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ABSTRACTEntity resolution, also known as data mathing or reordlinkage, is the task of identifying reords from several data-bases that refer to the same entities. Traditionally, entityresolution has been applied on stati databases, for exampleto �nd reords that relate to the same patient in di�erenthealth databases. Most researh in entity resolution has on-entrated on either improving the mathing quality, makingentity resolution salable to very large databases, or redu-ing the manual e�orts required throughout the resolutionproess. Inreasingly, however, many organisations are faedwith the hallenge of having large databases that ontain en-tities, and a stream of query reords that have to be mathedwith these databases in real-time, suh that the best math-ing reords are retrieved. Example appliations inlude on-line law enforement and national seurity databases, publihealth surveillane and emergeny response systems, �nan-ial veri�ation systems, and online retail stores.In this paper, a novel inverted index based approah forreal-time entity resolution is presented. At build time, sim-ilarities between attribute values are omputed and storedto support the fast mathing of reords at query time. Thepresented approah di�ers from other reently developedapproahes to approximate querying, in that it allows anysimilarity omparison funtion, and any `bloking' funtion,both possibly domain spei�, to be inorporated.Experimental results on a large real-world database indi-ate that the total size of all data strutures of this novel in-dex approah grows sub-linearly with the size of the database,and that it allows mathing of query reords in sub-seondtime, more than two orders of magnitude faster than a tra-ditional entity resolution index approah.
Categories and Subject DescriptorsH.3.3 [Information Systems℄: Information Storage andRetrieval|Information Searh and Retrieval ; H.3.1 [Infor-mation Systems℄: Information Storage and Retrieval|Content Analysis and Indexing.
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1. INTRODUCTIONInreasingly, many appliations that deal with data man-agement and analysis require that data from di�erent souresis mathed and aggregated before it an be used for furtherproessing. The aim of data mathing is to identify andmath all reords that refer to the same real world entities.These entities an, for example, be ustomers, patients, taxpayers, travellers, students, businesses, onsumer produts,or bibliographi itations. While statistiians and health re-searhers ommonly name the task of mathing reords asdata or reord linkage, omputer sientists and the databaseand business oriented IT ommunities speak of entity reso-lution, data or �eld mathing, data leansing, data inte-gration, dupliate detetion, data srubbing, list washing,objet identi�ation, or merge/purge proessing.Traditionally, tehniques for mathing reords that orre-spond to the same entities have been applied in the healthsetor and within the ensus [14, 21, 28℄. Inreasingly, how-ever, entity resolution is now being used within and be-tween many organisations in both the publi and privatesetors in a large variety of appliation domains. Examplesinlude �nding dupliates in business mailing lists, biblio-graphi databases (digital libraries) and online stores; rimeand fraud detetion within �nane and insurane ompaniesas well as government agenies; ompilation of longitudinaldata for soial researh; or the assembly of terrorism wathlists for improved national seurity.Beause real-world data rarely ontains unique entity iden-ti�ers aross all the databases to be mathed, most entityresolution approahes ompare reords using the informa-tion available in the databases that partially identify enti-ties, suh as their names, address details, or dates of birth.For eah of the partially identifying attributes ompared be-tween two reords, a similarity is alulated. These simi-larities are then used olletively to lassify eah omparedreord pair as a math, non-math, or possible math [14, 16,28℄. The mathing proess is often hallenged beause realworld data is dirty, i.e. ontains missing or out-of-date at-tribute values, variations and errors, values that are swappedbetween attributes, or data that is oded di�erently [26℄.



Traditional entity resolution approahes assume that twoor more stati databases are to be mathed in bath mode,in order to produe a new mathed data set. Inreasingly,however, entity resolution is required in an online, real-timeenvironment, where query reords have to be mathed withone or several large databases, and the most similar reordsare to be retrieved. One example appliation of urrentinterest is health surveillane and emergeny response sys-tems, where the aim is to �nd all reords that relate to aertain individual, for example a patient showing symptomsof an infetious disease, from a variety of databases. Inorder to �nd other individuals that might have been in on-tat with that patient, a searh needs to be onduted inan airline database, to �nd the details of other people whohave travelled with the patient; the database of the patient'semployer, to �nd potentially infeted o-workers; the shooldatabase of the patient's hildren, and so on. In many ases,the searh for mathing reords will rely upon personal de-tails, like the name, address and date of birth of the patient,and thus be subjet to errors and variations, as well as out-of-date information. Aurate and real-time approximatemathing tehniques are required for suh situations.The appliation domain of spei� interest to the authorsis