
Similarity-Aware Patchwork Assembly for Depth Image Super-Resolution

Jing Li Zhichao Lu Gang Zeng Rui Gan Hongbin Zha

Key Laboratory on Machine Perception, Peking University

Abstract

This paper describes a patchwork assembly algorithm

for depth image super-resolution. An input low resolution

depth image is disassembled into parts by matching similar

regions on a set of high resolution training images, and a

super-resolution image is then assembled using these cor-

responding matched counterparts. We convert the super-

resolution problem into a Markov Random Field (MRF) la-

beling problem, and propose a unified formulation embed-

ding (1) the consistency between the resolution enhanced

image and the original input, (2) the similarity of disas-

sembled parts with the corresponding regions on training

images, (3) the depth smoothness in local neighborhoods,

(4) the additional geometric constraints from self-similar

structures in the scene, and (5) the boundary coincidence

between the resolution enhanced depth image and an op-

tional aligned high resolution intensity image. Experimen-

tal results on both synthetic and real-world data demon-

strate that the proposed algorithm is capable of recovering

high quality depth images with ×4 resolution enhancement

along each coordinate direction, and that it outperforms

state-of-the-arts [14] in both qualitative and quantitative

evaluations.

1. Introduction

Depth images become more and more popular and have

been extensively used in modern applications such as in-

teractive free-viewpoint video [13], semantic scene analy-

sis [10], and human pose recognition [18], thanks to the

widespread 3D imaging hardwares like Kinect and TOF

cameras. The upper limit on the precision and spatial res-

olution of sensing devices affects their application perfor-

mance, especially when the scene to be captured is in a large

scale where close and fine scans are cumbersome and labor

intensive, and also when the capturing devices have to be

placed in a long distance.

Depth image super-resolution is intrinsically an ill-posed

problem. Most of prior arts either exploit additional data

from the scene, such as multiple depth images from nearby

viewpoints [17, 1] and an aligned high resolution im-
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Figure 1. An overview of the patchwork assembly algorithm.

age [23, 15], or utilize prior shape knowledge, such as self-

similarity structures [11] and a training database for rectan-

gular patches [14]. To the best of our knowledge, however,

the object composition has never been taken into consider-

ation.

Two key observations are that many types of natural and

man-made objects (e.g. buildings, cars, human bodies, etc.)

can be disassembled into similar parts, and that by using

these parts one can assemble a plausible copy of a differ-

ent object of the same type. These motivate us to design

a patchwork [26, 25] assembly algorithm for depth image

super-resolution. We first collect high resolution depth im-

ages from different scenes and objects to build a training

database. The input low resolution image is then disas-

sembled into regions representing object parts which are

matched with those on the training images. We finally as-

semble the super-resolution image using these correspond-

ing matched regions from the high resolution training im-

ages. An overview of the patchwork assembly algorithm is

shown in Fig. 1.

Segmenting an image into semantic parts itself is a tra-

ditional hard problem, which tends to be more complicated

than the problem at hand. Here we are interested by a differ-

ent definition of object part: an object region that commonly

exists on several objects of a same type, or a corresponding

depth image region that repeats on different images. Thus

instead of explicitly extracting object parts based on their

appearances from a single input image, we disassemble the

input image into parts by detecting regions with similar ap-

pearance from the training images.
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Another fact is the interplay between disassembling and

assembling steps: the similarity based disassembling could

provide basic materials for assembling, while a quality-

aware assembling provides useful feedbacks for disassem-

bling. That is to say, the two steps should be considered

within a unified optimization framework. We formulate this

patchwork assembly problem as a MRF labeling problem,

namely that we aim to optimally segment the input low res-

olution depth image into several regions with different la-

bels which correspond to a high resolution counterpart on

training images. It allows us to jointly optimize the consis-

tency between the resolution enhanced image and the origi-

nal input, the similarity of disassembled parts with the cor-

responding regions on training images, the depth smooth-

ness in local neighborhoods, and the boundary coincidence

between the resolution enhanced depth image and an op-

tional aligned high resolution intensity image.

