial intelligence, digital libraries, in-
formation systems, statistics, and the database community.
Several recent overview articles are available [13, 28]. Entity
resolution techniques can broadly be classified into learning
approaches [5, 8, 10, 11, 12], or database and graph-based
methods [20, 27, 31]. So far, most research in this area has
focused on the quality of the matching process, i.e. the ac-
curacy of classifying the compared pairs or groups of records
into matches and non-matches. The challenges of scalability
to very large databases and real-time matching have so far
only received limited attention.

For the traditional matching of (large) static databases,
indexing is important, because potentially every record from
one database needs to be compared with all records from the
other database, resulting in a process that is of quadratic
complexity in the sizes of the databases to be matched. In-
dexing techniques, also known as ‘blocking’, are therefore
commonly applied to reduce the number of comparisons to
be conducted. In the standard blocking approach [2], which
will be presented in detail in Section 3.1 below, the databases
are split into blocks according to some criteria, and only
records within the corresponding block are compared with
each other. A blocking criterion, also called a blocking key,
might be based on a single record attribute (that should con-
tain values of high quality), or based on the concatenation
of values from several attributes. In order to overcome the
problem of variations and errors in real-world data, one aim
is to group similar sounding values into the same block. This
can be accomplished by using phonetic encoding functions,
such as Soundez, NYSIIS or Double-Metaphone [7]. These
functions, which are often language or domain specific, are
applied when generating the blocking keys. Examples of
such phonetic encodings are shown in Figure 1.

The standard blocking approach has two major draw-
backs. First, the size of the generated blocks depends upon
the frequency distribution of the attribute values used in
the blocking key. For example, using surname values in a
blocking key will likely generate a very large block contain-
ing the common surname ‘Smith’, resulting in a very large
number of comparisons that need to be conducted for this
block. Second, if a value in an attribute used as a blocking
key contains errors or variations that result in a different en-
coding, then the corresponding record will be inserted into a
different block, and potentially true matches will be missed.
This problem is normally overcome, at increased computa-
tional costs, by having two or more different blocking keys
based on different record attributes.

Various alternative blocking approaches have been devel-
oped in recent times, aimed at improving the scalability
of the matching process and increasing matching accuracy.
With the sorted neighbourhood approach [18], the databases
are sorted according to the values in the blocking key, and a
fixed-size window is moved over the databases. All records
within the current window will then be compared with each
other. An approach related to this is to insert the blocking
key values and their suffixes into a suffiz array based in-
verted index [1], and to then generate blocks from all records
that have the same suffix value. With this approach, each
record will be inserted into several blocks, depending upon
the length of its suffix values. Another approach is to allow
for ‘fuzzy’ blocking by converting blocking key values into g-
gram lists and, using sub-lists of these g-gram lists, to insert
each record into several blocks according to a Jaccard-based
similarity threshold [2]. While this approach can improve
the accuracy of the resulting matching, its computational
complexity (a large number of g-gram sub-lists need to be
generated) makes it unsuitable for large databases. Another
idea for indexing is to apply clustering by using a com-
putationally efficient similarity measure to generate high-
dimensional overlapping clusters (called ‘canopies’), and to
then extract blocks of records from these clusters [11]. Each
record will be inserted into several clusters and thus several
blocks, resulting in higher matching accuracy but at higher
computational costs. Another recent approach is to map
blocking key values into a high-dimensional Euclidean space
such that the distances between all pairs of strings are pre-
served [19]. The records in a block then correspond to all
objects in this space that are similar to each other.

Conducting entity resolution not on static databases but
at query time has so far received very limited attention, with
only two recent publications presenting approaches specific
to such situations. The authors have earlier shown that us-
ing an inverted index approach can significantly speed-up
the query matching process [9]. A second approach is based
on unsupervised relational clustering, which assumes that
the data to be matched contains relational information that
explicitly links different types of entities [5]. The idea of this
approach is to utilise the relational links between records
to improve the entity resolution process. At query time,
matching is conducted in an iterative fashion on a database
that contains unresolved entities. While this approach can
achieve much better matching accuracy compared to tra-
ditional entity resolution approaches (that only consider at-
tribute similarities), it has much higher computational costs.
Matching times of around 30 seconds for one query record
on a database containing around 800, 000 records have been
reported [5]. This approach is therefore impractical for real-
time entity resolution on very large databases.

A large body of work has been conducted in the database
community on similarity queries and their scalable and ef-
ficient implementations [4, 6, 15, 17, 23, 24, 25, 30]. Many
of the presented approaches optimise indexing and filtering
techniques for specific types of similarity measures, such as
edit distance, or g-gram or cosine based similarities. They
also mainly deal with the situation of either finding similar
tuples between a set of query records and a database table,
or two large tables. One real-time similarity join approach
based on a modified trie hash-join has been presented very
recently [22]. It calculates g-gram similarities, and then ap-
plies several filtering steps to achieve fast query times.