onsumer �nanial servies. Entity resolution is inreas-ingly important in this domain as suh servies are beingdelivered remotely. One a onsumer has established an a-ount with a �nanial institution, she or he is normally re-quired to use an unambiguous identity token, like an aountnumber. However, the initial establishment of a onsumer'sidentity is diÆult. The normal approah taken is entity res-olution of identifying information, as provided by the on-sumer, against one or more databases of related identify-ing information. The information provided is often subjetto variability and error, requiring an approximate math-ing proess. As this proess will be driven by automatedsystems that require sub-seond responses, automated andaurate mathing, salability, and real-time entity resolu-tion are major tehnial hallenges for suh systems.This paper presents work that is aimed towards the de-velopment of suh systems. The basi idea of ahieving real-time entity resolution is to ombine similarity alulationsused for approximate mathing with inverted index teh-niques that are ommonly used in the �eld of informationretrieval, for example for large-sale Web searh engines [3,29, 32℄. In the past deade, with the popularity and om-merial suess of suh searh engines, a large amount ofresearh and development on optimisation tehniques hasbeen onduted in this �eld [3, 32℄. Some of these optimisa-tion tehniques are used in the work presented in this paperto failitate real-time entity resolution of large databases.The ontributions of this paper are a novel index approahsuitable for real-time entity resolution. This approah signif-iantly improves the mathing speed over a similar approahreently presented by two of the authors [9℄. Compared tothis earlier approah, whih was between two and one hun-dred times faster than a traditional index approah for entityresolution, the novel tehnique presented here is onsistentlyover two orders of magnitude faster than the traditional in-dex approah. An important aspet of the novel approahpresented here is that it allows any similarity omparisonfuntion, and any enoding funtion for `bloking' [2℄, bothpossibly domain spei�, to be inorporated. Most otherapproximate mathing approahes developed in reent times

are limited to spei� similarity funtions (suh as edit dis-tane, or Jaard or osine similarity), and therefore maynot be suitable for entity resolution in appliations that re-quire spei� enoding and omparison funtions.The remainder of this paper is strutured as follows. Next,in Setion 2, an overview of related researh is provided. Theproposed novel index approah for real-time entity resolutionis then presented in Setion 3, and experimentally evaluatedin Setion 4 using a large real-world database. The results ofthese experiments are disussed in Setion 5, and the paperis onluded with an outlook to future work in Setion 6.
2. RELATED WORKResearh into entity resolution is being onduted in vari-ous domains, inluding data mining, mahine learning, infor-mation retrieval, arti�ial intelligene, digital libraries, in-formation systems, statistis, and the database ommunity.Several reent overview artiles are available [13, 28℄. Entityresolution tehniques an broadly be lassi�ed into learningapproahes [5, 8, 10, 11, 12℄, or database and graph-basedmethods [20, 27, 31℄. So far, most researh in this area hasfoused on the quality of the mathing proess, i.e. the a-uray of lassifying the ompared pairs or groups of reordsinto mathes and non-mathes. The hallenges of salabilityto very large databases and real-time mathing have so faronly reeived limited attention.For the traditional mathing of (large) stati databases,indexing is important, beause potentially every reord fromone database needs to be ompared with all reords from theother database, resulting in a proess that is of quadratiomplexity in the sizes of the databases to be mathed. In-dexing tehniques, also known as `bloking', are thereforeommonly applied to redue the number of omparisons tobe onduted. In the standard bloking approah [2℄, whihwill be presented in detail in Setion 3.1 below, the databasesare split into bloks aording to some riteria, and onlyreords within the orresponding blok are ompared witheah other. A bloking riterion, also alled a bloking key,might be based on a single reord attribute (that should on-tain values of high quality), or based on the onatenationof values from several attributes. In order to overome theproblem of variations and errors in real-world data, one aimis to group similar sounding values into the same blok. Thisan be aomplished by using phoneti enoding funtions,suh as Soundex, NYSIIS or Double-Metaphone [7℄. Thesefuntions, whih are often language or domain spei�, areapplied when generating the bloking keys. Examples ofsuh phoneti enodings are shown in Figure 1.The standard bloking approah has two major draw-baks. First, the size of the generated bloks depends uponthe frequeny distribution of the attribute values used inthe bloking key. For example, using surname values in abloking key will likely generate a very large blok ontain-ing the ommon surname `Smith', resulting in a very largenumber of omparisons that need to be onduted for thisblok. Seond, if a value in an attribute used as a blokingkey ontains errors or variations that result in a di�erent en-oding, then the orresponding reord will be inserted into adi�erent blok, and potentially true mathes will be missed.This problem is normally overome, at inreased omputa-tional osts, by having two or more di�erent bloking keysbased on di�erent reord attributes.