Moreover, the scene may contain self-similar structures

providing an additional clue [24] to further improve the en-

hanced depth image [11]. We address the self-similarity

by adding soft constraints with regard to label and shape

consistency between repeating structures in the MRF based

optimization process.

1.1. Related Work

Due to their simplicity, classic upsampling techniques

like nearest neighbor, bilinear, or bicubic interpolations

are most convenient treatments for resolution enhancement.

Without additional knowledge about the scene, they often

produce jagged steps or blurry boundaries, which prevents

their usages from demanding applications. Fattal [4] pro-

posed to generate sharp edges based on a statistical edge

dependency relating certain edge features of two different

resolutions. Yang et al. [22] chose to selectively adjust

the local gradients to restore antialiased edges. The bilat-

eral filtering [20] smoothes images by means of a nonlinear

combination of nearby depth values, which is prone to error

at depth edges. The guided image filtering [9] considers

the content of a guidance image, and performs an edge-

preserving smoothing operation. These techniques either

are difficult to extend in areas of texture or tend to smooth

out sharp geometric details.

With additional depth images captured at nearby loca-

tions, Schuon et al. [17] developed an optimization frame-

work embedding data fidelity and geometry prior in order

to produce high quality depth maps. Cui et al. [1] used a

probabilistic scan alignment approach to fuse noisy scans

to achieve 3D shapes with high quality. Rajagopalan et

al. [16] proposed a super-resolution method through in-

duced camera motion and used MRF to fuse multiple low

resolution image with an edge-adaptive prior. Hahne and

Alexa [8] combined depth images taken with differing in-

tegration times to decrease the noise in each image. Izadi

et al. [12] designed a GPU-based pipeline to track the 3D

pose of the sensor and reconstruct 3D models by merg-

ing low resolution images from Kinect in real-time. These

multiple-image-based methods can only be used to capture

static scenes, and moreover the quality of their results are

sensitive to the errors in estimating viewpoint locations.

For intensity image super-resolution, most related to

ours, Freeman et al. [5, 6] converted the super-resolution

problem into an MRF multi-class labeling problem, but the

formulation is based on the rectangular patch and is hard

to capture objects and parts. Glasner et al. [7] combined

multi-image-based methods with example-based methods

and used redundant information from repeating patches to

reconstruct a high resolution image. Sun et al. [19] com-

puted over-segmentation of the image based on texture sim-

ilarity, extracted descriptor from each region and compared

texture from an external database. Yang et al. [21] em-

ployed sparse representation to retrieve high resolution im-

age based on sparse linear combinations from an atom dic-

tionary learned from corresponding low and high resolution

patches. Compared with intensity images, depth images

generally contain more noise with non-Gaussian distribu-

tion and are of lower resolution. The descriptors for image

intensity and texture are also different from those for geo-

metric entities.

With an aligned intensity image, Diebel and Thrun [2]

proposed an MRF formulation based on the observation that

discontinuities in range and intensity tend to co-align. Park

et al. [15] further extended the MRF framework with a non-

local means term to preserve thin structures in the image.

Yang et al. [23] employed a cross bilateral filter to itera-

tively refine the input low-resolution range image, and the

high resolution intensity image is used to build a cost vol-

ume. Dolson et al. [3] also used joint bilateral filter to up-

sample range data, but their method relies on a monocular

image sequence and a stream of sparse range measurements

to produces a dense, high-resolution dynamic depth map of

the scene. Stereo cameras are used in [27] to improve the

depth map, which leads to better performance than a single

intensity image. In our algorithm, we treat the aligned inten-

sity image as optional since the image is either sometimes

unavailable or needs additional concerns about registration

and synchronization. In the cases when an aligned intensity

image is available, we combine it as an additional constraint

in our MRF formulation.