Thus far, scalability to very large databases has not been
addressed by most recent research in the area of entity reso-
lution, and most publications in this area have presented ex-
perimental results based on only small to medium sized data
sets containing up to one million records [5, 20, 27, 31]. Most
of the recently developed advanced entity resolution tech-
niques have a computational complexity that makes them
impractical for matching very large databases that contain
many million records. Additionally, most approaches pub-
lished so far, with the exception of two very recent tech-
niques [5, 9], are assuming the situation of matching static
databases in batch mode.

3. INDEXING FOR REAL-TIME ENTITY
RESOLUTION

Indexing, as presented in the previous section, is required
for real-time entity resolution systems to speed-up the match-
ing process by reducing the number of candidate records that
need to be matched with a query record.

The objective of real-time entity resolution is to match
a stream of query records as quickly as possible to one or
several (large) databases that contain records about existing
entities, and potentially to a range of external data sources
that contain additional information that can be used to ver-
ify the matched entities. The response time for matching
a single query record has to be as short as possible, ide-
ally sub-second. The matching approach must facilitate ap-
proximate matching and efficiently scale-up to very large
databases that contain many millions of records. In addi-
tion, the matching should generate a match score that indi-
cates the likelihood that a matched record in the database
refers to the same entity as the query record.

Real-time entity resolution has much in common with the
functionality of large-scale Web search engines. However,
the databases upon which entity resolution is commonly ap-
plied do not contain Web or text documents that include
a large number of terms and thus provide a rich variety of
features. Rather, these databases are made of structured
records with well defined attributes that often only contain
short strings or numbers, such as the personal details of peo-
ple (for example name, address, or date of birth values).

In this section, the traditional standard blocking approach
to indexing for entity resolution is presented first to illustrate
the basic ideas of using inverted indexing for entity resolu-
tion. Based on this approach, a similarity-aware inverted
index approach that is suitable for real-time entity resolu-
tion is then discussed in detail in Section 3.2. Both index
approaches are illustrated in Figures 2 and 3.

Both index approaches presented here are based on a stan-
dard inverted index [32], where the keys of the index are
(possibly encoded) attribute values, and the corresponding
lists contain the record identifiers of all records that have
this (encoded) value. Two types of function are required
by both index approaches. First, (phonetic) encoding func-
tions are needed that group similar attribute values together.
For string attributes, such as personal names or street and
suburb names, phonetic encodings like Soundez, NYSIIS or
Double-Metaphone are commonly used [7]. Figure 1, for ex-
ample, shows the Sounder encodings of eight surname val-
ues. As can be seen, this encoding function groups the values
‘smith’ and ‘smyth’ into one block, and ‘millar’, ‘miller’ and
‘myler’ into another. The second type of functions required

[Record ID | Surname | Soundex encoding |

rl smith s530
r2 miller m460
r3 peter p360
rd myler m460
rb smyth $530
r6 millar m460
r7 smith s530
r8 miller m460

Figure 1: Example records with surname values and
their Soundex encodings, used to illustrate the two
index approaches in Figures 2 and 3.

‘ m460‘ p360 ‘ 530 ‘

m 5

6]
2]

Figure 2: Standard blocking index resulting from
the example records given in Figure 1. The blocking
keys correspond to Soundex encodings.

are similarity comparisons that calculate a normalised simi-
larity between two attribute values, such that 1 corresponds
to an exact similarity and 0 to total dissimilarity [7]. Note
that for different attribute types (strings, dates, numbers,
etc.) different such comparison functions can be used. Ad-
ditionally, domain specific comparison functions are often
applied to improve the matching quality. One example of
such a function would be a date of birth comparison, where
a mismatch in the month or day of birth is less severe than
a mismatched year of birth.

The real-time entity resolution process as discussed in this
paper consists of two phases. First, in the build phase, an
index is generated using a static database that contains a
possibly large number of cleaned records that are assumed
to refer to resolved entities, i.e. one single record per real-
world entity only. Once built, the index is queried in the
second phase with a stream of query records. These records
can either refer to an entity stored in the index, or to a new
and unknown entity. It is assumed, however, that the query
records can contain variations and typographical errors, or
wrong, out-of-date or missing values. Missing values can be
handled by replacing them with a special character (that is
outside of the character set used for an attribute) in both
database and query records. For each query record, the
matching process returns a ranked list of potential matches
and their similarities with the query record. A match is
successful if one of the top ranked records refers to the same
entity as the query record.

In the following two sections, the two index approaches
are described in detail, and in Section 3.3 two optimisations
for reducing the query matching time are discussed. Exper-
iments on these two index approaches are then presented in
Section 4. In Algorithms 1 to 4, the attributes of a record
r are denoted by r.;, with r.0 assumed to be an identifier
attribute that allows unique identification of each record. A
list with key k in an inverted index X is denoted with X[k].
An empty list is denoted by () and an empty index by {}.

Sl -

millar miller : 0.9 myler : 0.7
miller millar 10.9| myler:0.8
myler millar 0.7 |miller :0.8

peter
smith smyth | 0.9 B m460
smyth p360

s530 smith | smyth

!
I

Rl‘ millar ‘ miller ‘ myler‘ peter‘ smith‘ smytlﬁ

Figure 3: Similarity-aware index resulting from the
example records from Figure 1. The similarity index
is shown in the top left, the block index in the middle
right, and the record identifier index at the bottom.

