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Similarity-Based Adaptive Complementary Filter for IMU Fusion

A.R.P. Andriën, D. Antunes, M.J.G. van de Molengraft, W.P.M.H. Heemels

Abstract— This paper addresses the attitude estimation prob-
lem using vector and gyroscope measurements. We propose a
novel adaptation scheme for the complementary filter cut-off
frequency that is based on the similarity between independent
estimates obtained from the vector and gyroscope measure-
ments. The adaptive complementary filter is also derived on
the special orthogonal group and convergence of the filter is
established. The effectiveness of our approach is demonstrated
with simulation results.

I. INTRODUCTION

Estimating the attitude of a rigid body based on sensor
data from an Inertial Measurement Unit (IMU), consisting of
(three-axes) accelerometers, gyroscopes and magnetometers,
is crucial in many applications and in particular in the context
of Unmanned Aerial Vehicles (UAVs). As a result much
work has been developed on attitude estimation over the
years [1]–[13]. However, the attitude estimation problem
has gained a renewed interest recently. In fact, the trend
in the last few years in the UAV industry is that of size
and cost reduction. Therefore, it is often the case that
the available data from low-cost IMUs does not provide
sufficiently accurate information for the current estimation
techniques to deliver the desired attitude accuracy [13].

The most popular IMU-based attitude estimation ap-
proaches are the Kalman filter (KF) and the complementary
filter (CF) [1]. There are many variants of the Kalman filter,
such as linear [2], [3], extended Kalman filters (EKFs) [4]–
[7] and unscented Kalman filters (UKFs) [8], [9]. Some of
the advantages of linear KFs are their effectiveness and low
implementation cost, as well as the guaranteed optimality
and stability under the assumption of linear process and
measurement models as well as Gaussian noise and dis-
turbance processes. However, for nonlinear processes the
EKF and UKF typically show better results, at the cost of
more computational complexity and the absence of stability
guarantees. In the context of complementary filters, one of
the first applications of the linear CF to attitude estimation
was presented in [10]. Nonlinear CFs that operate directly
on the Special Orthogonal Group (SO(3)) have also been
developed and successfully implemented in [11], [12] and
[13]. One of the main advantages of the CFs over KFs is
the fact that they do not require an explicit model of the
dynamics and/or sensors, which is hard to obtain in many
applications and in particular in the context of small-scale
UAVs, where some aerodynamic effects such as turbulence,
drag and ground effects have a significant effect but are hard
to model. Another advantage is its simplicity, since it relies
on simple low and high pass filtering of the sensor data.

The idea behind the complementary filter is to combine

attitude estimates obtained using only vector measurements
derived from the accelerometer and magnetometer, relying
on on-board measurements of the gravitational acceleration
and magnetic field vectors, and attitude estimates using only
the gyroscope. Integrating the gyroscope provides attitude
estimates with accurate high frequency content, but poor low
frequency content due to integration of low-frequency noise
resulting in a time-varying bias. In turn, the vector measure-
ments are based on the assumption that the accelerometer
and magnetometer only measure the gravitational vector
and earth magnetic field, respectively. Under this assump-
tion the noise of the vector measurements contains mainly
high frequency content resulting from vibrations and sensor
limitations. The complementary filter combines high-pass
filtered estimates from the gyroscope and low-pass filtered
attitude estimates from the vector measurements. In the
simplest version of the complementary filter both high-pass
and low-pass filters are first order and determined by a single
parameter, the cut-off frequency. The smaller (larger) the cut-
off frequency, the more the attitude estimate relies on the
gyroscope (vector) measurements.

The complementary filter is a simple time-invariant filter,
both in the linear [10] and nonlinear versions [11], [13],
which performs well under the above stated assumption
that the accelerometer and magnetometer only measure the
gravitational vector and earth magnetic field, respectively.
However, under the effect of body accelerations and magnetic
disturbances caused by the environment, this assumption is
no longer valid, resulting in poor attitude estimates (see
Figure 2). Therefore it is reasonable to expect that adaptive
filtering [14], meant to cope with signals with time-varying
frequency content, could potentially lead to better perfor-
mance. While the work in this direction is limited, there
are some recent contributions for UAV attitude estimation,
which have focused on the adaptation of the filters in
order to account for the shortcomings in the sensors. For
instance, in [15] an adaptive linear KF is proposed, where
the measurement noise covariance matrix is adapted based
on the difference between the accelerometer measurements
and the gravity vector. In [16] and [17] adaptive EKFs are
proposed, where the adaptation is based on the deviation
of the actual from the expected measurement and the same
deviation used in a fuzzy logic setting, respectively. Adaptive
complementary filters (ACFs) have also been used as in [18],
[19] and [20], where adaptation based on comparing the ac-
celerometer with the gravity vector is used. Furthermore, [21]
provides a complementary filter in the least squares sense
(also known as Wahba’s problem [22]), using the difference
between the output of the filter and the measurement by the
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accelerometer for adaptation and [23] proposes a multiple
model adaptive complementary filter, with adaptation based
on the same measure.

