
Similarity-Aware Indexing for Real-Time Entity Resolution

Peter Christen
School of Computer Science
Australian National University
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

Ross Gayler
Scoring Solutions
Veda Advantage

Melbourne VIC 3000,
Australia

ross.gayler@vedaadvantage.com

David Hawking
Funnelback Pty Ltd

Dickson ACT 2601, Australia
david.hawking@acm.org

ABSTRACTEntity resolution, also known as data mat
hing or re
ordlinkage, is the task of identifying re
ords from several data-bases that refer to the same entities. Traditionally, entityresolution has been applied on stati
 databases, for exampleto �nd re
ords that relate to the same patient in di�erenthealth databases. Most resear
h in entity resolution has
on-
entrated on either improving the mat
hing quality, makingentity resolution s
alable to very large databases, or redu
-ing the manual e�orts required throughout the resolutionpro
ess. In
reasingly, however, many organisations are fa
edwith the
hallenge of having large databases that
ontain en-tities, and a stream of query re
ords that have to be mat
hedwith these databases in real-time, su
h that the best mat
h-ing re
ords are retrieved. Example appli
ations in
lude on-line law enfor
ement and national se
urity databases, publi
health surveillan
e and emergen
y response systems, �nan-
ial veri�
ation systems, and online retail stores.In this paper, a novel inverted index based approa
h forreal-time entity resolution is presented. At build time, sim-ilarities between attribute values are
omputed and storedto support the fast mat
hing of re
ords at query time. Thepresented approa
h di�ers from other re
ently developedapproa
hes to approximate querying, in that it allows anysimilarity
omparison fun
tion, and any `blo
king' fun
tion,both possibly domain spe
i�
, to be in
orporated.Experimental results on a large real-world database indi-
ate that the total size of all data stru
tures of this novel in-dex approa
h grows sub-linearly with the size of the database,and that it allows mat
hing of query re
ords in sub-se
ondtime, more than two orders of magnitude faster than a tra-ditional entity resolution index approa
h.
Categories and Subject DescriptorsH.3.3 [Information Systems℄: Information Storage andRetrieval|Information Sear
h and Retrieval ; H.3.1 [Infor-mation Systems℄: Information Storage and Retrieval|Content Analysis and Indexing.
Accepted as poster at CIKM’09, November 2–6, 2009, Hong Kong.

General TermsAlgorithms, Experimentation, Performan
e.
KeywordsData mat
hing, re
ord linkage, s
alability, similarity query,approximate string mat
hing, inverted indexing.
1. INTRODUCTIONIn
reasingly, many appli
ations that deal with data man-agement and analysis require that data from di�erent sour
esis mat
hed and aggregated before it
an be used for furtherpro
essing. The aim of data mat
hing is to identify andmat
h all re
ords that refer to the same real world entities.These entities
an, for example, be
ustomers, patients, taxpayers, travellers, students, businesses,
onsumer produ
ts,or bibliographi

itations. While statisti
ians and health re-sear
hers
ommonly name the task of mat
hing re
ords asdata or re
ord linkage,
omputer s
ientists and the databaseand business oriented IT
ommunities speak of entity reso-lution, data or �eld mat
hing, data
leansing, data inte-gration, dupli
ate dete
tion, data s
rubbing, list washing,obje
t identi�
ation, or merge/purge pro
essing.Traditionally, te
hniques for mat
hing re
ords that
orre-spond to the same entities have been applied in the healthse
tor and within the
ensus [14, 21, 28℄. In
reasingly, how-ever, entity resolution is now being used within and be-tween many organisations in both the publi
 and privatese
tors in a large variety of appli
ation domains. Examplesin
lude �nding dupli
ates in business mailing lists, biblio-graphi
 databases (digital libraries) and online stores;
rimeand fraud dete
tion within �nan
e and insuran
e
ompaniesas well as government agen
ies;
ompilation of longitudinaldata for so
ial resear
h; or the assembly of terrorism wat
hlists for improved national se
urity.Be
ause real-world data rarely
ontains unique entity iden-ti�ers a
ross all the databases to be mat
hed, most entityresolution approa
hes
ompare re
ords using the informa-tion available in the databases that partially identify enti-ties, su
h as their names, address details, or dates of birth.For ea
h of the partially identifying attributes
ompared be-tween two re
ords, a similarity is
al
ulated. These simi-larities are then used
olle
tively to
lassify ea
h
omparedre
ord pair as a mat
h, non-mat
h, or possible mat
h [14, 16,28℄. The mat
hing pro
ess is often
hallenged be
ause realworld data is dirty, i.e.
ontains missing or out-of-date at-tribute values, variations and errors, values that are swappedbetween attributes, or data that is
oded di�erently [26℄.

Traditional entity resolution approa
hes assume that twoor more stati
 databases are to be mat
hed in bat
h mode,in order to produ
e a new mat
hed data set. In
reasingly,however, entity resolution is required in an online, real-timeenvironment, where query re
ords have to be mat
hed withone or several large databases, and the most similar re
ordsare to be retrieved. One example appli
ation of
urrentinterest is health surveillan
e and emergen
y response sys-tems, where the aim is to �nd all re
ords that relate to a
ertain individual, for example a patient showing symptomsof an infe
tious disease, from a variety of databases. Inorder to �nd other individuals that might have been in
on-ta
t with that patient, a sear
h needs to be
ondu
ted inan airline database, to �nd the details of other people whohave travelled with the patient; the database of the patient'semployer, to �nd potentially infe
ted
o-workers; the s
hooldatabase of the patient's
hildren, and so on. In many
ases,the sear
h for mat
hing re
ords will rely upon personal de-tails, like the name, address and date of birth of the patient,and thus be subje
t to errors and variations, as well as out-of-date information. A

urate and real-time approximatemat
hing te
hniques are required for su
h situations.The appli
ation domain of spe
i�
 interest to the authorsis
onsumer �nan
ial servi
es. Entity resolution is in
reas-ingly important in this domain as su
h servi
es are beingdelivered remotely. On
e a
onsumer has established an a
-
ount with a �nan
ial institution, she or he is normally re-quired to use an unambiguous identity token, like an a

ountnumber. However, the initial establishment of a
onsumer'sidentity is diÆ
ult. The normal approa
h taken is entity res-olution of identifying information, as provided by the
on-sumer, against one or more databases of related identify-ing information. The information provided is often subje
tto variability and error, requiring an approximate mat
h-ing pro
ess. As this pro
ess will be driven by automatedsystems that require sub-se
ond responses, automated anda

urate mat
hing, s
alability, and real-time entity resolu-tion are major te
hni
al
hallenges for su
h systems.This paper presents work that is aimed towards the de-velopment of su
h systems. The basi
 idea of a
hieving real-time entity resolution is to
ombine similarity
al
ulationsused for approximate mat
hing with inverted index te
h-niques that are
ommonly used in the �eld of informationretrieval, for example for large-s
ale Web sear
h engines [3,29, 32℄. In the past de
ade, with the popularity and
om-mer
ial su