3.1 Standard Blocking

The basic idea of standard blocking is that each record in
a database is inserted into a block according to the value
of its blocking key [2], as illustrated in Figure 2. Encoding
functions [7] are used to group similar attribute values into
the same block. Each block corresponds to an inverted in-
dex list, with the key being the (encoded) blocking key value,
while the values in the corresponding list are the record iden-
tifiers of all records in this block.

Standard blocking is used in this paper because it is a
baseline approach upon which many other recently devel-
oped index approaches for entity resolution can be built.
For example, canopy clustering [11], suffix-array blocking [1],
and the sorted neighbourhood [18] approach, as discussed in
Section 2, can all be implemented as extensions to a basic
inverted index. Therefore, standard blocking can be seen as
the basic approach for traditional batch-oriented entity res-
olution of static databases. Other index approaches based
on it have higher computational requirements.

The build phase of standard blocking is shown in Algo-
rithm 1. The input to this algorithm is a data set D con-
taining n attributes that will be used in the entity resolution
process, and n corresponding encoding functions, E;. A ba-
sic inverted index I, as illustrated in Figure 2, is generated in
the build phase, where record identifier values are inserted
into inverted index lists according to their corresponding
encoded attribute values. This encoding of attribute values
might be computationally expensive. Therefore, in order to
prevent repeated calculation of encodings c of attribute val-
ues, once an encoding has been computed, it is stored in the
encodings cache C (line 9) so it can be retrieved quickly for
subsequent occurrences of the same attribute value r.i (line
6). The algorithm returns the inverted index data structure
I containing record identifiers, r.0, in the inverted index lists,
and the cache C containing the computed encodings. No
similarity calculations are performed during the build phase
of this index approach. Note that for simplicity the index
and cache are shared between attributes. Depending upon
the characteristics of the data to be processed and matched,
however, it might be favourable to have separate index and
cache data structures per attribute.

Algorithm 1: Standard blocking — Build
Input:

- Data set: D

- Number of attributes of D used: n

- Encoding functions: E;,t=1...n

Output:

- Standard blocking index: I

- Encodings cache: C

1: Initialise I = {}

2: Initialise C =0

3: for r € D:

4: fori=1...n:

5: if r.i € C then:
6: ¢ = CJr.i]

7 else:

8: ¢ =E;(r.i)

9: Clri] =c

10: Append r.0 to I|¢]

Algorithm 2 describes the query phase. As input, it re-
quires a query record q, the inverted index I, the data set
D, the encodings cache C, the number of attributes to be
used for entity resolution n, the encoding functions E;, and
the comparison functions used to calculate the similarities
between attribute values, S;. The query phase consists of
two steps. First, in lines 1 to 8, the encoded attribute values
(possibly available in the encodings cache C) of the query
record q are used to retrieve the record identifier lists from
the corresponding blocks in the inverted index I. The union
of these lists, b, contains all identifiers of the candidate
records that will be compared with the query record in the
second step of the algorithm (lines 9 to 14). The required n
attribute values for each candidate record r need to be re-
trieved from data set D (line 10). An efficient index on D is
therefore required that allows fast access to a random record
r using its identifier r.0. For each candidate record that is
compared with the query record, a similarity, s, is calculated
over all compared attributes (line 13) and inserted into the
list of matches M (line 14). For simplicity a simple sum-
ming of s is assumed, however, in reality other aggregation
functions, like weighted sums, can be applied. Finally, in
line 15, the list of matches M is sorted such that the largest
similarity values are at the beginning.

3.2 Similarity-Aware I ndex

This index is based on the idea of pre-calculating the
similarities between all unique attribute value combinations
within each block once during the build phase, so that the
similarities do not need to be re-calculated for every query
record, thereby significantly reducing the matching time re-
quired in the query phase.

As illustrated in Figure 3, this approach contains three
inverted index data structures. The record identifier index,
RI, is similar to the inverted index I used in standard block-
ing, but the keys of this index are the actual attribute values
and not their encodings. The block index, BI, is the data
structure that represents the blocks by having encoded at-
tribute values as keys and the actual attribute values that
have the same encoding in the corresponding inverted index
lists. Each list in this index therefore contains all attribute
values that are in the same block. The similarity index, SI,

Algorithm 2: Standard blocking — Query
Input:

- Query record: q

- Data set: D

- Number of attributes of D used: n

- Standard blocking index: I

- Encodings cache: C

- Encoding functions: E;,t=1...n

- Similarity comparison functions: S;;i=1...n
Output:

- Ranked list of matches: M

1: Initialise M = ()

2: Initialise candidate record identifier list b = ()
3: fori=1...n:

4: if q.i € C then:

5: ¢ = Clq.{]

6: else:

T ¢ = Ei(q.q)

8: b=bUI[]

9: forr.0€b:

10: Retrieve r from D using identifier r.0

11: s=0

12: fori=1...n:

13: s =s+ Si(r.;,q.i)

14: Append (r.0,s) to M

15: Sort M according to similarities (largest first)

stores the similarities of pairs of attribute values that are
in the same block. Specifically, for each attribute value, it
contains a list of other attribute values (in the same block)
and the similarities between these two values.

