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The characterization of gray matter morphology of individual brains

is an important issue in neuroscience. Graph theory has been used

to describe cortical morphology, with networks based on co-

variation of gray matter volume or thickness between cortical areas

across people. Here, we extend this research by proposing a new

method that describes the gray matter morphology of an individual

cortex as a network. In these large-scale morphological networks,

nodes represent small cortical regions, and edges connect regions

that have a statistically similar structure. The method was applied

to a healthy sample (n5 14, scanned at 2 different time points). For

all networks, we described the spatial degree distribution, average

minimum path length, average clustering coefficient, small world

property, and betweenness centrality (BC). Finally, we studied the

reproducibility of all these properties. The networks showed more

clustering than random networks and a similar minimum path

length, indicating that they were ‘‘small world.’’ The spatial degree

and BC distributions corresponded closely to those from group-

derived networks. All network property values were reproducible

over the 2 time points examined. Our results demonstrate that

intracortical similarities can be used to provide a robust statistical

description of individual gray matter morphology.
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Introduction

This paper presents a new method that is used to construct

networks from individual cortices based on intracortical
similarities in gray matter morphology. In these networks, the
nodes represent small regions of gray matter with their 3D

structure intact, and edges are placed between regions that
show statistical similarity. Representing the morphology of the
brain as a network has the advantage that the surface structure
can be described statistically with tools from graph theory.

Recent studies have shown that it is possible to construct
morphological networks using correlations between cortical
areas in cortical thickness or volume across people (He, Chen,

et al. 2007; Bassett et al. 2008; Chen et al. 2008; He et al. 2008)
and that such networks can be used to distinguish between
(clinical) groups (e.g., Wright et al. 1999; McAlonan et al. 2005;

Mechelli et al. 2005; Mitelman et al. 2005; Thompson et al.
2005; Lerch et al. 2006; He, Wang, et al. 2007; Bassett et al.
2008; Colibazzi et al. 2008; He et al. 2008; Liu et al. 2008;
Bernhardt et al. 2009; Modinos et al. 2009).

Although graph theory has provided a statistical framework
to study cortical morphology, it remains unclear as to what are
the most appropriate measures to define nodes and edges in

morphological networks (Bullmore and Sporns 2009). Most
studies choose as the network nodes anatomical areas that are

connected when they covary in thickness or volume across
individuals (He, Chen, et al. 2007; Bassett et al. 2008; Chen et al.
2008; He et al. 2008). Such an approach requires mapping of

individual brains into a standard space and requires prior
models to extract anatomical regions. These requirements
might obscure subtle structural differences that are of
particular interest in clinical populations. Therefore, it is

important to study gray matter networks derived from in-
dividual cortices. In order to do this, we propose to represent
the cortical morphology of individual subjects as networks,

using information about the similarity of gray matter structure
within the cortex.

Covariation of cortical morphology might be related to

anatomical connectivity, induced by mutually trophic influ-
ences (Pezawas et al. 2004) or caused by experience driven
plasticity (e.g., Andrews et al. 1997; Draganski et al. 2004;
Mechelli et al. 2004). Lerch et al. (2006) were the first to

show that cortical thickness correlations qualitatively match
a diffusion tensor imaging (DTI) traced track, implying that
anatomical connectivity could be measured indirectly using

information from the cortical surface. In animal tracer
studies, it has been found that cortical thickness, folding,
and neuronal density can predict anatomical connectivity

(Barbas 1986; Barbas and Rempel-Clower 1997; Dombrowski
et al. 2001). These studies suggest that similarity in thickness
and folding might be an indication of connectivity between

cortical areas.
To our knowledge, only a few studies have tried to quantify

morphological covariation in individual brains (Andrews et al.
1997; Kennedy et al. 1998). For example, Andrews et al. (1997)

found that within individual brains, the gray matter of the
lateral geniculate nucleus, the optical tract, and the primary
visual cortex covary in volume.