ess of su
h sear
h engines, a large amount ofresear
h and development on optimisation te
hniques hasbeen
ondu
ted in this �eld [3, 32℄. Some of these optimisa-tion te
hniques are used in the work presented in this paperto fa
ilitate real-time entity resolution of large databases.The
ontributions of this paper are a novel index approa
hsuitable for real-time entity resolution. This approa
h signif-i
antly improves the mat
hing speed over a similar approa
hre
ently presented by two of the authors [9℄. Compared tothis earlier approa
h, whi
h was between two and one hun-dred times faster than a traditional index approa
h for entityresolution, the novel te
hnique presented here is
onsistentlyover two orders of magnitude faster than the traditional in-dex approa
h. An important aspe
t of the novel approa
hpresented here is that it allows any similarity
omparisonfun
tion, and any en
oding fun
tion for `blo
king' [2℄, bothpossibly domain spe
i�
, to be in
orporated. Most otherapproximate mat
hing approa
hes developed in re
ent times

are limited to spe
i�
 similarity fun
tions (su
h as edit dis-tan
e, or Ja

ard or
osine similarity), and therefore maynot be suitable for entity resolution in appli
ations that re-quire spe
i�
 en
oding and
omparison fun
tions.The remainder of this paper is stru
tured as follows. Next,in Se
tion 2, an overview of related resear
h is provided. Theproposed novel index approa
h for real-time entity resolutionis then presented in Se
tion 3, and experimentally evaluatedin Se
tion 4 using a large real-world database. The results ofthese experiments are dis
ussed in Se
tion 5, and the paperis
on
luded with an outlook to future work in Se
tion 6.
2. RELATED WORKResear
h into entity resolution is being
ondu
ted in vari-ous domains, in
luding data mining, ma
hine learning, infor-mation retrieval, arti�
ial intelligen
e, digital libraries, in-formation systems, statisti
s, and the database
ommunity.Several re
ent overview arti
les are available [13, 28℄. Entityresolution te
hniques
an broadly be
lassi�ed into learningapproa
hes [5, 8, 10, 11, 12℄, or database and graph-basedmethods [20, 27, 31℄. So far, most resear
h in this area hasfo
used on the quality of the mat
hing pro
ess, i.e. the a
-
ura
y of
lassifying the
ompared pairs or groups of re
ordsinto mat
hes and non-mat
hes. The
hallenges of s
alabilityto very large databases and real-time mat
hing have so faronly re
eived limited attention.For the traditional mat
hing of (large) stati
 databases,indexing is important, be
ause potentially every re
ord fromone database needs to be
ompared with all re
ords from theother database, resulting in a pro
ess that is of quadrati

omplexity in the sizes of the databases to be mat
hed. In-dexing te
hniques, also known as `blo
king', are therefore
ommonly applied to redu
e the number of
omparisons tobe
ondu
ted. In the standard blo
king approa
h [2℄, whi
hwill be presented in detail in Se
tion 3.1 below, the databasesare split into blo
ks a

ording to some
riteria, and onlyre
ords within the
orresponding blo
k are
ompared withea
h other. A blo
king
riterion, also
alled a blo
king key,might be based on a single re
ord attribute (that should
on-tain values of high quality), or based on the
on
atenationof values from several attributes. In order to over
ome theproblem of variations and errors in real-world data, one aimis to group similar sounding values into the same blo
k. This
an be a

omplished by using phoneti
 en
oding fun
tions,su
h as Soundex, NYSIIS or Double-Metaphone [7℄. Thesefun
tions, whi
h are often language or domain spe
i�
, areapplied when generating the blo
king keys. Examples ofsu
h phoneti
 en
odings are shown in Figure 1.The standard blo
king approa
h has two major draw-ba
ks. First, the size of the generated blo
ks depends uponthe frequen
y distribution of the attribute values used inthe blo
king key. For example, using surname values in ablo
king key will likely generate a very large blo
k
ontain-ing the
ommon surname `Smith', resulting in a very largenumber of
omparisons that need to be
ondu
ted for thisblo
k. Se
ond, if a value in an attribute used as a blo
kingkey
ontains errors or variations that result in a di�erent en-
oding, then the
orresponding re
ord will be inserted into adi�erent blo
k, and potentially true mat
hes will be missed.This problem is normally over
ome, at in
reased
omputa-tional
osts, by having two or more di�erent blo
king keysbased on di�erent re
ord attributes.

Various alternative blo
king approa
hes have been devel-oped in re
ent times, aimed at improving the s
alabilityof the mat
hing pro
ess and in
reasing mat
hing a

ura
y.With the sorted neighbourhood approa
h [18℄, the databasesare sorted a

ording to the values in the blo
king key, and a�xed-size window is moved over the databases. All re
ordswithin the
urrent window will then be
ompared with ea
hother. An approa
h related to this is to insert the blo
kingkey values and their suÆxes into a suÆx array based in-verted index [1℄, and to then generate blo
ks from all re
ordsthat have the same suÆx value. With this approa
h, ea
hre
ord will be inserted into several blo
ks, depending uponthe length of its suÆx values. Another approa
h is to allowfor `fuzzy' blo
king by
onverting blo
king key values into q-gram lists and, using sub-lists of these q-gram lists, to insertea
h re
ord into several blo
ks a

ording to a Ja

ard-basedsimilarity threshold [2℄. While this approa
h
an improvethe a

ura
y of the resulting mat
hing, its
omputational
omplexity (a large number of q-gram sub-lists need to begenerated) makes it unsuitable for large databases. Anotheridea for indexing is to apply
lustering by using a
om-putationally eÆ
ient similarity measure to generate high-dimensional overlapping
lusters (
alled `
anopies'), and tothen extra
t blo
ks of re
ords from these
lusters [11℄. Ea
hre
ord will be inserted into several
lusters and thus severalblo
ks, resulting in higher mat
hing a

ura
y but at higher
omputational
osts. Another re
ent approa
h is to mapblo
king key values into a high-dimensional Eu
lidean spa
esu
h that the distan
es between all pairs of strings are pre-served [19℄. The re
ords in a blo
k then
orrespond to allobje
ts in this spa
e that are similar to ea
h other.Condu
ting entity resolution not on stati
 databases butat query time has so far re
eived very limited attention, withonly two re
ent publi
ations presenting approa
hes spe
i�
to su
h situations. The authors have earlier shown that us-ing an inverted index approa
h
an signi�
antly speed-upthe query mat
hing pro
ess [9℄. A se
ond approa
h is basedon unsupervised relational
lustering, whi
h assumes thatthe data to be mat
hed
ontains relational information thatexpli
itly links di�erent types of entities [5℄. The idea of thisapproa
h is to utilise the relational links between re
ordsto improve the entity resolution pro
ess. At query time,mat
hing is
ondu
ted in an iterative fashion on a databasethat
ontains unresolved entities. While this approa
h
ana
hieve mu
h better mat
hing a

ura
y
ompared to tra-ditional entity resolution approa
hes (that only
onsider at-tribute similarities), it has mu
h higher
omputational
osts.Mat
hing times of around 30 se
onds for one query re
ordon a database
ontaining around 800; 000 re
ords have beenreported [5℄. This approa
h is therefore impra
ti
al for real-time entity resolution on very large databases.A large body of work has been
ondu
ted in the database
ommunity on similarity queries and their s
alable and ef-�
ient implementations [4, 6, 15, 17, 23, 24, 25, 30℄. Manyof the presented approa
hes optimise indexing and �lteringte
hniques for spe
i�
 types of similarity measures, su
h asedit distan
e, or q-gram or
osine based similarities. Theyalso mainly deal with the situation of either �nding similartuples between a set of query re
ords and a database table,or two large tables. One real-time similarity join approa
hbased on a modi�ed trie hash-join has been presented veryre
ently [22℄. It
al
ulates q-gram similarities, and then ap-plies several �ltering steps to a
hieve fast query times.