Various alternative bloking approahes have been devel-oped in reent times, aimed at improving the salabilityof the mathing proess and inreasing mathing auray.With the sorted neighbourhood approah [18℄, the databasesare sorted aording to the values in the bloking key, and a�xed-size window is moved over the databases. All reordswithin the urrent window will then be ompared with eahother. An approah related to this is to insert the blokingkey values and their suÆxes into a suÆx array based in-verted index [1℄, and to then generate bloks from all reordsthat have the same suÆx value. With this approah, eahreord will be inserted into several bloks, depending uponthe length of its suÆx values. Another approah is to allowfor `fuzzy' bloking by onverting bloking key values into q-gram lists and, using sub-lists of these q-gram lists, to inserteah reord into several bloks aording to a Jaard-basedsimilarity threshold [2℄. While this approah an improvethe auray of the resulting mathing, its omputationalomplexity (a large number of q-gram sub-lists need to begenerated) makes it unsuitable for large databases. Anotheridea for indexing is to apply lustering by using a om-putationally eÆient similarity measure to generate high-dimensional overlapping lusters (alled `anopies'), and tothen extrat bloks of reords from these lusters [11℄. Eahreord will be inserted into several lusters and thus severalbloks, resulting in higher mathing auray but at higheromputational osts. Another reent approah is to mapbloking key values into a high-dimensional Eulidean spaesuh that the distanes between all pairs of strings are pre-served [19℄. The reords in a blok then orrespond to allobjets in this spae that are similar to eah other.Conduting entity resolution not on stati databases butat query time has so far reeived very limited attention, withonly two reent publiations presenting approahes spei�to suh situations. The authors have earlier shown that us-ing an inverted index approah an signi�antly speed-upthe query mathing proess [9℄. A seond approah is basedon unsupervised relational lustering, whih assumes thatthe data to be mathed ontains relational information thatexpliitly links di�erent types of entities [5℄. The idea of thisapproah is to utilise the relational links between reordsto improve the entity resolution proess. At query time,mathing is onduted in an iterative fashion on a databasethat ontains unresolved entities. While this approah anahieve muh better mathing auray ompared to tra-ditional entity resolution approahes (that only onsider at-tribute similarities), it has muh higher omputational osts.Mathing times of around 30 seonds for one query reordon a database ontaining around 800; 000 reords have beenreported [5℄. This approah is therefore impratial for real-time entity resolution on very large databases.A large body of work has been onduted in the databaseommunity on similarity queries and their salable and ef-�ient implementations [4, 6, 15, 17, 23, 24, 25, 30℄. Manyof the presented approahes optimise indexing and �lteringtehniques for spei� types of similarity measures, suh asedit distane, or q-gram or osine based similarities. Theyalso mainly deal with the situation of either �nding similartuples between a set of query reords and a database table,or two large tables. One real-time similarity join approahbased on a modi�ed trie hash-join has been presented veryreently [22℄. It alulates q-gram similarities, and then ap-plies several �ltering steps to ahieve fast query times.

Thus far, salability to very large databases has not beenaddressed by most reent researh in the area of entity reso-lution, and most publiations in this area have presented ex-perimental results based on only small to medium sized datasets ontaining up to one million reords [5, 20, 27, 31℄. Mostof the reently developed advaned entity resolution teh-niques have a omputational omplexity that makes themimpratial for mathing very large databases that ontainmany million reords. Additionally, most approahes pub-lished so far, with the exeption of two very reent teh-niques [5, 9℄, are assuming the situation of mathing statidatabases in bath mode.
3. INDEXING FOR REAL-TIME ENTITY

RESOLUTIONIndexing, as presented in the previous setion, is requiredfor real-time entity resolution systems to speed-up the math-ing proess by reduing the number of andidate reords thatneed to be mathed with a query reord.The objetive of real-time entity resolution is to matha stream of query reords as quikly as possible to one orseveral (large) databases that ontain reords about existingentities, and potentially to a range of external data souresthat ontain additional information that an be used to ver-ify the mathed entities. The response time for mathinga single query reord has to be as short as possible, ide-ally sub-seond. The mathing approah must failitate ap-proximate mathing and eÆiently sale-up to very largedatabases that ontain many millions of reords. In addi-tion, the mathing should generate a math sore that indi-ates the likelihood that a mathed reord in the databaserefers to the same entity as the query reord.Real-time entity resolution has muh in ommon with thefuntionality of large-sale Web searh engines. However,the databases upon whih entity resolution is ommonly ap-plied do not ontain Web or text douments that inludea large number of terms and thus provide a rih variety offeatures. Rather, these databases are made of struturedreords with well de�ned attributes that often only ontainshort strings or numbers, suh as the personal details of peo-ple (for example name, address, or date of birth values).In this setion, the traditional standard bloking approahto indexing for entity resolution is presented �rst to illustratethe basi ideas of using inverted indexing for entity resolu-tion. Based on this approah, a similarity-aware invertedindex approah that is suitable for real-time entity resolu-tion is then disussed in detail in Setion 3.2. Both indexapproahes are illustrated in Figures 2 and 3.Both index approahes presented here are based on a stan-dard inverted index [32℄, where the keys of the index are(possibly enoded) attribute values, and the orrespondinglists ontain the reord identi�ers of all reords that havethis (enoded) value. Two types of funtion are requiredby both index approahes. First, (phoneti) enoding fun-tions are needed that group similar attribute values together.For string attributes, suh as personal names or street andsuburb names, phoneti enodings like Soundex, NYSIIS orDouble-Metaphone are ommonly used [7℄. Figure 1, for ex-ample, shows the Soundex enodings of eight surname val-ues. As an be seen, this enoding funtion groups the values`smith' and `smyth' into one blok, and `millar', `miller' and`myler' into another. The seond type of funtions required



Reord ID Surname Soundex enodingr1 smith s530r2 miller m460r3 peter p360r4 myler m460r5 smyth s530r6 millar m460r7 smith s530r8 miller m460Figure 1: Example reords with surname values andtheir Soundex enodings, used to illustrate the twoindex approahes in Figures 2 and 3.
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Figure 3: Similarity-aware index resulting from theexample reords from Figure 1. The similarity indexis shown in the top left, the blok index in the middleright, and the reord identi�er index at the bottom.