Here, we further extend these studies by demonstrating
our method in a sample of 14 healthy subjects who had been
scanned at 2 different time points, as reported previously

(Moorhead et al. 2009; Gountouna et al. 2010). We studied
the graph theoretic properties of the networks obtained and
compared the results with previous studies that constructed
networks from group morphological, functional, and white

matter magnetic resonance imaging (MRI) data. Finally, the
robustness of the method was assessed by measuring the
stability of the network statistics between 2 scanning

sessions.

Materials and Methods

The following sections describe 1) the new method in detail, 2) the
sample to which the method was applied, 3) the data acquisition
details, 4) the preprocessing procedures applied to the scans, 5) the
statistics applied to the networks, and 6) the reproducibility
procedure.
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Extraction of Networks from Individual Gray Matter

Segmentations

Figure 1 shows a schematic overview of the method that is completely
automated and data driven and thus requires no a priori hypotheses
about the regions of interest. First, the method divided the gray matter
segmentation of an individual brain starting from the first nonempty
voxel into 3 3 3 3 3 voxel cubes, in a manner similar to methods that
match scans from different modalities (Borgefors et al. 1997; Ourselin
et al. 2000). Using cubes kept the 3D structure of the cortex intact,
thereby using spatial information from the MRI scan in addition to the
gray matter values in the voxels. By keeping the spatial information
intact, the cubes contain a quantity that reflects the local thickness and
folding structure of the cortex. In contrast, cortical volume measures
only the number of voxels at a location and thus does not include
information concerning the spatial relationship between voxels.
Similarly, cortical thickness measures do not contain information about
the 3D folding structure of the cortex.

The size of the cubes was constrained by 2 factors: 1) The minimum
spatial resolution that still captures cortical folding has been shown to
be 3 mm (Kiselev et al. 2003) and 2) Practical computational limitations
exist with large matrices. Therefore, we used a cube size of 3 3 3 3 3
voxels, corresponding to 6 3 6 3 6 mm3.

Each cube is represented by a different node v in the network. A
network contained on average 6977 nodes (standard deviation [SD] =
783.92, over both subjects and runs). To construct a network, 2 nodes
vj and vm were connected when their similarity metric exceeded
a certain threshold. We chose the correlation coefficient to quantify the
structural similarity between 2 cubes because it is simple to understand

and implement while at the same time fast to compute (Lewis 1995;
Nikou et al. 1999; Weese et al. 1999; van Court et al. 2005; Penney et al.
2008). Additionally, the correlation coefficient does not require
centering of the data because it is normalized by the SD of the cubes.
The numerator of the correlation coefficient rjm between cubes vj and
vm calculates the sum over the product of the differences between the
cubes’ values at each voxel location i = 1, 2, . . . n for n voxels (after
subtraction of the cubes’ average values, respectively, �vj and �vm). The
denominator of the correlation coefficient is the product of the cubes’
SDs:
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Cubes with zero variance were excluded (average < 0.01%). Given
that the cortex is a curved object, 2 similar cubes could be located at an
angle from each other, which could decrease their similarity value. As
the cubes were constructed from discrete MRI data, we have rotated
each seed cube vj by an angle h with multiples of 45� and reflections
over all axes to find the maximum correlation value with target cube
vm :
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Figure 1. General pipeline of the extraction of individual networks. After preprocessing, the gray matter was divided into 3 3 3 3 3 voxel cubes, visualized by a white voxel in the
centre of each cube (1). The red arrows point to 2 example cubes vj and vm (note that the cubes were magnified for illustration purposes). The similarity between all N cubes within
a scan was computed with the correlation coefficient, storing the result in a matrix with 1 to N rows and columns (2). In (3), the similarity matrix was binarized, with a threshold that
ensured a 5% chance of spurious connections for all individuals (corresponding to a significance level of P 5 0.05 corrected for multiple comparisons by an FDR technique using an
empirical null distribution). Twenty random matrices that kept intact the spatial degree distribution were generated for each binarized similarity matrix (4). Finally, we constructed the
networks and computed the degree, BC, the path length, clustering coefficient, and small world property of the extracted and random networks (6).
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In theory, other angles could be chosen as well. However, then
interpolation between voxels would be necessary, which adds noise to
the data and entails computational difficulties. In a simulation study,
using a simplified model for the structural MRI data, we found that
using angles with multiples of 45� recovered 99% of the similarities (see
Supplementary Material, Supplementary Figure 1), suggesting that these
angles are sufficient to correct for rotation.