In this paper we propose a new adaptation rule for
changing the parameter of the complementary filter online,
determining which measurement (either from the gyroscope
or from the vector) is more relevant for the attitude estimate.
The rationale behind our approach is that the attitude estimate
should rely on vector measurements if the independent esti-
mates using only vector measurements and only gyroscope
measurements are similar over a time window, possibly apart
from a constant factor due to low-frequency noise of the
gyroscope estimate. Otherwise the attitude estimate should
rely instead on the gyroscope, since this is an indication
that significant disturbances are affecting the vector mea-
surements. The main difference in our method compared
to others in the literature is the manner in which the
complementary filter gain is adapted. In our case it relies on a
similarity measure; to assert similarity the signals (estimates
from vector and gyroscopes) must be considered over a
moving time window of immediate past data. Moreover,
we show that this adaptation concept is not only applicable
for estimating single angles with linear models but also
for estimating rotational matrices considering the non-linear
kinematic model in SO(3). In fact, we extend the work in
[13] to this adaptation setting and show that the convergence
proofs given there can be easily extended to the proposed
setting in this paper as well. We illustrate the effectiveness
of our approach through simulation results using a full non-
linear model of a quadcopter and IMU sensors.

The contribution of the paper is therefore twofold. First
we propose a novel adaptation rule for complementary fil-
ters based on the similarity between gyroscope and vector
estimates; second we establish convergence of this filter.

The remainder of the paper is organized as follows.
The standard attitude estimation framework is described in
Section II where we also motivate the need for an adaptive
approach. In Section III we introduce the proposed method
considering linear models and in Section IV our method is
extended to the special orthogonal group, for which we show
convergence. Section V shows the main advantages over the
non-adaptive filter using simulations and Section VI contains
concluding remarks and directions for future work.

II. BACKGROUND & MOTIVATION

Let I denote an inertial world fixed frame with z-axis
aligned with the gravity vector, but pointing upwards, and
the IMU fixed frame be denoted by B, which will be referred
to as the body-fixed frame. Moreover, let R ∈ SO(3) denote
the rotation matrix from B to I and ω = [ωx, ωy, ωz]

T ∈ R3

denote the angular velocity of B with respect to I expressed
in B. Then the attitude kinematics are given by

Ṙ = Rω×, (1)

where a× denotes the skew symmetric matrix of a such that
a×v = a × v for all vectors a and v and vex(·) denotes
the inverse operation, so that vex(a×) = a. The rotation

matrix R can be parametrized by the three x-y-z Tait-Bryan
angles rotating around the axes of the body frame of the
UAV, namely roll (φ), pitch (θ) and yaw (ψ). The attitude
kinematics in these coordinates are given by

λ̇ = Q(λ)ω, (2)

where λ = [φ, θ, ψ]T ∈ R3 is the angle vector and Q(λ) is
given by

Q(λ) =

1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

 , (3)

where cε, sε and tε denote the cosine, sine and tangent of
an angle ε, respectively. Note that for small angles we have
Q(λ) ≈ I , and we obtain a linear model. This linear model
is often considered in practice and will be used in the sequel
to illustrate our ideas.

The accelerometer measures body accelerations in the
three axes in B (neglecting Coriolis effects), as given by

aB = RT ρ̈−RT
0

0
g

+ na, (4)

where ρ̈ ∈ R3 are the body accelerations in I, g is the Earth’s
gravitational acceleration and na is the accelerometer noise.

The magnetometer measures the magnetic field in the
body-frame, which is characterized by

mB = RTmI + dm + nm, (5)

where mI ∈ R3 is the Earth’s magnetic field in the inertial
frame, nm ∈ R3 is the magnetometer noise and dm ∈ R3

contains the magnetic disturbances caused by the environ-
ment, such as electric motors and nearby ferromagnetic
materials.