3.1 Standard BlockingThe basi idea of standard bloking is that eah reord ina database is inserted into a blok aording to the valueof its bloking key [2℄, as illustrated in Figure 2. Enodingfuntions [7℄ are used to group similar attribute values intothe same blok. Eah blok orresponds to an inverted in-dex list, with the key being the (enoded) bloking key value,while the values in the orresponding list are the reord iden-ti�ers of all reords in this blok.Standard bloking is used in this paper beause it is abaseline approah upon whih many other reently devel-oped index approahes for entity resolution an be built.For example, anopy lustering [11℄, suÆx-array bloking [1℄,and the sorted neighbourhood [18℄ approah, as disussed inSetion 2, an all be implemented as extensions to a basiinverted index. Therefore, standard bloking an be seen asthe basi approah for traditional bath-oriented entity res-olution of stati databases. Other index approahes basedon it have higher omputational requirements.The build phase of standard bloking is shown in Algo-rithm 1. The input to this algorithm is a data set D on-taining n attributes that will be used in the entity resolutionproess, and n orresponding enoding funtions, Ei. A ba-si inverted index I, as illustrated in Figure 2, is generated inthe build phase, where reord identi�er values are insertedinto inverted index lists aording to their orrespondingenoded attribute values. This enoding of attribute valuesmight be omputationally expensive. Therefore, in order toprevent repeated alulation of enodings  of attribute val-ues, one an enoding has been omputed, it is stored in theenodings ahe C (line 9) so it an be retrieved quikly forsubsequent ourrenes of the same attribute value r:i (line6). The algorithm returns the inverted index data strutureI ontaining reord identi�ers, r:0, in the inverted index lists,and the ahe C ontaining the omputed enodings. Nosimilarity alulations are performed during the build phaseof this index approah. Note that for simpliity the indexand ahe are shared between attributes. Depending uponthe harateristis of the data to be proessed and mathed,however, it might be favourable to have separate index andahe data strutures per attribute.



Algorithm 1: Standard bloking { BuildInput:- Data set: D- Number of attributes of D used: n- Enoding funtions: Ei; i = 1 : : : nOutput:- Standard bloking index: I- Enodings ahe: C1: Initialise I = fg2: Initialise C = ;3: for r 2 D:4: for i = 1 : : : n:5: if r:i 2 C then:6:  = C[r:i℄7: else:8:  = Ei(r:i)9: C[r:i℄ = 10: Append r:0 to I[℄Algorithm 2 desribes the query phase. As input, it re-quires a query reord q, the inverted index I, the data setD, the enodings ahe C, the number of attributes to beused for entity resolution n, the enoding funtions Ei, andthe omparison funtions used to alulate the similaritiesbetween attribute values, Si. The query phase onsists oftwo steps. First, in lines 1 to 8, the enoded attribute values(possibly available in the enodings ahe C) of the queryreord q are used to retrieve the reord identi�er lists fromthe orresponding bloks in the inverted index I. The unionof these lists, b, ontains all identi�ers of the andidatereords that will be ompared with the query reord in theseond step of the algorithm (lines 9 to 14). The required nattribute values for eah andidate reord r need to be re-trieved from data set D (line 10). An eÆient index on D istherefore required that allows fast aess to a random reordr using its identi�er r:0. For eah andidate reord that isompared with the query reord, a similarity, s, is alulatedover all ompared attributes (line 13) and inserted into thelist of mathes M (line 14). For simpliity a simple sum-ming of s is assumed, however, in reality other aggregationfuntions, like weighted sums, an be applied. Finally, inline 15, the list of mathesM is sorted suh that the largestsimilarity values are at the beginning.