Thus far, s
alability to very large databases has not beenaddressed by most re
ent resear
h in the area of entity reso-lution, and most publi
ations in this area have presented ex-perimental results based on only small to medium sized datasets
ontaining up to one million re
ords [5, 20, 27, 31℄. Mostof the re
ently developed advan
ed entity resolution te
h-niques have a
omputational
omplexity that makes themimpra
ti
al for mat
hing very large databases that
ontainmany million re
ords. Additionally, most approa
hes pub-lished so far, with the ex
eption of two very re
ent te
h-niques [5, 9℄, are assuming the situation of mat
hing stati
databases in bat
h mode.
3. INDEXING FOR REAL-TIME ENTITY

RESOLUTIONIndexing, as presented in the previous se
tion, is requiredfor real-time entity resolution systems to speed-up the mat
h-ing pro
ess by redu
ing the number of
andidate re
ords thatneed to be mat
hed with a query re
ord.The obje
tive of real-time entity resolution is to mat
ha stream of query re
ords as qui
kly as possible to one orseveral (large) databases that
ontain re
ords about existingentities, and potentially to a range of external data sour
esthat
ontain additional information that
an be used to ver-ify the mat
hed entities. The response time for mat
hinga single query re
ord has to be as short as possible, ide-ally sub-se
ond. The mat
hing approa
h must fa
ilitate ap-proximate mat
hing and eÆ
iently s
ale-up to very largedatabases that
ontain many millions of re
ords. In addi-tion, the mat
hing should generate a mat
h s
ore that indi-
ates the likelihood that a mat
hed re
ord in the databaserefers to the same entity as the query re
ord.Real-time entity resolution has mu
h in
ommon with thefun
tionality of large-s
ale Web sear
h engines. However,the databases upon whi
h entity resolution is
ommonly ap-plied do not
ontain Web or text do
uments that in
ludea large number of terms and thus provide a ri
h variety offeatures. Rather, these databases are made of stru
turedre
ords with well de�ned attributes that often only
ontainshort strings or numbers, su
h as the personal details of peo-ple (for example name, address, or date of birth values).In this se
tion, the traditional standard blo
king approa
hto indexing for entity resolution is presented �rst to illustratethe basi
 ideas of using inverted indexing for entity resolu-tion. Based on this approa
h, a similarity-aware invertedindex approa
h that is suitable for real-time entity resolu-tion is then dis
ussed in detail in Se
tion 3.2. Both indexapproa
hes are illustrated in Figures 2 and 3.Both index approa
hes presented here are based on a stan-dard inverted index [32℄, where the keys of the index are(possibly en
oded) attribute values, and the
orrespondinglists
ontain the re
ord identi�ers of all re
ords that havethis (en
oded) value. Two types of fun
tion are requiredby both index approa
hes. First, (phoneti
) en
oding fun
-tions are needed that group similar attribute values together.For string attributes, su
h as personal names or street andsuburb names, phoneti
 en
odings like Soundex, NYSIIS orDouble-Metaphone are
ommonly used [7℄. Figure 1, for ex-ample, shows the Soundex en
odings of eight surname val-ues. As
an be seen, this en
oding fun
tion groups the values`smith' and `smyth' into one blo
k, and `millar', `miller' and`myler' into another. The se
ond type of fun
tions required

Re
ord ID Surname Soundex en
odingr1 smith s530r2 miller m460r3 peter p360r4 myler m460r5 smyth s530r6 millar m460r7 smith s530r8 miller m460Figure 1: Example re
ords with surname values andtheir Soundex en
odings, used to illustrate the twoindex approa
hes in Figures 2 and 3.
s530p360m460

r7

r1

r5

r3

r8

r6

r4

r2Figure 2: Standard blo
king index resulting fromthe example re
ords given in Figure 1. The blo
kingkeys
orrespond to Soundex en
odings.are similarity
omparisons that
al
ulate a normalised simi-larity between two attribute values, su
h that 1
orrespondsto an exa
t similarity and 0 to total dissimilarity [7℄. Notethat for di�erent attribute types (strings, dates, numbers,et
.) di�erent su
h
omparison fun
tions
an be used. Ad-ditionally, domain spe
i�

omparison fun
tions are oftenapplied to improve the mat
hing quality. One example ofsu
h a fun
tion would be a date of birth
omparison, wherea mismat
h in the month or day of birth is less severe thana mismat
hed year of birth.The real-time entity resolution pro
ess as dis
ussed in thispaper
onsists of two phases. First, in the build phase, anindex is generated using a stati
 database that
ontains apossibly large number of
leaned re
ords that are assumedto refer to resolved entities, i.e. one single re
ord per real-world entity only. On
e built, the index is queried in these
ond phase with a stream of query re
ords. These re
ords
an either refer to an entity stored in the index, or to a newand unknown entity. It is assumed, however, that the queryre
ords
an
ontain variations and typographi
al errors, orwrong, out-of-date or missing values. Missing values
an behandled by repla
ing them with a spe
ial
hara
ter (that isoutside of the
hara
ter set used for an attribute) in bothdatabase and query re
ords. For ea
h query re
ord, themat
hing pro
ess returns a ranked list of potential mat
hesand their similarities with the query re
ord. A mat
h issu

essful if one of the top ranked re
ords refers to the sameentity as the query re
ord.In the following two se
tions, the two index approa
hesare des
ribed in detail, and in Se
tion 3.3 two optimisationsfor redu
ing the query mat
hing time are dis
ussed. Exper-iments on these two index approa
hes are then presented inSe
tion 4. In Algorithms 1 to 4, the attributes of a re
ordr are denoted by r:i, with r:0 assumed to be an identi�erattribute that allows unique identi�
ation of ea
h re
ord. Alist with key k in an inverted index X is denoted with X[k℄.An empty list is denoted by () and an empty index by fg.