Algorithm 3 describes how a similarity-aware index is built.
The algorithm requires the same input as the build algo-
rithm for standard blocking. Additionally, the similarity
comparison functions, S;, are also required, because similar-
ity scores between attribute values are calculated during the
build phase rather than the query phase. For each record r
in data set D, its identifier r.0 is added to the inverted index
list in RI that corresponds to attribute value r.¢ (line 6). It
is important to note that all the following steps (lines 8 to
19) only need to be done if the attribute value r.i has not
been processed before (line 7). This will significantly reduce
the computational effort if attribute values appear in a data
set several times, which is the case for attributes that have a
Zipf-like or exponential distribution of values, as is common
for example for attributes that contain names [9].

For a new attribute value r.i that has so far not been in-
dexed, the first step (lines 8 to 11) is to calculate its encoding
c and to retrieve all other values in its block. The new value
is then added into the inverted index list b of this block,
and the updated list is stored back into the block index BI.
The similarities between the new attribute value r.: and all
attribute values v already in this block are calculated next
(line 13), and inserted into both the new value’s similarity
list si (line 15) and the other value’s list oi (line 17). Fi-
nally, the similarity list si of the new value r.i is added to
the similarity index SI in line 19.

The query phase using the similarity-aware index is de-
scribed in Algorithm 4. During the query process an ac-
cumulator M, a data structure that contains record identi-

Algorithm 3: Similarity-Aware Indexr — Build
Input:

- Data set: D

- Number of attributes of D used: n

- Encoding functions: E;,¢t=1...n

- Similarity comparison functions: S;,i =1...n
Output:

- Record identifier index: RI

- Similarity index: SI

- Block index: BI

1: Initialise RI = {}

2: Initialise SI = {}

3: Initialise BI = {}

4: for r € D:

9: fori=1...n:

6: Append r.0 to RI[r.i]

T: if r.s ¢ SI:

8: ¢ =E;(r.i)

9: b = BI[(]

10: Append r.i to b

11: BI[c]=b

12: Initialise inverted index list si = ()
13: for v € b:

14: s = Si(r.i,v)

15: Append (v, s) to si
16: oi = SI[v]

17: Append (r.i, s) to oi
18: SI[v] = oi

19: SI[r.i] = si

fiers and their (partial) similarities with the query record,
is generated [29, 32]. Two possible cases can occur for each
attribute of the query record q. The first case occurs when
an attribute value is available in the index, and its similari-
ties with other attribute values have been calculated in the
build phase. In this case, in lines 4 to 6, the identifiers r.0
of all other records that have the same attribute value are
retrieved and their similarities (exactly 1, as they have the
same attribute value) are added into the accumulator M.
A new element for record identifier r.0 will be added to the
accumulator if it doesn’t exist. Next, all other attribute val-
ues in the same block and their similarities with the query
attribute value are retrieved from the similarity index SI
(line 7). For each of these values, their record identifiers
are retrieved from the record identifier index RI, and their
similarities are added into the accumulator in line 11.

The second case occurs when an attribute value in the
query record q is not available in the index, and thus the
similarities between this value and other attribute values
need to be calculated (lines 13 to 19). This is similar to
the query phase of the standard blocking index. First, in
lines 13 and 14, the encoding for this unknown attribute
value is calculated, and then all records in its corresponding
block are retrieved from the block index BI. In lines 16
and 17, the similarities between the attribute value from the
query record and each of the other records in the block are
calculated, and the record identifiers of all corresponding
records are retrieved from the record identifier index RI.
The accumulator M is then updated in line 19 for each of
these records. Finally, in line 20, the accumulator is sorted
such that the largest similarities are at the beginning.

Algorithm 4: Similarity-Aware Index — Query
Input:

- Query record: q

- Number of attributes of D used: n

- Record identifier index: RI

- Similarity index: SI

- Block index: BI

- Encoding functions: E;,¢t=1...n

- Similarity comparison functions: S;;i=1...n
Output:

- Ranked list of matches: M

1 Initialise M = ()

2 fori=1...n:

3 if q.i € RI: // Case 1
4 ri = RI[q.i]

5: for r.0 € ri:

6: M[r.0] = M[r.0] + 1.0

7 si = SI[r.i]

8: for (r.i,s) € si:

9: ri = RI|r.q]

10: for r.0 € ri:

11: Mr.0] = M[r.0] + s

12: else: // Case 2
13: ¢ = E;i(q.q)

14: b = BI|¢]

15 for v € b:

16: s = Si(q.i,v)

17: ri = RI[v]

18: for r.0 € ri:

19: Mr.0] = M[r.0] + s

20: Sort M according to similarities (largest first)

The overall efficiency of the similarity-aware index de-
pends upon how many attribute values of the query record
are already stored in the index (in which case no similarity
calculations need to be performed) compared to how many
are new. With increased size of the data set D, and es-
pecially as D is covering larger portions of a population,
one would assume that a larger portion of values would be
available in the index, thereby improving the efficiency of
this index approach. In Section 4 this assumption will be
evaluated experimentally.