Binarization of the Similarity Matrix

The similarity matrices were binarized to construct undirected and
unweighted graphs. The graphs were undirected because it is not
feasible to infer causality from correlations. Although continuous
weights would contain the most information (Barrat et al. 2004), the
present study assessed only the basic network topology, and therefore,
the networks were binarized.
To binarize the networks, a threshold was determined for each

individual based on the significance of the correlations. Because
correlations were computed between on average 6977 nodes and
maximized for rotation and reflection, it was necessary to correct for
multiple comparisons when determining the threshold. The false
discovery rate (FDR) technique with the use of an empirical null model
was employed to correct for multiple comparisons (Benjamini and
Hochberg 1995; Benjamini and Yekutieli 2001; Noble 2009; see
Supplementary Material for full description). Briefly, an FDR is the
proportion of false positives within a set of significant scores. This
proportion corresponds to the area greater than a threshold value in
the null model score distribution. An advantage of this approach is that
all individuals will have the same 5% chance of spurious correlations.
After the threshold was determined, it was used to binarize the

networks where the presence of an edge was indicated by 1 (a
correlation greater than the threshold) and absence of an edge
indicated by 0 (a correlation lower than the threshold). In this study,
we use the word ‘‘connections’’ to refer to these edges, as they connect
the nodes in our networks. These connections should not be confused
with anatomical connections and indicate whether any 2 cubes have
statistically similar gray matter morphology. We define the sparsity of
the networks as the connectivity density within a matrix. This was
simply quantified as the percentage number of existing edges
compared with the maximum number of edges possible (N (N – 1),
where N is the number of nodes).

Participants

The data used here were previously collected for the CaliBrain study
(Moorhead et al. 2009; Gountouna et al. 2010). Fourteen healthy
volunteers (9 males, mean age at first scan 34.80, SD = 8.23)
participated in CaliBrain. All participants were native English speakers,
right handed (self-reported), had no history of substance abuse, nor
a history of diagnosed neurological disorder, major psychiatric disorder,
or treatment with psychotropic medication. All participants provided
written informed consent, and the study was approved by the
appropriate research ethics committee.

Data Acquisition

The scans were acquired at the University of Edinburgh (The Division
of Psychiatry and the Scottish Funding Council Brain Imaging Research
Centre within the Centre for Clinical Brain Sciences). The scanner was
manufactured by General Electric (GE Healthcare, Milwaukee, WI) and
had a field strength of 1.5 T. The subjects were scanned twice within
a 6-month period. At each visit, a high resolution T1-weighted scan was
acquired using a 3D inversion recovery-prepared fast gradient echo
volume sequence with a coronal orientation and the following
parameters: repetition time of 8.2 ms, echo time of 3.3 ms, inversion
time of 600 ms, flip angle of 15�, matrix size of 256 3 256, field of view
of 220 mm2, and 128 slices with 1.7 mm thickness without a gap,
resulting in voxels with size 0.86 3 1.7 3 0.86 mm3.

Preprocessing and Segmentation

Twenty-eight T1-weighted scans were preprocessed using SPM5
(Wellcome Department of Cognitive Neurology and collaborators,

Institute of Neurology, London, UK: http://www.fil.ion.ucl.ac.uk/spm/
software/spm5) with Matlab version 7.3.0.298 R2006b (Mathworks,
Natick, MA) on a Dell Precision 690 workstation with RedHat
Enterprise Linux WS v.4. First, the origin of all scans was manually set
to the anterior commissure. Then, the scans were segmented with the
VBM5 toolbox (University of Jena, Department of Cognitive Neurology,
C. Gaser: http://dbm.neuro.uni-jena.de/vbm) using a Hidden Markov
Random Field (HMRF), without SPM priors and the option ‘‘lightly
cleaned’’ (as defined by VBM5) into gray matter, white matter, and
cerebral spinal fluid in native space. The HMRF used spatial constraints
based on neighboring voxels in a 3 3 3 3 3 voxel cube, increasing the
accuracy of segmentation. After segmentation, the data were resliced to
2 3 2 3 2 mm3 voxels. All further data analyses were implemented in
Matlab version 7.3.0.298 R2006b (unless specified otherwise).