peter

smyth smith 0.9

smith smyth 0.9

p360 peter

m460 miller mylermillar

s530 smith smyth

miller 0.9 mylermillar 0.8

miller 0.9millar myler 0.7

miller0.7millar 0.8myler

r2 r5r1

r7

r3r4

r8

r6

millar miller myler peter smith smyth
RI

SI

BI

Figure 3: Similarity-aware index resulting from theexample re
ords from Figure 1. The similarity indexis shown in the top left, the blo
k index in the middleright, and the re
ord identi�er index at the bottom.
3.1 Standard BlockingThe basi
 idea of standard blo
king is that ea
h re
ord ina database is inserted into a blo
k a

ording to the valueof its blo
king key [2℄, as illustrated in Figure 2. En
odingfun
tions [7℄ are used to group similar attribute values intothe same blo
k. Ea
h blo
k
orresponds to an inverted in-dex list, with the key being the (en
oded) blo
king key value,while the values in the
orresponding list are the re
ord iden-ti�ers of all re
ords in this blo
k.Standard blo
king is used in this paper be
ause it is abaseline approa
h upon whi
h many other re
ently devel-oped index approa
hes for entity resolution
an be built.For example,
anopy
lustering [11℄, suÆx-array blo
king [1℄,and the sorted neighbourhood [18℄ approa
h, as dis
ussed inSe
tion 2,
an all be implemented as extensions to a basi
inverted index. Therefore, standard blo
king
an be seen asthe basi
 approa
h for traditional bat
h-oriented entity res-olution of stati
 databases. Other index approa
hes basedon it have higher
omputational requirements.The build phase of standard blo
king is shown in Algo-rithm 1. The input to this algorithm is a data set D
on-taining n attributes that will be used in the entity resolutionpro
ess, and n
orresponding en
oding fun
tions, Ei. A ba-si
 inverted index I, as illustrated in Figure 2, is generated inthe build phase, where re
ord identi�er values are insertedinto inverted index lists a

ording to their
orrespondingen
oded attribute values. This en
oding of attribute valuesmight be
omputationally expensive. Therefore, in order toprevent repeated
al
ulation of en
odings
 of attribute val-ues, on
e an en
oding has been
omputed, it is stored in theen
odings
a
he C (line 9) so it
an be retrieved qui
kly forsubsequent o

urren
es of the same attribute value r:i (line6). The algorithm returns the inverted index data stru
tureI
ontaining re
ord identi�ers, r:0, in the inverted index lists,and the
a
he C
ontaining the
omputed en
odings. Nosimilarity
al
ulations are performed during the build phaseof this index approa
h. Note that for simpli
ity the indexand
a
he are shared between attributes. Depending uponthe
hara
teristi
s of the data to be pro
essed and mat
hed,however, it might be favourable to have separate index and
a
he data stru
tures per attribute.

Algorithm 1: Standard blo
king { BuildInput:- Data set: D- Number of attributes of D used: n- En
oding fun
tions: Ei; i = 1 : : : nOutput:- Standard blo
king index: I- En
odings
a
he: C1: Initialise I = fg2: Initialise C = ;3: for r 2 D:4: for i = 1 : : : n:5: if r:i 2 C then:6:
 = C[r:i℄7: else:8:
 = Ei(r:i)9: C[r:i℄ =
10: Append r:0 to I[
℄Algorithm 2 des
ribes the query phase. As input, it re-quires a query re
ord q, the inverted index I, the data setD, the en
odings
a
he C, the number of attributes to beused for entity resolution n, the en
oding fun
tions Ei, andthe
omparison fun
tions used to
al
ulate the similaritiesbetween attribute values, Si. The query phase
onsists oftwo steps. First, in lines 1 to 8, the en
oded attribute values(possibly available in the en
odings
a
he C) of the queryre
ord q are used to retrieve the re
ord identi�er lists fromthe
orresponding blo
ks in the inverted index I. The unionof these lists, b,
ontains all identi�ers of the
andidatere
ords that will be
ompared with the query re
ord in these
ond step of the algorithm (lines 9 to 14). The required nattribute values for ea
h
andidate re
ord r need to be re-trieved from data set D (line 10). An eÆ
ient index on D istherefore required that allows fast a

ess to a random re
ordr using its identi�er r:0. For ea
h
andidate re
ord that is
ompared with the query re
ord, a similarity, s, is
al
ulatedover all
ompared attributes (line 13) and inserted into thelist of mat
hes M (line 14). For simpli
ity a simple sum-ming of s is assumed, however, in reality other aggregationfun
tions, like weighted sums,
an be applied. Finally, inline 15, the list of mat
hesM is sorted su
h that the largestsimilarity values are at the beginning.
3.2 Similarity-Aware IndexThis index is based on the idea of pre-
al
ulating thesimilarities between all unique attribute value
ombinationswithin ea
h blo
k on
e during the build phase, so that thesimilarities do not need to be re-
al
ulated for every queryre
ord, thereby signi�
antly redu
ing the mat
hing time re-quired in the query phase.As illustrated in Figure 3, this approa
h
ontains threeinverted index data stru
tures. The re
ord identi�er index,RI, is similar to the inverted index I used in standard blo
k-ing, but the keys of this index are the a
tual attribute valuesand not their en
odings. The blo
k index, BI, is the datastru
ture that represents the blo
ks by having en
oded at-tribute values as keys and the a
tual attribute values thathave the same en
oding in the
orresponding inverted indexlists. Ea
h list in this index therefore
ontains all attributevalues that are in the same blo
k. The similarity index, SI,

Algorithm 2: Standard blo
king { QueryInput:- Query re
ord: q- Data set: D- Number of attributes of D used: n- Standard blo
king index: I- En
odings
a
he: C- En
oding fun
tions: Ei; i = 1 : : : n- Similarity
omparison fun
tions: Si; i = 1 : : : nOutput:- Ranked list of mat
hes: M1: Initialise M = ()2: Initialise
andidate re
ord identi�er list b = ()3: for i = 1 : : : n:4: if q:i 2 C then:5:
 = C[q:i℄6: else:7:
 = Ei(q:i)8: b = b [I[
℄9: for r:0 2 b:10: Retrieve r from D using identi�er r:011: s = 012: for i = 1 : : : n:13: s = s+ Si(r:i;q:i)14: Append (r:0; s) to M15: Sort M a

ording to similarities (largest �rst)stores the similarities of pairs of attribute values that arein the same blo
k. Spe
i�
ally, for ea
h attribute value, it
ontains a list of other attribute values (in the same blo
k)and the similarities between these two values.Algorithm 3 des
ribes how a similarity-aware index is built.The algorithm requires the same input as the build algo-rithm for standard blo
king. Additionally, the similarity
omparison fun
tions, Si, are also required, be
ause similar-ity s
ores between attribute values are
al
ulated during thebuild phase rather than the query phase. For ea
h re
ord rin data setD, its identi�er r:0 is added to the inverted indexlist in RI that
orresponds to attribute value r:i (line 6). Itis important to note that all the following steps (lines 8 to19) only need to be done if the attribute value r:i has notbeen pro
essed before (line 7). This will signi�
antly redu
ethe
omputational e�ort if attribute values appear in a dataset several times, whi
h is the
ase for attributes that have aZipf-like or exponential distribution of values, as is
ommonfor example for attributes that
ontain names [9℄.For a new attribute value r:i that has so far not been in-dexed, the �rst step (lines 8 to 11) is to
al
ulate its en
oding
 and to retrieve all other values in its blo
k. The new valueis then added into the inverted index list b of this blo
k,and the updated list is stored ba
k into the blo
k index BI.The similarities between the new attribute value r:i and allattribute values v already in this blo
k are
al
ulated next(line 13), and inserted into both the new value's similaritylist si (line 15) and the other value's list oi (line 17). Fi-nally, the similarity list si of the new value r:i is added tothe similarity index SI in line 19.The query phase using the similarity-aware index is de-s
ribed in Algorithm 4. During the query pro
ess an a
-
umulator M, a data stru
ture that
ontains re
ord identi-