3.3 Optimisations

A variety of optimisation approaches have been developed
for inverted index techniques [3, 29, 32]. These approaches
apply compression to reduce the amount of memory required
by the index data structure, sorting of the inverted index
lists, and filtering of candidate records that are guaranteed
not to be in the top ranked matches.

Currently, two such optimisation techniques are imple-
mented in the two index approaches presented in this pa-
per. The first is a minimum similarity threshold, tpmin (with
0 < tmin < 1). Within the query phase of standard block-
ing, this threshold is used together with the overall mini-
mum threshold (discussed below) to reduce the number of
matches to be stored in the ranked match list M. Similari-
ties, as calculated in line 13 of Algorithm 2, are not added to
the overall similarity s of two records if they are below t,in .
Within the similarity-aware index, the minimum threshold
tmin 1s used in the build phase to only store similarities be-

Given name Surname Suburb name Postcode
Number of unique values 78,386 404,642 13,109 2632
Number of values with count 1 7116 193,437 931 18

John (149,317)
Peter (116,985)

Six most frequent values
(and their counts)

Stuith (65,243)
Jones (32,234)

David (101,859) | Williams (31,647) Croydon (15,556 | 4740 (23,981)
Robert (89,564) Brown (31,024) | Port Macquarie (15,499) | 2250 (23,454)
Michael (89,222) Wilson (26,940) Reservoir (14,784) | 2170 (22,726)

Margaret (69,165) Taylor (26,044) | Glen Waverley (14,756) | 4870 (21,639)

Toowoomba (29,127)
Frankston (18,856)

1350 (35,129)
4670 (24,701)

Table 1: Characteristics of the data set used for experiments.

tween attribute values that are above t,,:,. Specifically, lines
15 to 18 in Algorithm 3 are only executed if the similarity
s, as calculated in line 14, is larger than t,,:». Not storing
lower similarities will reduce the memory requirements of
the similarity-aware index, and also speed-up the matching
time during the query phase, because the inverted index lists
in the similarity index SI will be shorter.

The second optimisation is an overall minimum thresh-
old, Trin, with 0 < Tpin < n, and n being the number
of record attributes that are used in the entity resolution
process. Within the standard blocking query phase, this
threshold can be used in line 14 of Algorithm 2 to only ap-
pend record identifiers to M that have a summed similarity
8 > Tynin. This will reduce the size of the list of matches M
and thus reduce the time needed to sort M.

Within the query phase of the similarity-aware index, Tin
is used to reduce the growth of the accumulator M in lines
6, 11 and 19 of Algorithm 4. Assume n attributes are being
compared, resulting in a summed similarity (n X tmin) <
s < n for each compared record pair, with only similarities
between individual attribute values above t,,;, being stored
in the index. When calculating the total similarity between
a query record q and the records stored in the index, line
2 of Algorithm 4 loops over the n attributes used for the
matching. With an overall threshold Tinin < n, a phase
threshold, p, can be calculated as p = [n — Thnin|. As long
as the loop counter ¢ < p, all attribute similarities need to
be added into M, because potentially any new partial match
can reach T),in. However, once loop counter ¢ > p, no new
record identifiers (and their similarities) need to be added
to the accumulator, because the total similarity for these
records cannot reach T7,;,. For example, assume there are
four attributes to be used in the entity resolution process
(n =4) and Tyin = 2.5, so p = [4 —2.5] = 2. For the first
two attributes (i = 1,2), new record identifiers are added
into the accumulator. However, for the third and fourth at-
tributes (¢ = 3,4), no new record identifiers will be added to
the accumulator because even if such a new record has an
exact match with the query record in both attributes three
and four, the maximum total similarity of this record will
be s = 2.0, which is below T),in. This optimisation can
significantly reduce the final length of the accumulator.

For the standard blocking approach, a further optimisa-
tion in the query phase can be implemented if only the top
matching record is (or records are) of interest. Rather than
storing all matches (and their similarities) in the match list
M (line 14 in Algorithm 2), and having to sort them before
returning the ranked list (line 15), only the match(es) with
the highest similarity need to be stored in M, and no sorting
will be required.

4. EXPERIMENTAL EVALUATION

The proposed similarity-aware index approach is experi-
mentally evaluated and compared with the standard block-
ing approach. The issues of interest were the time used to
build the index and query it with records of varying quality,
and the accuracy of the retrieved matches. The experiments
were conducted on a Linux server containing two Intel Xeon
quad-core 64-bit CPUs with 2.33 GHz clock frequency, 8 Gi-
gabytes of main memory, and two SAS drives (446 Gigabytes
in total). No other users were logged onto this machine, and
no other jobs were run during the experiments.

A large real-world data set containing 6,917,514 records
was used for the presented experiments. It contained sur-
names, postcodes and suburb (town) names sourced from
an Australian telephone directory from 2002 (Australia On
Disc'). This data corresponds to all entries in Australian
telephone books in late 2002, and thus has characteristics
similar to many other real-world data collections used by
Australian organisations. Additionally, a list containing
about 80,000 different given names and their frequencies of
occurrence, supplied to the authors by a major Australian
government agency, was used to generate and add a given
name attribute. For each record in the data set, a given
name was randomly selected (with replacement) from the
given name list according to its frequency, and appended
to the record. As such, this is a typical example data set
that contains a large number of unique and cleaned entities,
with similar data being collected by many other private and
public sector organisations in many countries.