3.2 Similarity-Aware IndexThis index is based on the idea of pre-alulating thesimilarities between all unique attribute value ombinationswithin eah blok one during the build phase, so that thesimilarities do not need to be re-alulated for every queryreord, thereby signi�antly reduing the mathing time re-quired in the query phase.As illustrated in Figure 3, this approah ontains threeinverted index data strutures. The reord identi�er index,RI, is similar to the inverted index I used in standard blok-ing, but the keys of this index are the atual attribute valuesand not their enodings. The blok index, BI, is the datastruture that represents the bloks by having enoded at-tribute values as keys and the atual attribute values thathave the same enoding in the orresponding inverted indexlists. Eah list in this index therefore ontains all attributevalues that are in the same blok. The similarity index, SI,

Algorithm 2: Standard bloking { QueryInput:- Query reord: q- Data set: D- Number of attributes of D used: n- Standard bloking index: I- Enodings ahe: C- Enoding funtions: Ei; i = 1 : : : n- Similarity omparison funtions: Si; i = 1 : : : nOutput:- Ranked list of mathes: M1: Initialise M = ()2: Initialise andidate reord identi�er list b = ()3: for i = 1 : : : n:4: if q:i 2 C then:5:  = C[q:i℄6: else:7:  = Ei(q:i)8: b = b [ I[℄9: for r:0 2 b:10: Retrieve r from D using identi�er r:011: s = 012: for i = 1 : : : n:13: s = s+ Si(r:i;q:i)14: Append (r:0; s) to M15: Sort M aording to similarities (largest �rst)stores the similarities of pairs of attribute values that arein the same blok. Spei�ally, for eah attribute value, itontains a list of other attribute values (in the same blok)and the similarities between these two values.Algorithm 3 desribes how a similarity-aware index is built.The algorithm requires the same input as the build algo-rithm for standard bloking. Additionally, the similarityomparison funtions, Si, are also required, beause similar-ity sores between attribute values are alulated during thebuild phase rather than the query phase. For eah reord rin data setD, its identi�er r:0 is added to the inverted indexlist in RI that orresponds to attribute value r:i (line 6). Itis important to note that all the following steps (lines 8 to19) only need to be done if the attribute value r:i has notbeen proessed before (line 7). This will signi�antly reduethe omputational e�ort if attribute values appear in a dataset several times, whih is the ase for attributes that have aZipf-like or exponential distribution of values, as is ommonfor example for attributes that ontain names [9℄.For a new attribute value r:i that has so far not been in-dexed, the �rst step (lines 8 to 11) is to alulate its enoding and to retrieve all other values in its blok. The new valueis then added into the inverted index list b of this blok,and the updated list is stored bak into the blok index BI.The similarities between the new attribute value r:i and allattribute values v already in this blok are alulated next(line 13), and inserted into both the new value's similaritylist si (line 15) and the other value's list oi (line 17). Fi-nally, the similarity list si of the new value r:i is added tothe similarity index SI in line 19.The query phase using the similarity-aware index is de-sribed in Algorithm 4. During the query proess an a-umulator M, a data struture that ontains reord identi-



Algorithm 3: Similarity-Aware Index { BuildInput:- Data set: D- Number of attributes of D used: n- Enoding funtions: Ei; i = 1 : : : n- Similarity omparison funtions: Si; i = 1 : : : nOutput:- Reord identi�er index: RI- Similarity index: SI- Blok index: BI1: Initialise RI = fg2: Initialise SI = fg3: Initialise BI = fg4: for r 2 D:5: for i = 1 : : : n:6: Append r:0 to RI[r:i℄7: if r:i 62 SI:8:  = Ei(r:i)9: b = BI[℄10: Append r:i to b11: BI[℄ = b12: Initialise inverted index list si = ()13: for v 2 b:14: s = Si(r:i; v)15: Append (v; s) to si16: oi = SI[v℄17: Append (r:i; s) to oi18: SI[v℄ = oi19: SI[r:i℄ = si�ers and their (partial) similarities with the query reord,is generated [29, 32℄. Two possible ases an our for eahattribute of the query reord q. The �rst ase ours whenan attribute value is available in the index, and its similari-ties with other attribute values have been alulated in thebuild phase. In this ase, in lines 4 to 6, the identi�ers r:0of all other reords that have the same attribute value areretrieved and their similarities (exatly 1, as they have thesame attribute value) are added into the aumulator M.A new element for reord identi�er r:0 will be added to theaumulator if it doesn't exist. Next, all other attribute val-ues in the same blok and their similarities with the queryattribute value are retrieved from the similarity index SI(line 7). For eah of these values, their reord identi�ersare retrieved from the reord identi�er index RI, and theirsimilarities are added into the aumulator in line 11.The seond ase ours when an attribute value in thequery reord q is not available in the index, and thus thesimilarities between this value and other attribute valuesneed to be alulated (lines 13 to 19). This is similar tothe query phase of the standard bloking index. First, inlines 13 and 14, the enoding for this unknown attributevalue is alulated, and then all reords in its orrespondingblok are retrieved from the blok index BI. In lines 16and 17, the similarities between the attribute value from thequery reord and eah of the other reords in the blok arealulated, and the reord identi�ers of all orrespondingreords are retrieved from the reord identi�er index RI.The aumulator M is then updated in line 19 for eah ofthese reords. Finally, in line 20, the aumulator is sortedsuh that the largest similarities are at the beginning.

Algorithm 4: Similarity-Aware Index { QueryInput:- Query reord: q- Number of attributes of D used: n- Reord identi�er index: RI- Similarity index: SI- Blok index: BI- Enoding funtions: Ei; i = 1 : : : n- Similarity omparison funtions: Si; i = 1 : : : nOutput:- Ranked list of mathes: M1: Initialise M = ()2: for i = 1 : : : n:3: if q:i 2 RI: // Case 14: ri = RI[q:i℄5: for r:0 2 ri:6: M[r:0℄ =M[r:0℄ + 1:07: si = SI[r:i℄8: for (r:i; s) 2 si:9: ri = RI[r:i℄10: for r:0 2 ri:11: M[r:0℄ =M[r:0℄ + s12: else: // Case 213:  = Ei(q:i)14: b = BI[℄15 for v 2 b:16: s = Si(q:i; v)17: ri = RI[v℄18: for r:0 2 ri:19: M[r:0℄ =M[r:0℄ + s20: Sort M aording to similarities (largest �rst)The overall eÆieny of the similarity-aware index de-pends upon how many attribute values of the query reordare already stored in the index (in whih ase no similarityalulations need to be performed) ompared to how manyare new. With inreased size of the data set D, and es-peially as D is overing larger portions of a population,one would assume that a larger portion of values would beavailable in the index, thereby improving the eÆieny ofthis index approah. In Setion 4 this assumption will beevaluated experimentally.