Algorithm 3: Similarity-Aware Index { BuildInput:- Data set: D- Number of attributes of D used: n- En
oding fun
tions: Ei; i = 1 : : : n- Similarity
omparison fun
tions: Si; i = 1 : : : nOutput:- Re
ord identi�er index: RI- Similarity index: SI- Blo
k index: BI1: Initialise RI = fg2: Initialise SI = fg3: Initialise BI = fg4: for r 2 D:5: for i = 1 : : : n:6: Append r:0 to RI[r:i℄7: if r:i 62 SI:8:
 = Ei(r:i)9: b = BI[
℄10: Append r:i to b11: BI[
℄ = b12: Initialise inverted index list si = ()13: for v 2 b:14: s = Si(r:i; v)15: Append (v; s) to si16: oi = SI[v℄17: Append (r:i; s) to oi18: SI[v℄ = oi19: SI[r:i℄ = si�ers and their (partial) similarities with the query re
ord,is generated [29, 32℄. Two possible
ases
an o

ur for ea
hattribute of the query re
ord q. The �rst
ase o

urs whenan attribute value is available in the index, and its similari-ties with other attribute values have been
al
ulated in thebuild phase. In this
ase, in lines 4 to 6, the identi�ers r:0of all other re
ords that have the same attribute value areretrieved and their similarities (exa
tly 1, as they have thesame attribute value) are added into the a

umulator M.A new element for re
ord identi�er r:0 will be added to thea

umulator if it doesn't exist. Next, all other attribute val-ues in the same blo
k and their similarities with the queryattribute value are retrieved from the similarity index SI(line 7). For ea
h of these values, their re
ord identi�ersare retrieved from the re
ord identi�er index RI, and theirsimilarities are added into the a

umulator in line 11.The se
ond
ase o

urs when an attribute value in thequery re
ord q is not available in the index, and thus thesimilarities between this value and other attribute valuesneed to be
al
ulated (lines 13 to 19). This is similar tothe query phase of the standard blo
king index. First, inlines 13 and 14, the en
oding for this unknown attributevalue is
al
ulated, and then all re
ords in its
orrespondingblo
k are retrieved from the blo
k index BI. In lines 16and 17, the similarities between the attribute value from thequery re
ord and ea
h of the other re
ords in the blo
k are
al
ulated, and the re
ord identi�ers of all
orrespondingre
ords are retrieved from the re
ord identi�er index RI.The a

umulator M is then updated in line 19 for ea
h ofthese re
ords. Finally, in line 20, the a

umulator is sortedsu
h that the largest similarities are at the beginning.

Algorithm 4: Similarity-Aware Index { QueryInput:- Query re
ord: q- Number of attributes of D used: n- Re
ord identi�er index: RI- Similarity index: SI- Blo
k index: BI- En
oding fun
tions: Ei; i = 1 : : : n- Similarity
omparison fun
tions: Si; i = 1 : : : nOutput:- Ranked list of mat
hes: M1: Initialise M = ()2: for i = 1 : : : n:3: if q:i 2 RI: // Case 14: ri = RI[q:i℄5: for r:0 2 ri:6: M[r:0℄ =M[r:0℄ + 1:07: si = SI[r:i℄8: for (r:i; s) 2 si:9: ri = RI[r:i℄10: for r:0 2 ri:11: M[r:0℄ =M[r:0℄ + s12: else: // Case 213:
 = Ei(q:i)14: b = BI[
℄15 for v 2 b:16: s = Si(q:i; v)17: ri = RI[v℄18: for r:0 2 ri:19: M[r:0℄ =M[r:0℄ + s20: Sort M a

ording to similarities (largest �rst)The overall eÆ
ien
y of the similarity-aware index de-pends upon how many attribute values of the query re
ordare already stored in the index (in whi
h
ase no similarity
al
ulations need to be performed)
ompared to how manyare new. With in
reased size of the data set D, and es-pe
ially as D is
overing larger portions of a population,one would assume that a larger portion of values would beavailable in the index, thereby improving the eÆ
ien
y ofthis index approa
h. In Se
tion 4 this assumption will beevaluated experimentally.
3.3 OptimisationsA variety of optimisation approa
hes have been developedfor inverted index te
hniques [3, 29, 32℄. These approa
hesapply
ompression to redu
e the amount of memory requiredby the index data stru
ture, sorting of the inverted indexlists, and �ltering of
andidate re
ords that are guaranteednot to be in the top ranked mat
hes.Currently, two su
h optimisation te
hniques are imple-mented in the two index approa
hes presented in this pa-per. The �rst is a minimum similarity threshold, tmin (with0 < tmin < 1). Within the query phase of standard blo
k-ing, this threshold is used together with the overall mini-mum threshold (dis
ussed below) to redu
e the number ofmat
hes to be stored in the ranked mat
h list M. Similari-ties, as
al
ulated in line 13 of Algorithm 2, are not added tothe overall similarity s of two re
ords if they are below tmin.Within the similarity-aware index, the minimum thresholdtmin is used in the build phase to only store similarities be-

Given name Surname Suburb name Post
odeNumber of unique values 78,386 404,642 13,109 2632Number of values with
ount 1 7116 193,437 931 18Six most frequent values John (149,817) Smith (65,243) Toowoomba (29,127) 4350 (35,129)(and their
ounts) Peter (116,985) Jones (32,234) Frankston (18,856) 4670 (24,701)David (101,859) Williams (31,647) Croydon (15,556) 4740 (23,981)Robert (89,564) Brown (31,024) Port Ma
quarie (15,499) 2250 (23,454)Mi
hael (89,222) Wilson (26,940) Reservoir (14,784) 2170 (22,726)Margaret (69,165) Taylor (26,044) Glen Waverley (14,756) 4870 (21,639)Table 1: Chara
teristi
s of the data set used for experiments.tween attribute values that are above tmin. Spe
i�
ally, lines15 to 18 in Algorithm 3 are only exe
uted if the similaritys, as
al
ulated in line 14, is larger than tmin. Not storinglower similarities will redu
e the memory requirements ofthe similarity-aware index, and also speed-up the mat
hingtime during the query phase, be
ause the inverted index listsin the similarity index SI will be shorter.The se
ond optimisation is an overall minimum thresh-old, Tmin, with 0 < Tmin < n, and n being the numberof re
ord attributes that are used in the entity resolutionpro
ess. Within the standard blo
king query phase, thisthreshold
an be used in line 14 of Algorithm 2 to only ap-pend re
ord identi�ers to M that have a summed similaritys � Tmin. This will redu
e the size of the list of mat
hes Mand thus redu
e the time needed to sort M.Within the query phase of the similarity-aware index, Tminis used to redu
e the growth of the a