Table 1 provides an overview of the resulting data set used
in the presented experiments. As expected, all the name
attributes exhibit a strongly skewed distribution of values,
with a small number of very common values and a large num-
ber of very rare values. For example, 40% of all surnames
only appear once in the data set, while the top five most
frequent surnames account for nearly 7% of the population.
Only postcodes are more uniformly distributed, which is due
to the process by Australia Post to split populated regions
into similar sized postcode areas.

Both index approaches were implemented in Python, with
version 2.5.2 used for the experiments. For the encoding
functions E;, used to block the test data sets, the Double-
Metaphone [7] phonetic encoding was applied on the three
name attributes, while for the postcode attribute the block-
ing was based on selecting the last three digits (i.e. all records
where the postcode value has the same last three digits were
inserted into the same block). For the comparison functions,
C;, the Winkler [7] approximate string comparison was used
for the three name attributes, while for postcodes the sim-

"http://www.australiaondisc.com

Build time

Memory usage

Average query time

"Standard Blocking —— ' 8000 [
Sim-Aware Index

1000
4000 -

Seconds
MBytes

100 | o+

/// " o

"Standard Blocking ——
Sim-Aware Index

"Standard Blocking —|—
Sim-Aware Index
10 -
_—+ "
-
— B
. e 1 +
2
s
3
@
[
0.1
0.01
4,842,260 6,917,514 691,751 2,767,006 4,842,260 6.917514

0 .
691,751 2,767,006
Number of records in data set

. . 400 H .
4,842,260 6,917,514 691,751 2,767,006
Number of records in data set

Number of records in data set

Figure 4: Summary experimental results: Build time (left); memory usage (middle); and average query time
per record (right). Note that all three graphs are shown with a logarithmic y-axis scale.

ilarity was calculated by counting the number of matching
digits divided by four. For example, the similarity of the
two postcode values ‘2346’ and 2356’ is 0.75.

In order to evaluate the scalability of the similarity-aware
index, test data sets of four different sizes were built contain-
ing 10% (691,710), 40% (2,767,006), 70% (4,842,260) and
100% of the records in the original data set. The full data
set was split into ten data sets of equal size. Next, from each
of these ten data sets, ten query records were randomly se-
lected (giving one hundred base query records in total). To
assess the matching quality, five query sets of one hundred
records each were created by transforming the hundred base
records in different ways. The first set of hundred records
were made by exactly copying the base query records. In the
second set one modification was inserted into one of the four
attributes in each record (a different attribute in each record
in a round robin fashion); in the third set two modifications
were inserted; in the fourth set three modifications, and in
the fifth query set all four attribute values were modified in
each record. The modifications, while done manually, were
based on the authors’ experience with real-world name data.
They mostly corresponded to common phonetic and typo-
graphical variations, for example changes such as ‘Dickson’
to ‘Dixon’; nickname substitutions like ‘Robert’ to ‘Bob’, or
simple character inserts, deletes, substitutions or transposi-
tions. For postcodes, only substitutions and transpositions
of digits were applied, such as ‘2607’ changed into ‘2601°.

Scalability was evaluated by building an index for each
test data set (each containing 10%, 40%, 70%, or 100% of
the records in the full data set) and then querying it with
each of the five query sets. The time used to build each
index was recorded, as well as the total amount of mem-
ory used by that index. During the query phase, the time
for querying each record was measured, as well as whether
the top ranked returned record was a true match (i.e. if the
record identifier of the best returned match was the same as
the record identifier of the query record). For the similarity-
aware index, the number of case 1 and case 2 matches (as
discussed in Section 3.2 and shown in Algorithm 4) was also
recorded. While test runs were conducted with both op-
timisations turned off and on, due to space limitations of
this paper only results with activated optimisations are re-
ported. The minimum threshold ¢,,;, was set to 0.55 and
the overall minimum threshold T, to 2.0. These values
were selected such that the experiment on the full database
for the similarity-aware index still fitted into the 8 Gigabytes
main memory available on the experimental platform.

For the experiments with the smaller test data sets (less
than 100% of the full data set), each experiment was con-
ducted ten times (with component 10% data sets selected
in a round robin fashion) and all results averaged, while for
the full database an experiment was only run once.

5. RESULTSAND DISCUSSION

A summary of the experimental results is shown in Fig-
ure 4. As expected, building a standard blocking index is
significantly faster than building a similarity-aware index, by
a factor ranging from 16 times for the smallest test data set
to 20 times when building the index for the largest test data
set. The main reason for this is that during the build phase
of the standard blocking index no similarity calculations be-
tween attribute values are performed. The build time for
both index approaches however does grow sub-linearly with
the size of the data set. For standard blocking, this is be-
cause the encodings of attribute values are cached (line 6 in
Algorithm 1), so the more records are loaded and inserted
into the index, the more often cached encoding values can be
retrieved and fewer need to be calculated. For the similarity-
aware index, the calculation of similarities between attribute
values and inserting them into the similarity and blocking
indices ST and BI again only needs to be done the first time
a new, previously unseen attribute value occurs.