The proposed approach also differs from state-of-the-arts

with a similar training database [14] in several aspects: 1)

Ours employs an assembly based strategy, matches regions

on the input depth image with those on the training images,

and propagates the corresponding regions along their neigh-

borhoods to form matched object parts, while [14] only con-

siders individual patches and does not match their neighbors

to obtain object parts; 2) The proposed algorithm achieves



(a) Training images by rendering (b) Training images from [14]

Figure 2. Example of the training images from different sources.

pixel-wise accuracy in high-resolution image, while the

prior art [14] computes a unique correspondence for each

rectangular patch (i.e. 12 × 12) on high resolution image;

3) Our energy formulation naturally encodes similar part

detection, patchwork assembly, self-similarity enhancement

within a same framework. To the best of our knowledge, our

algorithm is the first depth image super resolution algorithm

that employs a patchwork assembly strategy and formulates

the problem as a pixel-wise MRF labeling problem.

2. Problem Statement

In order to make the depth image super resolution prob-

lem well defined, we employ a training database {DH
k , k =

1, 2, · · · ,K} (see Fig. 2) as prior shape knowledge simi-

lar to [14], where DH
k is a high-resolution depth image and

can be obtained by either projecting a synthetic model or

collecting with modern high-end laser scanners.

Given an input low-resolution depth image DL, the pro-

posed patchwork assembly algorithm aims to disassemble

DL into parts DL =
⋃

l R
L
l , such that each part RL

l is

similar to a certain high-resolution region RH
l on a train-

ing image DH
k in the database, and assembles the resolution

enhanced image DH =
⋃

l R
H
l using these corresponding

regions {RH
l }.

Thus we formulate the depth image super resolution

problem as a multiple label image segmentation problem.

Let L(x) denote the label of a pixel x on the high-resolution

depth image, and we use labels to distinguish different re-

gions, such that RH
l is mapped as

RH
l (x) = DH(x), with L(x) = l. (1)

More precisely, a label presents a specific index indicat-

ing the location of the corresponding component from train-

ing images for assembling, together with the transformation

of this component, namely that l = (k,d, s, t) with k being

the index of training image in the database, d being the co-

ordinate displacement between a corresponding region on

the input depth image and its counterpart on the k-th train-

ing image, and s and t being the scaling and translation of

the corresponding component along the depth direction:

RH
l (x) = s ·DH

k (x+ d) + t, given l = (k,d, s, t), (2)

and hence if given a label assignment L we can compute the

high-resolution depth image DH as

DH(x) = s ·DH
k (x+ d) + t, if L(x) = l = (k,d, s, t).

(3)

We thus convert the depth image super resolution problem

into a multiple label image segmentation problem.

3. Energy Minimization

We propose to solve the above mentioned MRF labeling

problem by minimizing the following energy functional

Etotal = Edata+λl·Elabel+λd·Edepth+λs·Esimilar, (4)

where Edata penalises the dissimilarity between the input

depth image DL and the resolution enhanced image DH ,

Elabel penalises the label inconsistency among neighbor-

ing pixels, Edepth penalises the depth discontinuous bound-

aries, and Esimilar penalises the label and depth inconsis-

tency between self-similar structures. λl, λd, λs are weight-

ing parameters controlling the importance of each term.

Data Term Edata: The data term ensures that the assem-

bled high-resolution depth image DH resembles the low-

resolution input DL. Given a label assignment L(x) = l =
(k,d, s, t), DH can be calculated with Eqn. (3). Let u be

a function that maps the coordinate x in the high-resolution

image to a coordinate u(x) in the low-resolution image with

the nearest neighbor (NN) interpolation. The NN interpola-

tion is proven to be superior by [17], although the reliablity

of this interpolation decreases with the increasing geometric

details. To address this problem, we introduce a weighting

scheme that characterises the interpolation reliablity:

Edata =
∑

x

e−α·ϕ(x) · |DH(x)−DL(u(x))|,

with ϕ(x) =
∑

v∈N
u(x)

|DL(u(x))−DL(v)|, (5)

where Nu is a local neighborhood of u, ϕ(x) measures the

magnitude of local geometric details around x, and α is a

controlling parameter for the negative exponential function.