3.3 OptimisationsA variety of optimisation approahes have been developedfor inverted index tehniques [3, 29, 32℄. These approahesapply ompression to redue the amount of memory requiredby the index data struture, sorting of the inverted indexlists, and �ltering of andidate reords that are guaranteednot to be in the top ranked mathes.Currently, two suh optimisation tehniques are imple-mented in the two index approahes presented in this pa-per. The �rst is a minimum similarity threshold, tmin (with0 < tmin < 1). Within the query phase of standard blok-ing, this threshold is used together with the overall mini-mum threshold (disussed below) to redue the number ofmathes to be stored in the ranked math list M. Similari-ties, as alulated in line 13 of Algorithm 2, are not added tothe overall similarity s of two reords if they are below tmin.Within the similarity-aware index, the minimum thresholdtmin is used in the build phase to only store similarities be-



Given name Surname Suburb name PostodeNumber of unique values 78,386 404,642 13,109 2632Number of values with ount 1 7116 193,437 931 18Six most frequent values John (149,817) Smith (65,243) Toowoomba (29,127) 4350 (35,129)(and their ounts) Peter (116,985) Jones (32,234) Frankston (18,856) 4670 (24,701)David (101,859) Williams (31,647) Croydon (15,556) 4740 (23,981)Robert (89,564) Brown (31,024) Port Maquarie (15,499) 2250 (23,454)Mihael (89,222) Wilson (26,940) Reservoir (14,784) 2170 (22,726)Margaret (69,165) Taylor (26,044) Glen Waverley (14,756) 4870 (21,639)Table 1: Charateristis of the data set used for experiments.tween attribute values that are above tmin. Spei�ally, lines15 to 18 in Algorithm 3 are only exeuted if the similaritys, as alulated in line 14, is larger than tmin. Not storinglower similarities will redue the memory requirements ofthe similarity-aware index, and also speed-up the mathingtime during the query phase, beause the inverted index listsin the similarity index SI will be shorter.The seond optimisation is an overall minimum thresh-old, Tmin, with 0 < Tmin < n, and n being the numberof reord attributes that are used in the entity resolutionproess. Within the standard bloking query phase, thisthreshold an be used in line 14 of Algorithm 2 to only ap-pend reord identi�ers to M that have a summed similaritys � Tmin. This will redue the size of the list of mathes Mand thus redue the time needed to sort M.Within the query phase of the similarity-aware index, Tminis used to redue the growth of the aumulator M in lines6, 11 and 19 of Algorithm 4. Assume n attributes are beingompared, resulting in a summed similarity (n � tmin) �s � n for eah ompared reord pair, with only similaritiesbetween individual attribute values above tmin being storedin the index. When alulating the total similarity betweena query reord q and the reords stored in the index, line2 of Algorithm 4 loops over the n attributes used for themathing. With an overall threshold Tmin < n, a phasethreshold, p, an be alulated as p = dn � Tmine. As longas the loop ounter i � p, all attribute similarities need tobe added intoM, beause potentially any new partial mathan reah Tmin. However, one loop ounter i > p, no newreord identi�ers (and their similarities) need to be addedto the aumulator, beause the total similarity for thesereords annot reah Tmin. For example, assume there arefour attributes to be used in the entity resolution proess(n = 4) and Tmin = 2:5, so p = d4 � 2:5e = 2. For the �rsttwo attributes (i = 1; 2), new reord identi�ers are addedinto the aumulator. However, for the third and fourth at-tributes (i = 3; 4), no new reord identi�ers will be added tothe aumulator beause even if suh a new reord has anexat math with the query reord in both attributes threeand four, the maximum total similarity of this reord willbe s = 2:0, whih is below Tmin. This optimisation ansigni�antly redue the �nal length of the aumulator.For the standard bloking approah, a further optimisa-tion in the query phase an be implemented if only the topmathing reord is (or reords are) of interest. Rather thanstoring all mathes (and their similarities) in the math listM (line 14 in Algorithm 2), and having to sort them beforereturning the ranked list (line 15), only the math(es) withthe highest similarity need to be stored inM, and no sortingwill be required.