Network Metrics

This section describes in detail the following metrics that were
computed from the networks: the degree, the minimum path length,
the clustering coefficient, the small world property, and the between-
ness centrality (BC).

Degree k

The number of connections each node v has.

Minimum and Average Path Length

The minimum path length Li,j between 2 nodes vi and vj is the
minimum number of edges that needs to be traveled to go from a node
vi to node vj. The minimum shortest path length of a node vi is the
average of its shortest path lengths to all other nodes (Dijkstra 1959;
Watts and Strogatz 1998):

Li=
+N

j=1;j 6¼i
Li ;j

N
: ð3Þ

The minimum path length L of a network is the average of Li over all
N nodes (Dijkstra 1959; Watts and Strogatz 1998):

L=
+N

i=1Li

N
: ð4Þ

Clustering C

The clustering coefficient ci of a node vi is defined as the number of
edges kj between its direct neighbors (denoted by subgraph gi) divided
by the total number of all possible edges kgi in gi (Luce and Perry 1949;
Watts and Strogatz 1998):

ci=
+

j ;k2gi
kj

kgi

�

kgi – 1
��

2
: ð5Þ

The clustering coefficient Cnetwork of the network is the average
clustering coefficient ci over all N nodes:

Cnetwork=
+N

i=1ci

N
: ð6Þ

Small World (r)
A network is defined to have the small world property when it shows
more clustering than a random network, its average minimum path length
remaining similar to that of a random graph (Watts and Strogatz 1998;
Humphries et al. 2006). For each network h, random networks were
generated by rearranging the edges while keeping the degree distribution
intact (Maslov and Sneppen 2002) to compute an average �C random and
�Lrandom ( �C random=1

�

h+h

i=1Crandomi
and �Lrandom=1

�

h+h

i=1Lrandomi
). Given

the large size of the networks, a value of h = 20 enabled computation in
a reasonable time (in total 28 3 20 = 560 random networks). The division
of Cnetwork by �C random is denoted by c (Watts and Strogatz 1998;
Humphries et al. 2006):
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c=
Cnetwork

�C random
: ð7Þ

For a network to contain the small world property, it is required that
y is larger than 1. The division of Lnetwork by �Lrandom is denoted by k
(Watts and Strogatz 1998; Humphries et al. 2006):

k=
Lnetwork

�Lrandom
: ð8Þ

For a network to contain the small world property, it is required that
k is approximately equal to 1. The small world property (r) is defined
as the division of c and k (Humphries et al. 2006):

r=
c
k

: ð9Þ

When the small world property (r) of a network is higher than 1, it
indicates that the topology lies between that of a completely regular
(i.e., a lattice) and a completely random network. If one connects all the
nodes with an arbitrary number of their neighbors, the result will be
a fully connected network that is one big cluster. In contrast,
connecting nodes randomly result in a network with minimal
clustering and a much lower average minimum path length. Networks
with the small world property can be placed between these 2 extremes
and are fully connected with minimal wiring length due to a few long-
range connections between clusters (e.g., Watts and Strogatz 1998;
Humphries et al. 2006). Such architecture is efficient because clusters
can be highly specialized units of nodes that are densely connected,
and information can be exchanged between clusters via their long-
range connections (Milgram 1967; Watts and Strogatz 1998; Albert and
Barabási 2002; Newman 2003; Sporns et al. 2004, 2005). Several studies
have shown that networks extracted from imaging data contain the
small world property (e.g., Achard et al. 2006; Bassett and Bullmore
2006; He et al. 2008; van den Heuvel et al. 2008; Gong et al. 2009). The
anatomical architecture of the macaque and cat cortex based on tracer
studies is also small world (Sporns and Zwi 2004).