Label Coherency Term Elabel: The label coherency term

emphasizes the label consistency between neighboring pix-

els on the high-resolution image. It encourages disassem-

bling the depth image into a smaller number of larger parts,

extracting similar components with a larger area of support-

ing regions, focusing more on comparing more global struc-

tures and ignoring tiny details, and approaching component-

and module-level assembling. It naturally allows adding ge-

ometric details from training images based on rough struc-

ture similarity, even when local evidences are not efficiently

captured by the low-resolution image and thus are insuffi-

cient for a data-driven modeling.



Since the interpolation reliability of low-resolution im-

age becomes lower when detailed geometric changes occur,

we should exploit more global structure to recover the de-

tails and thus we have:

Elabel =
∑

x

∑

y∈Nx

σ(ϕ(x,y)) · δ(L(x) 6= L(y))

with ϕ(x,y) =
ϕ(x) + ϕ(y)

2
, (6)

where σ(w) = 1
1+e−α·w is the sigmoid function and

δ(true) = 1, δ(false) = 0 is the delta function. ϕ(x,y)
estimates the magnitude of geometric changes between

neighboring x and y with ϕ(x) defined in Eqn. (5). Nx

denotes the local neighborhood of x.

Depth Smoothness Term Edepth: The depth smoothness

term ensures smooth transition in depth and penalizes sharp

contrast with high curvatures in local neighborhoods. We

also make this term sensitive to the estimated magnitude of

local geometric changes ϕ(x,y) as defined in Eqn. (6):

Edepth =
∑

x

∑

y∈Nx

e−α·ϕ(x,y) · |DH(x)−DH(y)|, (7)

where again we use Nx to denote the local neighborhood of

x, and α is a controlling parameter for the negative expo-

nential function.

Self-Similarity Term Esimilar: The self-similarity term

enforces intrinsic constraints among similar parts in the

scene (see Fig. 3). Let (xi,xj) denote a pair of correspond-

ing pixels in two similar parts on the depth image, and let

L(xi) = (ki,di, si, ti) and L(xj) = (kj ,dj , sj , tj). The

depth values of xi and xj may be different since the simi-

lar parts are often distributed in different scales and depths,

but their shapes should be disassembled into similar com-

ponents and thus their labels are correlated. More precisely,

xi and xj should be mapped into a unique location of the

same component on a training image, which implies:

(ki = kj) & (xi + di = xj + dj), (8)

and we thus define Esimilar as:

Esimilar =
∑

(xi,xj)∈S [s(xi,xj) · σ(
ϕ(xi)+ϕ(xj)

2 ) ·

δ(ki 6= kj | xi + di 6= xj + dj)], (9)

where σ and δ are the sigmoid and delta functions as in

Eqn. (6). ϕ(x) measures the magnitude of local geometric

details around x as in Eqn. (5). S is the set of all corre-

sponding pixel pairs in similar parts. s(xi,xj) measures

the similarity of the pair, like the cross-correlation scores

between the depth neighborhoods of the two pixel. We give

the design details of this function later in Eqn. (13).

Input low-res depth image High-res training images in database

Figure 3. An example of self-similar structures in scene and their

counterpart in training images.

3.1. With Additional Intensity Image

An additional high resolution intensity image is often

available from modern scanners, such as Kinect and TOF

cameras. Prior arts [23, 15] anisotropically diffuse depth

values based on the boundaries shape on intensity image.

We fuse the optional intensity image I by including it in the

energy functional.