umulator M in lines6, 11 and 19 of Algorithm 4. Assume n attributes are being
ompared, resulting in a summed similarity (n � tmin) �s � n for ea
h
ompared re
ord pair, with only similaritiesbetween individual attribute values above tmin being storedin the index. When
al
ulating the total similarity betweena query re
ord q and the re
ords stored in the index, line2 of Algorithm 4 loops over the n attributes used for themat
hing. With an overall threshold Tmin < n, a phasethreshold, p,
an be
al
ulated as p = dn � Tmine. As longas the loop
ounter i � p, all attribute similarities need tobe added intoM, be
ause potentially any new partial mat
h
an rea
h Tmin. However, on
e loop
ounter i > p, no newre
ord identi�ers (and their similarities) need to be addedto the a

umulator, be
ause the total similarity for thesere
ords
annot rea
h Tmin. For example, assume there arefour attributes to be used in the entity resolution pro
ess(n = 4) and Tmin = 2:5, so p = d4 � 2:5e = 2. For the �rsttwo attributes (i = 1; 2), new re
ord identi�ers are addedinto the a

umulator. However, for the third and fourth at-tributes (i = 3; 4), no new re
ord identi�ers will be added tothe a

umulator be
ause even if su
h a new re
ord has anexa
t mat
h with the query re
ord in both attributes threeand four, the maximum total similarity of this re
ord willbe s = 2:0, whi
h is below Tmin. This optimisation
ansigni�
antly redu
e the �nal length of the a

umulator.For the standard blo
king approa
h, a further optimisa-tion in the query phase
an be implemented if only the topmat
hing re
ord is (or re
ords are) of interest. Rather thanstoring all mat
hes (and their similarities) in the mat
h listM (line 14 in Algorithm 2), and having to sort them beforereturning the ranked list (line 15), only the mat
h(es) withthe highest similarity need to be stored inM, and no sortingwill be required.

4. EXPERIMENTAL EVALUATIONThe proposed similarity-aware index approa
h is experi-mentally evaluated and
ompared with the standard blo
k-ing approa
h. The issues of interest were the time used tobuild the index and query it with re
ords of varying quality,and the a

ura
y of the retrieved mat
hes. The experimentswere
ondu
ted on a Linux server
ontaining two Intel Xeonquad-
ore 64-bit CPUs with 2.33 GHz
lo
k frequen
y, 8 Gi-gabytes of main memory, and two SAS drives (446 Gigabytesin total). No other users were logged onto this ma
hine, andno other jobs were run during the experiments.A large real-world data set
ontaining 6,917,514 re
ordswas used for the presented experiments. It
ontained sur-names, post
odes and suburb (town) names sour
ed froman Australian telephone dire
tory from 2002 (Australia OnDis
1). This data
orresponds to all entries in Australiantelephone books in late 2002, and thus has
hara
teristi
ssimilar to many other real-world data
olle
tions used byAustralian organisations. Additionally, a list
ontainingabout 80,000 di�erent given names and their frequen
ies ofo

urren
e, supplied to the authors by a major Australiangovernment agen
y, was used to generate and add a givenname attribute. For ea
h re
ord in the data set, a givenname was randomly sele
ted (with repla
ement) from thegiven name list a

ording to its frequen
y, and appendedto the re
ord. As su
h, this is a typi
al example data setthat
ontains a large number of unique and
leaned entities,with similar data being
olle
ted by many other private andpubli
 se
tor organisations in many
ountries.Table 1 provides an overview of the resulting data set usedin the presented experiments. As expe
ted, all the nameattributes exhibit a strongly skewed distribution of values,with a small number of very
ommon values and a large num-ber of very rare values. For example, 40% of all surnamesonly appear on
e in the data set, while the top �ve mostfrequent surnames a

ount for nearly 7% of the population.Only post
odes are more uniformly distributed, whi
h is dueto the pro
ess by Australia Post to split populated regionsinto similar sized post
ode areas.Both index approa
hes were implemented in Python, withversion 2.5.2 used for the experiments. For the en
odingfun
tions Ei, used to blo
k the test data sets, the Double-Metaphone [7℄ phoneti
 en
oding was applied on the threename attributes, while for the post
ode attribute the blo
k-ing was based on sele
ting the last three digits (i.e. all re
ordswhere the post
ode value has the same last three digits wereinserted into the same blo
k). For the
omparison fun
tions,Ci, the Winkler [7℄ approximate string
omparison was usedfor the three name attributes, while for post
odes the sim-1http://www.australiaondis
.
om

 10

 100

 1000

6,917,5144,842,2602,767,006691,751

S
ec

on
ds

Number of records in data set

Build time

Standard Blocking
Sim-Aware Index

8000

4000

1000

400
6,917,5144,842,2602,767,006691,751

M
B

yt
es

Number of records in data set

Memory usage

Standard Blocking
Sim-Aware Index

 0.01

 0.1

 1

 10

6,917,5144,842,2602,767,006691,751

S
ec

on
ds

Number of records in data set

Average query time

Standard Blocking
Sim-Aware Index

Figure 4: Summary experimental results: Build time (left); memory usage (middle); and average query timeper re
ord (right). Note that all three graphs are shown with a logarithmi
 y-axis s
ale.ilarity was
al
ulated by
ounting the number of mat
hingdigits divided by four. For example, the similarity of thetwo post
ode values `2346' and '2356' is 0:75.In order to evaluate the s
alability of the similarity-awareindex, test data sets of four di�erent sizes were built
ontain-ing 10% (691,710), 40% (2,767,006), 70% (4,842,260) and100% of the re
ords in the original data set. The full dataset was split into ten data sets of equal size. Next, from ea
hof these ten data sets, ten query re
ords were randomly se-le
ted (giving one hundred base query re
ords in total). Toassess the mat
hing quality, �ve query sets of one hundredre
ords ea
h were
reated by transforming the hundred basere
ords in di�erent ways. The �rst set of hundred re
ordswere made by exa
tly
opying the base query re
ords. In these
ond set one modi�
ation was inserted into one of the fourattributes in ea
h re
ord (a di�erent attribute in ea
h re
ordin a round robin fashion); in the third set two modi�
ationswere inserted; in the fourth set three modi�
ations, and inthe �fth query set all four attribute values were modi�ed inea
h re
ord. The modi�
ations, while done manually, werebased on the authors' experien
e with real-world name data.They mostly
orresponded to
ommon phoneti
 and typo-graphi
al variations, for example
hanges su
h as `Di
kson'to `Dixon', ni
kname substitutions like `Robert' to `Bob', orsimple
hara
ter inserts, deletes, substitutions or transposi-tions. For post
odes, only substitutions and transpositionsof digits were applied, su
h as `2607'
hanged into `2601'.S
alability was evaluated by building an index for ea
htest data set (ea
h
ontaining 10%, 40%, 70%, or 100% ofthe re
ords in the full data set) and then querying it withea
h of the �ve query sets. The time used to build ea
hindex was re
orded, as well as the total amount of mem-ory used by that index. During the query phase, the timefor querying ea
h re
ord was measured, as well as whetherthe top ranked returned re
ord was a true mat
h (i.e. if there
ord identi�er of the best returned mat
h was the same asthe re
ord identi�er of the query re
ord). For the similarity-aware index, the number of
ase 1 and
ase 2 mat
hes (asdis
ussed in Se
tion 3.2 and shown in Algorithm 4) was alsore
orded. While test runs were
ondu
ted with both op-timisations turned o� and on, due to spa
e limitations ofthis paper only results with a
tivated optimisations are re-ported. The minimum threshold tmin was set to 0:55 andthe overall minimum threshold Tmin to 2:0. These valueswere sele
ted su
h that the experiment on the full databasefor the similarity-aware index still �tted into the 8 Gigabytesmain memory available on the experimental platform.