4. EXPERIMENTAL EVALUATIONThe proposed similarity-aware index approah is experi-mentally evaluated and ompared with the standard blok-ing approah. The issues of interest were the time used tobuild the index and query it with reords of varying quality,and the auray of the retrieved mathes. The experimentswere onduted on a Linux server ontaining two Intel Xeonquad-ore 64-bit CPUs with 2.33 GHz lok frequeny, 8 Gi-gabytes of main memory, and two SAS drives (446 Gigabytesin total). No other users were logged onto this mahine, andno other jobs were run during the experiments.A large real-world data set ontaining 6,917,514 reordswas used for the presented experiments. It ontained sur-names, postodes and suburb (town) names soured froman Australian telephone diretory from 2002 (Australia OnDis1). This data orresponds to all entries in Australiantelephone books in late 2002, and thus has harateristissimilar to many other real-world data olletions used byAustralian organisations. Additionally, a list ontainingabout 80,000 di�erent given names and their frequenies ofourrene, supplied to the authors by a major Australiangovernment ageny, was used to generate and add a givenname attribute. For eah reord in the data set, a givenname was randomly seleted (with replaement) from thegiven name list aording to its frequeny, and appendedto the reord. As suh, this is a typial example data setthat ontains a large number of unique and leaned entities,with similar data being olleted by many other private andpubli setor organisations in many ountries.Table 1 provides an overview of the resulting data set usedin the presented experiments. As expeted, all the nameattributes exhibit a strongly skewed distribution of values,with a small number of very ommon values and a large num-ber of very rare values. For example, 40% of all surnamesonly appear one in the data set, while the top �ve mostfrequent surnames aount for nearly 7% of the population.Only postodes are more uniformly distributed, whih is dueto the proess by Australia Post to split populated regionsinto similar sized postode areas.Both index approahes were implemented in Python, withversion 2.5.2 used for the experiments. For the enodingfuntions Ei, used to blok the test data sets, the Double-Metaphone [7℄ phoneti enoding was applied on the threename attributes, while for the postode attribute the blok-ing was based on seleting the last three digits (i.e. all reordswhere the postode value has the same last three digits wereinserted into the same blok). For the omparison funtions,Ci, the Winkler [7℄ approximate string omparison was usedfor the three name attributes, while for postodes the sim-1http://www.australiaondis.om
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Figure 4: Summary experimental results: Build time (left); memory usage (middle); and average query timeper reord (right). Note that all three graphs are shown with a logarithmi y-axis sale.ilarity was alulated by ounting the number of mathingdigits divided by four. For example, the similarity of thetwo postode values `2346' and '2356' is 0:75.In order to evaluate the salability of the similarity-awareindex, test data sets of four di�erent sizes were built ontain-ing 10% (691,710), 40% (2,767,006), 70% (4,842,260) and100% of the reords in the original data set. The full dataset was split into ten data sets of equal size. Next, from eahof these ten data sets, ten query reords were randomly se-leted (giving one hundred base query reords in total). Toassess the mathing quality, �ve query sets of one hundredreords eah were reated by transforming the hundred basereords in di�erent ways. The �rst set of hundred reordswere made by exatly opying the base query reords. In theseond set one modi�ation was inserted into one of the fourattributes in eah reord (a di�erent attribute in eah reordin a round robin fashion); in the third set two modi�ationswere inserted; in the fourth set three modi�ations, and inthe �fth query set all four attribute values were modi�ed ineah reord. The modi�ations, while done manually, werebased on the authors' experiene with real-world name data.They mostly orresponded to ommon phoneti and typo-graphial variations, for example hanges suh as `Dikson'to `Dixon', nikname substitutions like `Robert' to `Bob', orsimple harater inserts, deletes, substitutions or transposi-tions. For postodes, only substitutions and transpositionsof digits were applied, suh as `2607' hanged into `2601'.Salability was evaluated by building an index for eahtest data set (eah ontaining 10%, 40%, 70%, or 100% ofthe reords in the full data set) and then querying it witheah of the �ve query sets. The time used to build eahindex was reorded, as well as the total amount of mem-ory used by that index. During the query phase, the timefor querying eah reord was measured, as well as whetherthe top ranked returned reord was a true math (i.e. if thereord identi�er of the best returned math was the same asthe reord identi�er of the query reord). For the similarity-aware index, the number of ase 1 and ase 2 mathes (asdisussed in Setion 3.2 and shown in Algorithm 4) was alsoreorded. While test runs were onduted with both op-timisations turned o� and on, due to spae limitations ofthis paper only results with ativated optimisations are re-ported. The minimum threshold tmin was set to 0:55 andthe overall minimum threshold Tmin to 2:0. These valueswere seleted suh that the experiment on the full databasefor the similarity-aware index still �tted into the 8 Gigabytesmain memory available on the experimental platform.

For the experiments with the smaller test data sets (lessthan 100% of the full data set), eah experiment was on-duted ten times (with omponent 10% data sets seletedin a round robin fashion) and all results averaged, while forthe full database an experiment was only run one.