It is very likely that the variation in geometry and appear-

ance are concurrent. The low resolution depth image may

fail to capture some details but the high resolution intensity

image provides cues. We adapt the magnitude estimation

function of geometric details, ϕ(x) and ϕ(x,y) in Eqn. (5)

and (6), by encoding both depth and intensity information:

ϕc(x) =
∑

v∈N
u(x)

|DL(u(x))−DL(v)|

+ γ1 ·
∑

y∈Nx

‖I(x)− I(y)‖2, (10)

ϕc(x,y) =
ϕ(x) + ϕ(y)

2
+ γ2 · ‖I(x)− I(y)‖2, (11)

where we assume the high resolution intensity image I and

depth image DH share the same coordinate system. γ1, γ2
are used to control the importance of intensity information.

Replacing ϕ(x) with newly defined ϕc(x) in Edata,

Esimilar in Eqns. (5,9) and ϕ(x,y) with ϕc(x,y) in Elabel,

Edepth in Eqns. (6,7) results in the fused energy terms.

3.2. Optimization Algorithm

With the patchwork assembly pipeline we have con-

verted the depth image super resolution problem into a MRF

labeling problem, and designed the energy functional in

Eqn. (4) to fuse the criteria and constraints in order to de-

scribe the optimization goal. Different from classic multiple

label image segmentation, the label L(x) = l = (k,d, s, t)
in the proposed formulation is in a much higher dimension

space, and even with discretization, the complexity of such

a problem is unaffordable for modern computing hardwares.



Candidate Label Calculation We simplify the problem

by limiting the labels L(x) with a smaller number of pos-

sible candidates. The strategy is to compare the low-

resolution local neighborhood of x in the input image with

high resolution local neighborhoods in all training images in

the database. The most similar candidates with top scores

are kept and the parameters l = (k,d, s, t) for each candi-

date label are calculated based on the transformation of the

corresponding locations. This patch-based similarity de-

tection is inspired by [14], where the input is treated as a

collection of non-overlapping patches of rectangular shape,

and the patches are then compared with a patch database.

Different from their method, we aims to calculate the best

matching candidates for every pixel locations, and more-

over we must guarantee that neighboring pixels share a por-

tion in their labels such that they can be merged to one label

segment and thus regarded as in a same object part in the

patchwork assembly pipeline.

For each pixel location u in the input low resolution im-

age, we calculate the SSD (Sum of Squared Differences)

distance between the normalized low-resolution depth patch

centered at u and the normalized downsampled high resolu-

tion patches from all training depth images in the database.

We select the N most similar patches, and for each of

which we calculate the index k of the depth image in the

database, the displacement d of the coordinates between

the patch center and u, and the relative scaling and trans-

lation s and t between this patch and the patch centered at

u. The above parameter assignment forms a possible candi-

date label lu = (ku,du, su, tu). Hence the N most similar

patches provide N candidate labels Lu = {lu}.

Here the low resolution patch is not upsampled with a de-

terministic interpolation method for comparison at the up-

sampled scale due to the introduction of noise by such an

interpolation. Similar to [14], the high resolution training

images in the database are prefilterred and downsampled to

make them the same size and comparable to low resolution

patches on the input image.

Given a pixel location x on the high-resolution image,

let {uk} denote the M closest pixel locations on the input

low-resolution image. We define N × M candidate labels

Lx for x as the following form in order to guarantee that

neighboring pixels share a large portion in their labels:

Lx =

M⋃

k=1

Luk
. (12)

Self-Similarity Detection We search for similar patches

for every pair of locations (ui,uj) on low resolution image.

Let SSDui,uj
denotes the Sum of Squared Differences dis-

tance between the two normalized depth patches centered at

ui and uj . We select patch pairs with sufficient small SSD

scores and filter out planar patches. We then extract and

merge pixel correspondences to form the self-similarity set.