Betweenness Centrality

BC Quantifies the fraction of shortest paths sj,m between nodes vj and
vm that run through a node vi in the total network G (Freeman 1977):

BC
�

i
�

= +
j 6¼m 6¼i2G

sj ;mðiÞ

sj ;m
: ð10Þ

The BC of a graph is the average over all nodes.
Finally, hubs were defined as nodes with a degree and/or BC value

higher than one SD above the corresponding average value in the
network.

Reproducibility

The intraclass correlation coefficient (ICC) was used to estimate the
reproducibility of all graph theoretic measures. McGraw and Wong
(1996) defined the ICC as the ratio of the variance between subjects
(r2

between) to the total variance in test scores (r2
between+r

2
within):

ICC=r2
between

��

r2
between +r

2
within

�

: ð11Þ

The within-subject variance (r2
within) gives an indication of measure-

ment error between repeated measurements. The ICC is close to 1 if
the measurements of 2 repeated scans are consistent for each subject
in the sample. Computation of the ICC was performed in R version 2.10
(http://cran.r-project.org, using the ‘‘irr’’ package).

Results

Threshold

The threshold used in the binarization process corresponded
to a P value of 0.05 corrected for multiple comparisons with an
FDR (Benjamini and Hochberg 1995; Benjamini and Yekutieli

2001; Noble 2009). Using this threshold ensured that there was
the same chance of including maximally 5% spurious con-

nections in any network. None of the networks had isolated
nodes, in other words, all the networks were fully connected.
The binarized anatomical connection matrices had an average
sparsity of 23% (SD = 1%, over runs and over subjects).

Graph Properties of the Individual Networks

For the first time, this method permitted the investigation of

morphological networks extracted from individual brains.
Initially, to assess whether the extracted networks were small
world, their average clustering coefficient and average mini-

mum path length were compared with those from the random
networks. Figure 2a shows that the individual clustering
coefficients of the extracted networks were higher than those

from the randomized networks (one-sided paired t-tests, range
of t values: min = 55.78; max = 147.92; all P < 2.2 3 10–16).
Figure 2b shows that the individual average minimum path
lengths were significantly higher than those from the random

networks (two-sided paired t-test, t values range: min = 56.11;
max = 88.57; all P < 2.2 3 10–16). In addition, because the ratio
of the average path lengths of the extracted and random

networks was close to 1 (range k: min = 1.04; max = 1.06), all
networks had the small world property. To demonstrate that
the individual measures can be combined into a single group

measure, the clustering coefficient and minimum path length
averaged over all individuals are shown in Figure 2c,d. Similar to

Figure 2. A network contains the small world property when its clustering
coefficient is higher than random networks while its path length is similar. We plotted
the average clustering coefficient (a) and minimum path length (b) for the individually
extracted networks (gray) and their randomized versions (black). The stars indicate
a significant difference of P\ 0.05 tested with a paired t-test between a network
and the average nodal values of its corresponding random network. Next, we plotted
the average clustering coefficient and minimum path length averaged over all
networks (c) and their randomized versions (d). All networks had the small world
property. The stars indicate a significant difference with P\ 0.05 tested with paired
t-tests between the average network values and their random networks.

Page 4 of 12 Extracting Networks from Individual Gray Matter MRI d Tijms et al.

http://cran.r-project.org


the individual cases, the clustering coefficient averaged over
subjects was higher than the random clustering coefficients
(one-sided paired t test: t13 = 15.73, P = 3.83 3 10–10). The
minimum path length averaged over subjects was also higher

than the random path length (two-sided paired t-test: t13 =

30.73, P = 1.60 3 10–13). However, the ratio was close to 1
(mean k = 1.05, SD = 0.01), thus demonstrating that the

networks were small world.
Because the current analysis was performed in native space, all

networks differed in size. Previous studies have shown that

network properties are dependent on the number of nodes, the
degree, and the sparsity of a network (e.g., He, Chen, et al. 2007;
Bassett et al. 2008, 2010; He et al. 2008; Fornito et al. 2010; van