The accelerometer and magnetometer measurements can
be combined to give an algebraic estimate of the angle vector.
In fact, we start by noticing that by assuming negligible
accelerations and magnetic disturbances we have that

aB ≈ −RT
0

0
g

 , mB ≈ RTmI . (6)

The rotation matrix parametrized by the roll-pitch-yaw an-
gles is given by:

R =

cθcψ cψsθsφ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ

 . (7)

Then, estimates for the roll and pitch angles can be directly
determined from the accelerometer measurement as

φ̂v = atan2 (aB,y, aB,z) , (8)

θ̂v = −atan2
(
aB,x,

√
a2
B,y + a2

B,z

)
, (9)

where atan2 denotes the four-quadrant arctangent. Using
these estimates the measured magnetic field vector is rotated
as

m∗B = Ry(θ̂a)Rx(φ̂a)mB (10)
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and the yaw angle is subsequently estimated as

ψ̂v = −atan2
(
m∗B,y,m

∗
B,x
)
. (11)

This results in a direct estimate of the angle vector as

λv = λ+ nv, (12)

where nv ∈ R3 is considered non-stationary noise. The
non-stationary behavior results from the assumption that the
accelerometer only measures the gravity vector, which is
valid only at slow accelerations in near-hover, and magnetic
disturbances caused by the environment and the motors of
the quadcopter are negligible. This results in correlated, high
frequency noise for the angle vector measurements.

An estimate of the angular velocities is given by the
gyroscope as

ωg = ω + nω + nbias, (13)

where nω ∈ R3 is considered white noise and nbias is a sensor
bias. By assuming small angles and integrating the angular
rate measurements according to (2) another estimate for the
angle vector, denoted as λg , can be obtained. However, even
when assuming nbias = 0, due to the white noise component
in (13) this estimate will be corrupted by a random walk
signal b(t) leading to

λg = λ+ b(t), (14)

which in practice leads to a poor low-frequency estimate
of λ using this method, often interpreted as a time-varying
offset/bias. Note that we assume here that there are no other
disturbances, e.g. device failure, acting on the gyroscope, so
that the angle estimate resulting from it can be assumed to
be accurate up to the bias.

A. Complementary Filter
As mentioned previously, the complementary filter is a

common method to fuse the two measurements, λv and λg ,
combining the strengths of both. In the Laplace domain it
takes the form

Λ̂(s) =
C(s)

s+ C(s)︸ ︷︷ ︸
F1(s)

Λv(s) +
s

s+ C(s)︸ ︷︷ ︸
F2(s)

Ωg(s)

s
, (15)

where F1 and F2 are a low-pass and a high-pass filter,
respectively, which satisfy

F1(s) + F2(s) = 1, (16)

for any choice of the compensator C(s). Schematically this
can be represented as in Figure 1. Although there have been
considerable efforts made in designing C(s) in the literature,
the most common choice is that of a simple gain C(s) =
α > 0, for which the filter in (15) combined with (12) and
(13) results in

Λ̂(s) =
α

s+ α
Λv(s) +

s

s+ α

Ωg(s)

s
(17)

=
α

s+ α
Λ(s) +

s

s+ α

Ω(s)

s
+

α

s+ α
Nv(s)

+
s

s+ α

Nω(s)

s
. (18)

+
C(s)

+ 1
s

Λv + Λ̂

−

Ωg

Fig. 1. Complementary filter

Note that the first two terms on the right hand side in (18)
assure that the method converges in the absence of noise,
whereas the two noise terms are filtered. The random walk
term is high-pass filtered, which leads to low-pass filtered
white noise. The term Nv , which as discussed before is
assumed as mostly having high-frequency content, is low-
pass filtered.

B. Motivation

If the noise Nv would be stationary we could select a
single α and the complementary filter would provide an
adequate solution to the problem of estimating the angles.
However, this noise is not stationary since:

• Under accelerations the accelerometer does not measure
purely the gravity vector anymore, thereby distorting the
angles calculated from this measurement

• Disturbances of the earth magnetic field caused by
(intensive) motor usage and/or the environment will
distort the angle vector estimate

This is demonstrated in Figure 2a, where some typical
angle estimates from the accelerometer and gyroscope mea-
surements are shown for the pitch angle φ, together with
the actual angle and Figure 2b shows the accelerometer
measurements. This shows that the integrated gyroscope
measurement is accurate up to the bias, whereas the ac-
celerometer angle does not show a bias in steady state but
has more noise as well as large distortions when accelerations
are present. As shown in the figure, for the complementary
filter, a small α will filter significantly the non-stationary
noise of the vector estimates but will not be robust to the
offset of the estimate obtained with the gyroscope. In turn,
a large α will be too sensitive to the non-stationary noise of
the accelerometer. This motivates making α time-dependent
and adapt it with respect to perceived properties of Nv (we
will use a similarity based approach in the sequel).