The self-similarity score of a pixel pair is defined as

s(xi,xj) = e
−β·SSD

u(xi),u(xj) , (13)

where u(x) is the nearest neighbor coordinate mapping

from the high resolution to the low resolution. β is a con-

trolling parameter for the negative exponential function.

Graph-cuts Optimization We choose to use graph-cuts

to minimize our energy functional in Eqn. (4), since max-

flow-based optimizations are proven to achieve a global

minimum solution while their complexities remain in the

order of polynomial time in terms of the number of the un-

derlying graph nodes and edges. We use α-expansion to

solve the converted multiple label segmentation problem.

4. Experimental Results and Discussion

4.1. Implementation Details

Unless otherwise indicated, all experiments were run

with the same parameters and with the same training data.

α in Eqn. (5) is set to 5.0. γ1 and γ2 in Eqns. (10). are set

to 30.0 and 3.0 respectively. β in Eqn. (13) is set to 3.0.

The algorithm is implemented by C++ and runs on a 64-bit

computer with Intel 3.40GHz CPU and 8GB memory.

Training Database Preparation We generate the high

resolution training images by rendering 50 different 3D

models of various types to the camera coordinates of differ-

ent viewpoints and viewing directions. For each model we

produce 8 views by rotating around z axis. We also include

58 synthesized images produced by [14]. Some examples

of training image can be found in Fig. 2. Similar to [14],

we locate and prune redundant planar patches from training

images by detecting depth discontinuities using an edge de-

tector. The amount of remaining non-planar patches used in

our experiments is around 10 million.

4.2. Results and Discussion

We evaluated the proposed algorithm with data from var-

ious sources, including structured light, TOF cameras, Mi-

crosoft Kinect and synthesized data. We show the resolu-

tion enhanced image for a single depth image and compare

it with the nearest neighbor (NN) interpolation, bilateral fil-

tering [20], and patch-based method [14]. Thanks to the

patchwork assembly pipeline, our method is capable of re-

covering fine details, including sharp edge boundaries and

detailed geometric variations. Moreover, these prior arts fa-

vor TOF sensors over Kinect due to the interference from

missing regions around depth boundaries on Kinect images,

while our method is robust against such effect.



Figure 5. ×4 resolution enhancement using Middlebury data of scene “teddy” and “cones”. The first column shows color image and the

corresponding groundtruth image. Columns 2 − 7 are results using nearest neighbor, bilateral filtering [20], guided image filtering [9],

patch-based method [14] and our method (without and with intensity image). For each scene, the first row shows the upsampling results,

and the second row shows the corresponding error map compared with the groundtruth.

In cases when the additional intensity image is avail-

able, we also compare our results with guided image fil-

Figure 4. ×4 resolution enhancement using a TOF image. The

first row shows results of the enhanced depth maps, with the region

within red square is zoomed and shown in the second row. The

third row shows the corresponding normal map and the forth row

shows the zoomed region in the black square. The last row shows

3D model of the reconstruction. We compare our results (column

5) with nearest neighbor (column 1), bilateral filtering [20] (col-

umn 2), guided image filtering [9] (column 3) and patch-based

method [14] (column 4).

tering [9], which performs an edge-preserving smoothing

operator like popular bilateral filter, but has better behavior

near the edges. In our experiments, we use the additional

intensity image as guidance when applying guided image

filtering [9] on the input low resolution image.

Qualitative Comparison Fig. 4 shows a ×4 super reso-

lution result using TOF data of size 800× 800. The nearest

neighbor interpolation produces jagged steps on boundaries

with sharp surface normal variations. The bilateral filtering

and guided image filtering both produce over-smoothed sur-

face normals with blurry boundaries. Patch-based method

recovers sharp details with some artifacts due to the patch-

based matching strategy (see the enlarged regions in Fig. 4).

The surface normal also jumps across the patch boundaries.

Our patchwork assembly method recovers sharp and accu-

rate boundary geometries with smooth transition of surface

normal at pixel-level. The running time for this image is

270 seconds.