5. RESULTS AND DISCUSSIONA summary of the experimental results is shown in Fig-ure 4. As expeted, building a standard bloking index issigni�antly faster than building a similarity-aware index, bya fator ranging from 16 times for the smallest test data setto 20 times when building the index for the largest test dataset. The main reason for this is that during the build phaseof the standard bloking index no similarity alulations be-tween attribute values are performed. The build time forboth index approahes however does grow sub-linearly withthe size of the data set. For standard bloking, this is be-ause the enodings of attribute values are ahed (line 6 inAlgorithm 1), so the more reords are loaded and insertedinto the index, the more often ahed enoding values an beretrieved and fewer need to be alulated. For the similarity-aware index, the alulation of similarities between attributevalues and inserting them into the similarity and blokingindies SI and BI again only needs to be done the �rst timea new, previously unseen attribute value ours.Similarly, the amount of memory required by both indexapproahes (shown in the middle of Figure 4) grows sub-linearly with the size of the test data set, beause as thedata set grows fewer new attribute values, whih need tobe proessed and stored, will our. For the test data setsused in the experiments, the similarity-aware index requiredaround 1.8 times as muh memory on average as the stan-dard bloking index. The rate of growth for both build timeand memory requirements depends upon the distribution ofattribute values in the data set to be indexed. Given thatmany real-world databases ontain attributes that follow aZipf-like or exponential distribution, suh as names [9℄, asub-linear growth an be expeted in pratie. A theoretialanalysis of the growth fator is one avenue of future workplanned by the authors.One of the most important aspets of the novel index ap-proah presented in this paper is its fast query mathingtime. As an be seen in the right graph in Figure 4, thenovel approah ahieves average query times below 0:1 se-onds even for the index that is based on the full test data setontaining nearly 7 million reords. Over the di�erent test
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Figure 5: Query mathing auray for the full testdata set for varying number of modi�ations perreord. Similar auray results were ahieved forthe smaller test data sets.Given name Surname Suburb nameGail (g400) Billman (b455) Boystown (b235)Gayle (g400) Pillman (p455) Boydtown (b350)0.827 0.905 0.942Figure 6: An example reord pair that will be missedby the similarity-aware index approah beause ofdi�erent enoding values, but will be ompared bystandard bloking. The values in brakets are theorresponding Soundex enodings, and the similari-ties (bottom row) were alulated using the Winklerapproximate string omparison funtion [7℄.data sets (10%, 40%, 70% and 100% of the full data set size),the query time for the similarity-aware index is between 140and 150 times faster than standard bloking. However, forboth index approahes, the query time urrently inreaseslinearly with the size of the indexed data sets. Improvingupon this is a urrent e�ort by the authors.The query mathing auray results are shown in Fig-ure 5 for the largest test data set with varying number ofmodi�ations per reord. As an be seen for both index ap-proahes, mathing auray gets lower with an inreasednumber of modi�ations. This is what one would expet,as with more modi�ations per reord the likelihood thatanother reord (with similar attribute values) beomes thebest mathing reord is inreased.The auray for the similarity-aware index is higher om-pared to standard bloking for the query sets with one andtwo modi�ations, but then drops more rapidly for the querysets with three and four modi�ations. This is due to therequirement of the similarity-aware index that the valuesof all attributes for a reord pair need to be in the sameblok in order to have their similarity added to the aumu-lator. If two attribute values are in di�erent bloks, thenthe orresponding similarity, whih an be high, will not beonsidered. For standard bloking, on the other hand, onlyone pair of attribute values needs to be in the same blok inorder that two reords are being ompared.
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Figure 7: Proportion of ase 1 (query attribute valueis available in similarity-aware index) to ase 1 plusase 2 (new unknown attribute value) for varyingnumber of modi�ations per reord.This is illustrated in Figure 6 with two example reordsthat have an overall similarity of 2:674 out of a maximum of3:0. These reords would be ompared by standard blokingbeause at least one attribute (given name) ontains valuesthat are in the same blok; whereas they would not be om-pared by the similarity-aware index, beause two of the threeattributes (surname and suburb name) have di�erent blok-ing key values and thus the orresponding similarities wouldnot be added into the aumulator.Although this e�et may lead to standard bloking havinghigher auray on more heavily modi�ed query reords, itan also lead to lower auray for standard bloking om-pared to the similarity-aware index when query reords areof relatively good quality, as an be seen in Figure 5 for thequery sets with one or two modi�ations only. Improvingthe similarity-aware index and ahieving equal or even bet-ter mathing auray than standard bloking in all ases isone of the urrent researh e�orts by the authors.Finally, Figure 7 shows the proportion of query attributevalues that were available in the similarity-aware index (ase1) and thus no similarities had to be alulated at querytime. As an be seen, the more modi�ations a query reordhad, the more likely the modi�ed attribute values were notin the index and thus their similarities had to be alulated.However, even with modi�ations in all four query reord at-tributes, more than 40% of all attribute values were availablein the index and thus their similarities were pre-alulated.This results shows the eÆieny of the similarity-aware in-dex in speeding up query mathing by pre-omputing simi-larities between reords while the index is built.
6. CONCLUSIONS AND FUTURE WORKIn this paper, a novel index approah for real-time entityresolution has been presented and evaluated experimentallyon a large real-world data set. The experiments showed thatthis approah an math query reords more than two ordersof magnitude faster than a basi standard index approahthat is traditionally used for entity resolution. The novelapproah requires less than double the amount of memoryof the standard index, but building the index an take up-totwenty times longer.



For query reords that do not ontain too many varia-tions and errors, the auray of the novel index approahan be better than the standard bloking approah. How-ever, when most or all attribute values in a query reordontains variations and errors, then mathing auray androp signi�antly. Improving upon this drawbak is one ofthe major avenues for additional work on this novel index ap-proah. Other areas of future researh inlude a theoretialanalysis of the omplexity and salability of this index ap-proah, improving the query mathing time, and ondutingexperiments on a variety of other real-world databases.To the best of the authors' knowledge, the similarity-aware inverted index presented in this paper is the �rst ap-proah aimed at developing real-time entity resolution onlarge databases that ombines approahes from informationretrieval with traditional entity resolution tehniques.
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