C. Problem Formulation

The problem considered in this paper is that of estimating
the attitude of a body-fixed frame with respect to that of the
inertial frame, parametrized by the rotation matrix R, subject
to the kinematics in (1) and given the vector and gyroscope
measurements given by (12) and (13), respectively. In par-
ticular, the attitude estimate should be robust to disturbances
acting on the vector measurements.
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Fig. 2. Motivation for adaptive gain strategy using data from a simulated
quadcopter. In the plots: (a) Typical angle estimates obtained using the
vector (φ̂v) and gyroscope (φ̂g) measurements, together with the actual
angle (φ) and the estimate given by the complementary filter with a small
α (φ̂S ) and a large α (φ̂L). (b) Associated accelerometer signals, showing
the connection between accelerations and deviations for the vector estimate.
Note that for the complementary filter, a small α will filter significantly the
non-stationary noise of the vector estimates but will be not robust to the
offset of the estimated obtained with the gyroscope and a large α will be
too sensitive to the non-stationary noise of the accelerometer.

III. PROPOSED ADAPTIVE METHOD

In order to address the shortcomings described in the
previous section we propose an adaptive gain complementary
filter, where the gain is adapted according to the reliability
of the angle vector measurement, λv .

The adaption is based on the following observation:
If the angular estimate achieved from integrating the gy-
roscope measurement is similar to the angular estimate
determined from the accelerometer and magnetometer mea-
surements over a time window, then the accelerometer and
magnetometer measurements are not distorted.

In order to quantify the similarity between the angle
vector and gyroscope measurement, we introduce a similarity
measure

S(t) = min
(
S̄,min

c
J(c, t)

)
, (19)

where 0 < S̄ <∞ and

J(c, t) =

√∫ t

t−h
(λv(τ)− λg(τ)− c)2

dτ , (20)

which depends on the signal values λg and λv in a moving
time window of length h, i.e., in the interval τ ∈ [t−h, t]. It
can be shown that the minimizer of (19) is simply the mean
value of the two vectors over the window length, i.e.

c∗(t) := arg min
c

J(c, t) =
1

h

∫ t

t−h
(λv(τ)−λg(τ)) dτ. (21)

This results in very fast calculation times for S(t). The
adaptive gain is then defined as

α(t) = ᾱe−KS(t), (22)

where ᾱ > 0 and K > 0. This results in

0 < α ≤ α(t) ≤ ᾱ ∀t ∈ R≥0, (23)

where α = ᾱe−KS̄ .
In order to show convergence of the observer with adaptive

gain in the absence of noise we look at the time domain
representation of the linear complementary filter as presented
in (17) with the adaptive gain (22), leading to

˙̂
λ = ωg + α(t)(λv − λ̂). (24)

We introduce the Lyapunov function

V (λ̃) =
1

2
λ̃2, (25)

where λ̃ = λ− λ̂ is the angle error. Taking the derivative of
(25) with respect to time gives

V̇ = −α(t)λ̃2 − nωλ̃− α(t)nvλ̃, (26)

which is negative definite in the absence of noise, so that
we can conclude that the estimation error converges to zero
in the absence of noise and is input-to-state (ISS) stable
with noise considering the noise properties as discussed in
Section II.

IV. ADAPTIVE COMPLEMENTARY FILTER ON SO(3)

Now that the rationale behind our approach was shown for
the linear case, we move to presenting the ACF directly on
SO(3). The problem of estimating the attitude directly on the
special orthogonal group can be formulated as determining
an estimate R̂ ∈ SO(3) of the rotation matrix R that
rotates the body-fixed frame B to the inertial frame I, from
measurements provided by the accelerometer, gyroscope and
magnetometer of the IMU. If we define the estimator frame
as E , then R̂ rotates E to I.

The attitude kinematics are repeated here for convenience

Ṙ = Rω×. (27)

In [11] a passive complementary filter on SO(3) was in-
troduced, which we will expand by introducing a similarity
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measure for the special orthogonal group. The proposed
estimator in [11] has the following kinematics

˙̂
R = R̂

(
(ωg)× + kpPa(R̃)

)
, (28)

where kp > 0 is the observer gain, Pa(H) = 1
2 (H − HT )

is the anti-symmetric matrix projection operator in matrix
space and

R̃ = R̂TRv ∈ SO(3) (29)

is the rotation from the estimator frame to the inertial
frame and can be considered the error of the observer in
SO(3). The complementary behavior of the estimator in (28)
becomes clear by comparing the block-diagram representa-
tion in Figure 3 with the classical complementary filter in
Figure 1.