For the experiments with the smaller test data sets (lessthan 100% of the full data set), ea
h experiment was
on-du
ted ten times (with
omponent 10% data sets sele
tedin a round robin fashion) and all results averaged, while forthe full database an experiment was only run on
e.
5. RESULTS AND DISCUSSIONA summary of the experimental results is shown in Fig-ure 4. As expe
ted, building a standard blo
king index issigni�
antly faster than building a similarity-aware index, bya fa
tor ranging from 16 times for the smallest test data setto 20 times when building the index for the largest test dataset. The main reason for this is that during the build phaseof the standard blo
king index no similarity
al
ulations be-tween attribute values are performed. The build time forboth index approa
hes however does grow sub-linearly withthe size of the data set. For standard blo
king, this is be-
ause the en
odings of attribute values are
a
hed (line 6 inAlgorithm 1), so the more re
ords are loaded and insertedinto the index, the more often
a
hed en
oding values
an beretrieved and fewer need to be
al
ulated. For the similarity-aware index, the
al
ulation of similarities between attributevalues and inserting them into the similarity and blo
kingindi
es SI and BI again only needs to be done the �rst timea new, previously unseen attribute value o

urs.Similarly, the amount of memory required by both indexapproa
hes (shown in the middle of Figure 4) grows sub-linearly with the size of the test data set, be
ause as thedata set grows fewer new attribute values, whi
h need tobe pro
essed and stored, will o

ur. For the test data setsused in the experiments, the similarity-aware index requiredaround 1.8 times as mu
h memory on average as the stan-dard blo
king index. The rate of growth for both build timeand memory requirements depends upon the distribution ofattribute values in the data set to be indexed. Given thatmany real-world databases
ontain attributes that follow aZipf-like or exponential distribution, su
h as names [9℄, asub-linear growth
an be expe
ted in pra
ti
e. A theoreti
alanalysis of the growth fa
tor is one avenue of future workplanned by the authors.One of the most important aspe
ts of the novel index ap-proa
h presented in this paper is its fast query mat
hingtime. As
an be seen in the right graph in Figure 4, thenovel approa
h a
hieves average query times below 0:1 se
-onds even for the index that is based on the full test data set
ontaining nearly 7 million re
ords. Over the di�erent test

 0

 20

 40

 60

 80

 100

 120

43210

A
cc

ur
ac

y

Number of modifications per record

Accuracy for data set with 6,917,514 records

Standard blocking
Sim-Aware Index

Figure 5: Query mat
hing a

ura
y for the full testdata set for varying number of modi�
ations perre
ord. Similar a

ura
y results were a
hieved forthe smaller test data sets.Given name Surname Suburb nameGail (g400) Billman (b455) Boystown (b235)Gayle (g400) Pillman (p455) Boydtown (b350)0.827 0.905 0.942Figure 6: An example re
ord pair that will be missedby the similarity-aware index approa
h be
ause ofdi�erent en
oding values, but will be
ompared bystandard blo
king. The values in bra
kets are the
orresponding Soundex en
odings, and the similari-ties (bottom row) were
al
ulated using the Winklerapproximate string
omparison fun
tion [7℄.data sets (10%, 40%, 70% and 100% of the full data set size),the query time for the similarity-aware index is between 140and 150 times faster than standard blo
king. However, forboth index approa
hes, the query time
urrently in
reaseslinearly with the size of the indexed data sets. Improvingupon this is a
urrent e�ort by the authors.The query mat
hing a

ura
y results are shown in Fig-ure 5 for the largest test data set with varying number ofmodi�
ations per re
ord. As
an be seen for both index ap-proa
hes, mat
hing a

ura
y gets lower with an in
reasednumber of modi�
ations. This is what one would expe
t,as with more modi�
ations per re
ord the likelihood thatanother re
ord (with similar attribute values) be
omes thebest mat
hing re
ord is in
reased.The a

ura
y for the similarity-aware index is higher
om-pared to standard blo
king for the query sets with one andtwo modi�
ations, but then drops more rapidly for the querysets with three and four modi�
ations. This is due to therequirement of the similarity-aware index that the valuesof all attributes for a re
ord pair need to be in the sameblo
k in order to have their similarity added to the a

umu-lator. If two attribute values are in di�erent blo
ks, thenthe
orresponding similarity, whi
h
an be high, will not be
onsidered. For standard blo
king, on the other hand, onlyone pair of attribute values needs to be in the same blo
k inorder that two re
ords are being
ompared.

100%

80%

60%

40%

20%

43210

Q
ue

ry
 c

as
e

1

Number of modifications per record

10% (691K)
40% (2767K)
70% (4842K)

100% (6918K)

Figure 7: Proportion of
ase 1 (query attribute valueis available in similarity-aware index) to
ase 1 plus
ase 2 (new unknown attribute value) for varyingnumber of modi�
ations per re
ord.This is illustrated in Figure 6 with two example re
ordsthat have an overall similarity of 2:674 out of a maximum of3:0. These re
ords would be
ompared by standard blo
kingbe
ause at least one attribute (given name)
ontains valuesthat are in the same blo
k; whereas they would not be
om-pared by the similarity-aware index, be
ause two of the threeattributes (surname and suburb name) have di�erent blo
k-ing key values and thus the
orresponding similarities wouldnot be added into the a

umulator.Although this e�e
t may lead to standard blo
king havinghigher a

ura
y on more heavily modi�ed query re
ords, it
an also lead to lower a

ura
y for standard blo
king
om-pared to the similarity-aware index when query re
ords areof relatively good quality, as
an be seen in Figure 5 for thequery sets with one or two modi�
ations only. Improvingthe similarity-aware index and a
hieving equal or even bet-ter mat
hing a

ura
y than standard blo
king in all
ases isone of the
urrent resear
h e�orts by the authors.Finally, Figure 7 shows the proportion of query attributevalues that were available in the similarity-aware index (
ase1) and thus no similarities had to be
al
ulated at querytime. As
an be seen, the more modi�
ations a query re
ordhad, the more likely the modi�ed attribute values were notin the index and thus their similarities had to be
al
ulated.However, even with modi�
ations in all four query re
ord at-tributes, more than 40% of all attribute values were availablein the index and thus their similarities were pre-
al
ulated.This results shows the eÆ
ien
y of the similarity-aware in-dex in speeding up query mat
hing by pre-
omputing simi-larities between re
ords while the index is built.
6. CONCLUSIONS AND FUTURE WORKIn this paper, a novel index approa
h for real-time entityresolution has been presented and evaluated experimentallyon a large real-world data set. The experiments showed thatthis approa
h
an mat
h query re
ords more than two ordersof magnitude faster than a basi
 standard index approa
hthat is traditionally used for entity resolution. The novelapproa
h requires less than double the amount of memoryof the standard index, but building the index
an take up-totwenty times longer.