Similarly, the amount of memory required by both index
approaches (shown in the middle of Figure 4) grows sub-
linearly with the size of the test data set, because as the
data set grows fewer new attribute values, which need to
be processed and stored, will occur. For the test data sets
used in the experiments, the similarity-aware index required
around 1.8 times as much memory on average as the stan-
dard blocking index. The rate of growth for both build time
and memory requirements depends upon the distribution of
attribute values in the data set to be indexed. Given that
many real-world databases contain attributes that follow a
Zipt-like or exponential distribution, such as names [9], a
sub-linear growth can be expected in practice. A theoretical
analysis of the growth factor is one avenue of future work
planned by the authors.

One of the most important aspects of the novel index ap-
proach presented in this paper is its fast query matching
time. As can be seen in the right graph in Figure 4, the
novel approach achieves average query times below 0.1 sec-
onds even for the index that is based on the full test data set
containing nearly 7 million records. Over the different test

Accuracy for data set with 6,917,514 records

120 T T T
Standard blocking ——
Sim-Aware Index —<—
100 - R
80 R
>
Q
I
5 60 R
Q
Q
<
40 t 1
20 X b
0 L L L L L
0 1 2 3 4

Number of modifications per record

Figure 5: Query matching accuracy for the full test
data set for varying number of modifications per
record. Similar accuracy results were achieved for
the smaller test data sets.

[Given name | Surname [Suburb name |

Gail (g400) | Billman (b455) | Boystown (b235)
Gayle (g400) | Pillman (p455) | Boydtown (b350)
0.827 0.905 0.942

Figure 6: An example record pair that will be missed
by the similarity-aware index approach because of
different encoding values, but will be compared by
standard blocking. The values in brackets are the
corresponding Soundex encodings, and the similari-
ties (bottom row) were calculated using the Winkler
approximate string comparison function [7].

data sets (10%, 40%, 70% and 100% of the full data set size),
the query time for the similarity-aware index is between 140
and 150 times faster than standard blocking. However, for
both index approaches, the query time currently increases
linearly with the size of the indexed data sets. Improving
upon this is a current effort by the authors.

The query matching accuracy results are shown in Fig-
ure 5 for the largest test data set with varying number of
modifications per record. As can be seen for both index ap-
proaches, matching accuracy gets lower with an increased
number of modifications. This is what one would expect,
as with more modifications per record the likelihood that
another record (with similar attribute values) becomes the
best matching record is increased.

The accuracy for the similarity-aware index is higher com-
pared to standard blocking for the query sets with one and
two modifications, but then drops more rapidly for the query
sets with three and four modifications. This is due to the
requirement of the similarity-aware index that the values
of all attributes for a record pair need to be in the same
block in order to have their similarity added to the accumu-
lator. If two attribute values are in different blocks, then
the corresponding similarity, which can be high, will not be
considered. For standard blocking, on the other hand, only
one pair of attribute values needs to be in the same block in
order that two records are being compared.

10% (691K)
40% (2767K) B |
70% (4842K) NN
100% (6918K) -

100%

80%

60%

Query case 1

40%

20%

Number of modifications per record

Figure 7: Proportion of case 1 (query attribute value
is available in similarity-aware index) to case 1 plus
case 2 (new unknown attribute value) for varying
number of modifications per record.

This is illustrated in Figure 6 with two example records
that have an overall similarity of 2.674 out of a maximum of
3.0. These records would be compared by standard blocking
because at least one attribute (given name) contains values
that are in the same block; whereas they would not be com-
pared by the similarity-aware index, because two of the three
attributes (surname and suburb name) have different block-
ing key values and thus the corresponding similarities would
not be added into the accumulator.

Although this effect may lead to standard blocking having
higher accuracy on more heavily modified query records, it
can also lead to lower accuracy for standard blocking com-
pared to the similarity-aware index when query records are
of relatively good quality, as can be seen in Figure 5 for the
query sets with one or two modifications only. Improving
the similarity-aware index and achieving equal or even bet-
ter matching accuracy than standard blocking in all cases is
one of the current research efforts by the authors.

Finally, Figure 7 shows the proportion of query attribute
values that were available in the similarity-aware index (case
1) and thus no similarities had to be calculated at query
time. As can be seen, the more modifications a query record
had, the more likely the modified attribute values were not
in the index and thus their similarities had to be calculated.
However, even with modifications in all four query record at-
tributes, more than 40% of all attribute values were available
in the index and thus their similarities were pre-calculated.
This results shows the efficiency of the similarity-aware in-
dex in speeding up query matching by pre-computing simi-
larities between records while the index is built.

6. CONCLUSIONSAND FUTURE WORK

In this paper, a novel index approach for real-time entity
resolution has been presented and evaluated experimentally
on a large real-world data set. The experiments showed that
this approach can match query records more than two orders
of magnitude faster than a basic standard index approach
that is traditionally used for entity resolution. The novel
approach requires less than double the amount of memory
of the standard index, but building the index can take up-to
twenty times longer.