Fig. 5 shows two ×4 upsampling results from the Midd-

luebury dataset. We show the error map between the en-

hanced image and the groundtruth, and our method pro-

duces least error compared with other methods. The images

are of size 750 × 900, and it takes 528 seconds to compute

the “cones” image and 439 seconds to compute the “teddy”

image.

Fig. 6 shows ×4 upsampling results for real scenes cap-

tured using Kinect. The Kinect depth image is more chal-

lenging because it contains more error with missing regions

around depth discontinuous boundaries. Our method pre-

serves sharp depth boundaries and small geometric struc-



Figure 6. ×4 upsampling using Kinect data from a real scene. The first column shows input color and depth images. Columns 2 − 7

represent results using nearest neighbor, bilateral filtering [20], guided image filtering [9], patch-based method [14] and our method

(without and with intensity image). The first row corresponds to upsampling results, and the second row show the zoomed region within

the green box of the first row.

Figure 7. ×4 resolution enhancement using synthesized data without intensity images. The columns represent results using nearest

neighbor, bilateral filtering [20], guided image filtering [9], patch-based [14] result and our result. The first and third rows show upsampling

results, and the second and fourth rows show the corresponding normal map. The normal map also shows the difference between the

proposed patchwork assembly algorithm and the patch-based method in recovering rich geometric details.

tures, while prior arts either smooth out depth boundaries

or neglect such thin structures. This Kinect image is of size

640×480, and it takes about 350 seconds to finish the com-

putation.

Fig. 7 shows two results from synthesized data. The cor-

responding normal maps are calculated directly from the

depth images. Results using bilateral filtering and guided

image filtering produces large errors at sharp depth edges,

while results from patch-based method tends to ignore de-

tailed geometry. The proposed patchwork assembly method

is capable of recovering rich details on eyes, nose, mouth,

arms and hands. The two images are of size 640 × 480,

and it takes about 600 seconds on average to generate the

high-resolution images.

Quantitative Evaluation Tab. 1 shows a quantitative

comparison between our method with nearest neighbor, bi-

lateral filtering and patch-based method [14]. We also com-

pare our method with guided image filtering [20] by using

additional cues from an intensity image. Our method out-

performs these prior arts on most of the examples. Bilateral

filtering on Buddha data works a little better than ours, but

the depth boundaries are over-smoothed and the geometry is

not visually pleasing. We also notice the performance boost

given the additional intensity image.

Table 1. Quantitative comparison.

Head Buddha Cones Teddy Lab1 Lab2

NN 0.1306 0.1131 0.0235 0.0254 0.8253 0.7917

Bilateral 0.1093 0.0929 0.0227 0.0243 0.7999 0.7600

Patch [14] 0.1337 0.1080 0.0201 0.0246 0.8623 0.7696

Ours 0.1042 0.0954 0.0181 0.0198 0.7885 0.7342

guided 0.1112 0.1102 0.0217 0.0237 0.8040 0.7738

Ours+color 0.0541 0.0623 0.0162 0.0193 0.7860 0.7318



5. Conclusion

With the patchwork assembly algorithm, we have cast

the depth image super-solution problem into an MRF mul-

tiple label image segmentation problem and proposed an

energy minimization functional to jointly optimize con-

straints from different information sources, including the

input low-resolution depth image, a high resolution train-

ing image database, self-similar scene structures, and an

optional aligned intensity image. Particularly in some ex-

treme cases when only a small size of training images are

available or if the input scene is different from those in the

training images, the proposed algorithm achieves a trade-off

jointly considering the above criteria and can still enhance

the input resolution with a relatively high precision thanks

to the proposed pixel-wise MRF labeling formulation. The

work can be also extended with inputs from multiple view-

points or to dynamic environments with additional concerns

about calibration, registration and synchronization, but the

extensions are beyond the scope of this paper.
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