For query re
ords that do not
ontain too many varia-tions and errors, the a

ura
y of the novel index approa
h
an be better than the standard blo
king approa
h. How-ever, when most or all attribute values in a query re
ord
ontains variations and errors, then mat
hing a

ura
y
androp signi�
antly. Improving upon this drawba
k is one ofthe major avenues for additional work on this novel index ap-proa
h. Other areas of future resear
h in
lude a theoreti
alanalysis of the
omplexity and s
alability of this index ap-proa
h, improving the query mat
hing time, and
ondu
tingexperiments on a variety of other real-world databases.To the best of the authors' knowledge, the similarity-aware inverted index presented in this paper is the �rst ap-proa
h aimed at developing real-time entity resolution onlarge databases that
ombines approa
hes from informationretrieval with traditional entity resolution te
hniques.
7. REFERENCES[1℄ A. Aizawa and K. Oyama. A fast linkage dete
tion s
hemefor multi-sour
e information integration. In WIRI'05,Tokyo, 2005.[2℄ R. Baxter, P. Christen, and T. Chur
hes. A
omparison offast blo
king methods for re
ord linkage. In ACMSIGKDD'03 Workshop on Data Cleaning, Re
ord Linkageand Obje
t Consolidation, Washington DC, 2003.[3℄ R. Bayardo, Y. Ma, and R. Srikant. S
aling up all pairssimilarity sear
h. In WWW'07, Ban�, Canada, 2007.[4℄ A. Behm, S. Ji, C. Li, and J. Lu. Spa
e-
onstrainedgram-based indexing for eÆ
ient approximate string sear
h.In IEEE ICDE'09, pages 604{615, Shanghai, China, 2009.[5℄ I. Bhatta
harya and L. Getoor. Query-time entityresolution. Journal of Arti�
ial Intelligen
e Resear
h,30:621{657, 2007.[6℄ M. Celikik and H. Bast. Fast error-tolerant sear
h on verylarge texts. In ACM Symposium on Applied Computing,pages 1724{1731, Honolulu, Hawaii, 2009.[7℄ P. Christen. A
omparison of personal name mat
hing:Te
hniques and pra
ti
al issues. In Workshop on MiningComplex Data, held at IEEE ICDM'06, Hong Kong, 2006.[8℄ P. Christen. Automati
 re
ord linkage using seeded nearestneighbour and support ve
tor ma
hine
lassi�
ation. InACM SIGKDD'08, pages 151{159, Las Vegas, 2008.[9℄ P. Christen and R. Gayler. Towards s
alable real-timeentity resolution using a similarity-aware inverted indexapproa
h. In AusDM'08, CRPIT vol. 87, Glenelg,Australia, 2008.[10℄ W. Cohen, P. Ravikumar, and S. Fienberg. A
omparisonof string distan
e metri
s for name-mat
hing tasks. InIJCAI'03 Workshop on Information Integration on theWeb (IIWeb), pages 73{78, A
apul
o, 2003.[11℄ W. Cohen and J. Ri
hman. Learning to mat
h and
lusterlarge high-dimensional data sets for data integration. InACM SIGKDD'02, pages 475{480, Edmonton, Canada,2002.[12℄ M. Elfeky, V. Verykios, and A. Elmagarmid. TAILOR: Are
ord linkage toolbox. In IEEE ICDE'02, pages 17{28,San Jose, 2002.[13℄ A. Elmagarmid, P. Ipeirotis, and V. Verykios. Dupli
atere
ord dete
tion: A survey. IEEE Transa
tions onKnowledge and Data Engineering, 19(1):1{16, 2007.[14℄ I. Fellegi and A. Sunter. A theory for re
ord linkage.Journal of the Ameri
an Statisti
al So
iety,64(328):1183{1210, 1969.[15℄ L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,S. Muthukrishnan, and D. Srivastava. Approximate stringjoins in a database (almost) for free. In VLDB'01, pages491{500, Roma, Italy, 2001.[16℄ L. Gu and R. Baxter. De
ision models for re
ord linkage. InSele
ted Papers from AusDM, Springer LNCS 3755, pages

146{160, 2006.[17℄ M. Hadjieleftheriou, A. Chandel, N. Koudas, andD. Srivastava. Fast indexes and algorithms for set similaritysele
tion queries. In IEEE ICDE'08, pages 267{276,Can
un, Mexi
o, 2008.[18℄ M. A. Hernandez and S. J. Stolfo. The merge/purgeproblem for large databases. In ACM SIGMOD'95, SanJose, 1995.[19℄ L. Jin, C. Li, and S. Mehrotra. EÆ
ient re
ord linkage inlarge data sets. In DASFAA'03, pages 137{146, Tokyo,2003.[20℄ D. Kalashnikov and S. Mehrotra. Domain-independent data
leaning via analysis of entity-relationship graph. ACMTransa
tions on Database Systems, 31(2):716{767, 2006.[21℄ C. Kelman, J. Bass, and D. Holman. Resear
h use of linkedhealth data { A best pra
ti
e proto
ol. Aust NZ Journal ofPubli
 Health, 26:251{255, 2002.[22℄ M. Kumar, S. Moriah, and S. Krishnamoorthy.Performan
e evaluation of similarity join for real timeinformation integration. In Bangalore Annual ComputeConferen
e, Bangalore, India, 2009.[23℄ C. Li, J. Lu, and Y. Lu. EÆ
ient merging and �lteringalgorithms for approximate string sear
hes. In IEEEICDE'08, pages 257{266, Can
un, Mexi
o, 2008.[24℄ C. Li, B. Wang, and X. Yang. VGRAM: Improvingperforman
e of approximate queries on string
olle
tionsusing variable-length grams. In VLDB'07, pages 303{314,Vienna, Austria, 2007.[25℄ X. Liu, G. Li, J. Feng, and L. Zhou. E�e
tive indi
es foreÆ
ient approximate string sear
h and similarity join. InIEEE WAIM'08, pages 127{134, 2008.[26℄ E. Rahm and H. H. Do. Data
leaning: Problems and
urrent approa
hes. IEEE Data Engineering Bulletin,23(4), 2000.[27℄ M. Weis and F. Naumann. Spa
e and time s
alability ofdupli
ate dete
tion in graph data. Te
hni
al Report 25,Hasso-Plattner-Institut, University of Potsdam, Germany,2007.[28℄ W. E. Winkler. Overview of re
ord linkage and
urrentresear
h dire
tions. Te
hni
al Report RR2006/02, USBureau of the Census, 2006.[29℄ I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes:Compressing and indexing do
uments and images. MorganKaufmann, 2nd edition, 1999.[30℄ C. Xiao, W. Wang, X. Lin, and J. Yu. EÆ
ient similarityjoins for near dupli
ate dete
tion. In WWW'08, pages131{140, Beijing, 2008.[31℄ X. Yin, J. Han, and P. Yu. Link
lus: EÆ
ient
lustering viaheterogeneous semanti
 links. In VLDB'06, pages 427{438,Seoul, Korea, 2006.[32℄ J. Zobel and A. Mo�at. Inverted �les for text sear
hengines. ACM Computing Surveys, 38(2), 2006.