For query records that do not contain too many varia-
tions and errors, the accuracy of the novel index approach
can be better than the standard blocking approach. How-
ever, when most or all attribute values in a query record
contains variations and errors, then matching accuracy can
drop significantly. Improving upon this drawback is one of
the major avenues for additional work on this novel index ap-
proach. Other areas of future research include a theoretical
analysis of the complexity and scalability of this index ap-
proach, improving the query matching time, and conducting
experiments on a variety of other real-world databases.

To the best of the authors’ knowledge, the similarity-
aware inverted index presented in this paper is the first ap-
proach aimed at developing real-time entity resolution on
large databases that combines approaches from information
retrieval with traditional entity resolution techniques.

1.
(1]

2]

=

[10]

11]

[12]

(13]

(14]

[15]

(16]

REFERENCES
A. Aizawa and K. Oyama. A fast linkage detection scheme
for multi-source information integration. In WIRI’05,
Tokyo, 2005.
R. Baxter, P. Christen, and T. Churches. A comparison of
fast blocking methods for record linkage. In ACM
SIGKDD’03 Workshop on Data Cleaning, Record Linkage
and Object Consolidation, Washington DC, 2003.
R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW’07, Banff, Canada, 2007.
A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained
gram-based indexing for efficient approximate string search.
In IEEE ICDE’09, pages 604-615, Shanghai, China, 2009.
I. Bhattacharya and L. Getoor. Query-time entity
resolution. Journal of Artificial Intelligence Research,
30:621-657, 2007.
M. Celikik and H. Bast. Fast error-tolerant search on very
large texts. In ACM Symposium on Applied Computing,
pages 1724-1731, Honolulu, Hawaii, 2009.
P. Christen. A comparison of personal name matching:
Techniques and practical issues. In Workshop on Mining
Complex Data, held at IEEE ICDM’06, Hong Kong, 2006.
P. Christen. Automatic record linkage using seeded nearest
neighbour and support vector machine classification. In
ACM SIGKDD’08, pages 151-159, Las Vegas, 2008.
P. Christen and R. Gayler. Towards scalable real-time
entity resolution using a similarity-aware inverted index
approach. In AusDM’08, CRPIT vol. 87, Glenelg,
Australia, 2008.
W. Cohen, P. Ravikumar, and S. Fienberg. A comparison
of string distance metrics for name-matching tasks. In
IJCAI’08 Workshop on Information Integration on the
Web (IIWeb), pages 73-78, Acapulco, 2003.
W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In
ACM SIGKDD’02, pages 475-480, Edmonton, Canada,
2002.
M. Elfeky, V. Verykios, and A. Elmagarmid. TAILOR: A
record linkage toolbox. In IFEE ICDE’02, pages 17-28,
San Jose, 2002.
A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate
record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19(1):1-16, 2007.
I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Society,
64(328):1183-1210, 1969.
L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB’01, pages
491-500, Roma, Italy, 2001.
L. Gu and R. Baxter. Decision models for record linkage. In
Selected Papers from AusDM, Springer LNCS 3755, pages

(17]

18]

[19]

20]

21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

29]

(30]

31]

32]

146-160, 2006.

M. Hadjieleftheriou, A. Chandel, N. Koudas, and

D. Srivastava. Fast indexes and algorithms for set similarity
selection queries. In IEEE ICDE’08, pages 267-276,
Cancun, Mexico, 2008.

M. A. Hernandez and S. J. Stolfo. The merge/purge
problem for large databases. In ACM SIGMOD’95, San
Jose, 1995.

L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in
large data sets. In DASFAA’03, pages 137-146, Tokyo,
2003.

D. Kalashnikov and S. Mehrotra. Domain-independent data
cleaning via analysis of entity-relationship graph. ACM
Transactions on Database Systems, 31(2):716-767, 2006.
C. Kelman, J. Bass, and D. Holman. Research use of linked
health data — A best practice protocol. Aust NZ Journal of
Public Health, 26:251-255, 2002.

M. Kumar, S. Moriah, and S. Krishnamoorthy.
Performance evaluation of similarity join for real time
information integration. In Bangalore Annual Compute
Conference, Bangalore, India, 2009.

C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In IEEE
ICDE’08, pages 257-266, Cancun, Mexico, 2008.

C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB’07, pages 303-314,
Vienna, Austria, 2007.

X. Liu, G. Li, J. Feng, and L. Zhou. Effective indices for
efficient approximate string search and similarity join. In
IEEE WAIM’08, pages 127-134, 2008.

E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4), 2000.

M. Weis and F. Naumann. Space and time scalability of
duplicate detection in graph data. Technical Report 25,
Hasso-Plattner-Institut, University of Potsdam, Germany,
2007.

W. E. Winkler. Overview of record linkage and current
research directions. Technical Report RR2006/02, US
Bureau of the Census, 2006.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes:
Compressing and indexing documents and images. Morgan
Kaufmann, 2nd edition, 1999.

C. Xiao, W. Wang, X. Lin, and J. Yu. Efficient similarity
joins for near duplicate detection. In WWW?’08, pages
131-140, Beijing, 2008.

X. Yin, J. Han, and P. Yu. Linkclus: Efficient clustering via
heterogeneous semantic links. In VLDB’06, pages 427-438,
Seoul, Korea, 2006.

J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), 2006.