As in the linear case, the estimator suffers from distur-
bances applied to the vector measurements, for which we
present a similar adaptation scheme. In order to compare the
gyroscope and vector measurements on SO(3) we use the
quaternion representations of each measurement. Let qv and
qg denote the quaternions representing the rotation calculated
from the angle vector and gyroscope measurements, respec-
tively, then we define the similarity measure, with a slight
abuse of notation, as

S(t) = min
(
S̄,min

c
J(c, t)

)
, (30)

where 0 < S̄ <∞,

J(c) =

√√√√ 4∑
i=1

αi

∫ t

t−h
|qv,i(τ)− qg,i(τ)− ci|dτ , (31)

c = (c1, c2, c3, c4), αi > 0 are positive constants and qv,i
denotes the i-th element of the quaternion. The adaptive gain
is again defined as

kp(t) = k̄e−ξS(t), (32)

with k̄ > 0 and ξ > 0, so that

0 < k ≤ kp(t) ≤ k̄ ∀t ∈ R≥0, (33)

with k = k̄e−ξS̄ .
In order to analyze the convergence of the estimator with

adaptation we follow the same steps as in [13]. First, note
that the goal of the observer is to drive the estimation error
to R̃ → I3, since this means that R̂ and R coincide. We
adopt the Lyapunov function

Et =
1

2
||I3 − R̃||2F =

1

2
tr(I3 − R̃) (34)

and its derivative with respect to time is

Ėt = −kp(t)|vex(P(R̃))|2, (35)

which is negative definite so that we can conclude, using sim-
ilar arguments as in [13], that the estimation error converges
to zero. This shows that the filter in [13] can be extended to
an adaptive filter, and in particular to the one we propose,
without affecting the convergence guarantees.

R̂TRy Pa(R̃)

R̂T

kp
+

R̂A

(ωg)×

∫Rv

ωg

+ A ˙̂
R

R̂

Fig. 3. Passive complementary filter on SO(3)

V. SIMULATIONS

In order to demonstrate the effectiveness of our approach
simulations were performed using a model of a quadcopter
and compared to the non-adaptive passive complementary
filter as proposed in [13].

Figure 4 shows the first simulation, where for the adaptive
filter the maximum gain was set to k̄ = 0.3 [rad · s−1], the
gain factor was set to ξ = 0.4 [−] and the window length
was set to h = 0.5 [s] and for the non-adaptive filter the gain
was fixed to kp = 0.1 [rad · s−1]. The second simulation is
shown in Figure 5, where the setting were k̄ = 1 [rad · s−1],
ξ = 2 [−], h = 0.5 [s] and kp = 1 [rad · s−1]. The trajectories
in both figures are the same.

In both figures the top and middle plot show the angu-
lar estimates resulting from the non-adaptive (blue) filter,
adaptive filter (green), gyroscope integration (red) and the
actual angle (dashed black) for the pitch and roll angles,
respectively. The bottom plot shows the adaptive gain (green)
together with the fixed gain (blue) over time.

Together the figures display the advantage of the adaptive
over the non-adaptive filter. In Figure 4 the fixed gain kp is
set low, thus giving more priority towards the gyroscope mea-
surements, resulting in good estimates during accelerations
but a poor convergence in steady-state, resulting in a large
steady-state deviation. In contrast, the larger gain setting
of Figure 5 results in a better performance in steady-state
conditions, but suffers a great deal from deviations during
accelerations.

The proposed adaptive filter performs better than its non-
adaptive counterpart in both simulations. It allows for a larger
initial gain, resulting in better steady-state behavior, whilst
still allowing the gain to be lowered using the adaptation rule
from (32) in order to avoid deviations during accelerations.
This essentially gives the user more knobs to turn in order
to adjust the filter to the behavior of the sensors of the IMU.

VI. CONCLUSIONS & FUTURE WORK

The problem of attitude estimation considering distur-
bances acting on the vector measurements was solved using
an adaptation scheme for the passive complementary filter
directly on the special orthogonal group. The adaptation
scheme presented is this paper was proven to converge
and simulations results showed that the adaptation scheme
performs as expected, showing the advantages compared to
the non-adaptive filter.
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Fig. 4. Simulation results for k0 = 0.3 [rad · s−1], ξ = 0.4 [−], h =
0.5 [s], kp = 0.1 [rad · s−1]. The top and middle plot show the angular
estimates resulting from the non-adaptive (blue) and adaptive filter (green),
gyroscope integration (red) and the actual angle (dashed black) for the pitch
and roll angles, respectively. The bottom plot shows the adaptive (green)
and fixed gain (blue) over time.

Future work will include experimental testing of our
method, as well as the use of the adaptation scheme on
the passive complementary filter with bias correction and
other, more advanced complementary filters that have been
proposed in the literature. Moreover, we plan to use different
adaptation schemes based on machine learning.
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