Wijk et al. 2010; Zalesky et al. 2010). To investigate such
relationships, we computed pairwise correlations between all
network measures (see Supplementary Table 1). Briefly, larger
networks had a larger average degree (r = 0.96, P = 4.12 3 10–8),

a smaller minimum path length (r = –0.59, P = 0.03), and a higher
betweenness coefficient (r � 1, P = 2.37 3 10–14). Furthermore,
sparsity had a strong positive relationship with the clustering

coefficient (r = 0.91, P = 5.75 3 10
–6) and the small world

property (r = 0.61, P = 0.02), similar to results previously reported
in other studies (e.g., He et al. 2008). There was, however, no

relation between sparsity and the number of nodes or degree.
To investigate whether the present method produced

networks with properties comparable to previous studies, we
summarized in Table 1 all the morphological studies that

reported network properties in healthy individuals that we are
aware of (He, Chen, et al. 2007, 2008; Bassett et al. 2008;
Sanabria-Diaz et al. 2010; Yao et al. 2010; Zhu et al. 2010) for

a sparsity similar to that found in our study (23%). As all
morphological studies have a smaller network size than the
present study, only the clustering and small world coefficients

can be compared directly with our study since these measures
were significantly related to the sparsity and not to the size of
the networks. In addition, we included studies that extracted
networks of a comparable size to the present study from

functional (Eguı́luz et al. 2005; van den Heuvel et al. 2008;
Zhang et al. 2009, 2010; Fornito et al. 2010; Hayasaka and
Laurienti 2010) and white matter MRI (Hagmann et al. 2007;

Zalesky et al. 2010). Their network properties were summa-
rized for a sparsity of approximately 23% when this level was
available and otherwise for the maximum sparsity.

Only two studies in Table 1 reported networks that were
comparable to the present study in both size and sparsity (van
den Heuvel et al. 2008; Fornito et al. 2010). These 2 functional

MRI studies were highly similar to the present study over all
network properties. This suggests that correlations in resting-
state functional MRI are organized similarly to our intracortical
morphological correlations.

When comparing the present study with other morphometric
studies, its clustering coefficient (0.53) was slightly higher than
previously reported values (min = 0.25; max = 0.49). The value of

the small world property of the present networks (1.28) fell
within a small range of previously reported values (min = 1.17;
max = 1.47), suggesting that intracortical similarities might be

organized similarly to correlations in thickness or volume
between cortical areas assessed over subjects.

The present small world property was strikingly lower than
the remaining functional studies (Eguı́luz et al. 2005; Zhang

et al. 2009, 2010; Hayasaka and Laurienti 2010) and 2 white
matter studies (Hagmann et al. 2007; Zalesky et al. 2010).
Finally, Table 1 shows that the property values of morpholog-

ical networks varied within a narrow range, while those from
functional and white matter MRI varied over a wider range
(e.g., the small world values ranged between 1.28 and 168.54).

Table 1

Graph measures from our study and for comparison from other morphological, functional, and white matter MRI network studies

Study N C L c k r s (%)

Morphological
Present study (n 5 14) 6982 0.53 1.86 1.35 1.05 1.28 23
He, Chen, et al. (2007) (n 5 124), cortical thickness 52 nr nr �1.5 �1.15 �1.3 �23
He et al. (2008) (n 5 97), cortical thickness 54 �0.3 �1.6 �1.35 �1 �1.35 23
Bassett et al. (2008) (n 5 259), gray matter volume 104 �0.25 nr nr nr �1.18 23
Sanabria-Diaz et al. (2010) (n 5 186), comparison of cortical thickness and
cortical surface descriptors.

82 AAL—Area �0.3 �1.81 nr nr �1.28 22
56 Jacob—Area �0.28 �1.84 nr nr �1.23 22
82 AAL—Thickness �0.29 �1.81 nr nr �1.23 22
56 Jacob—Thickness �0.27 �1.84 nr nr �1.18 22

Yao et al. (2010) (n 5 98), gray matter volume 90 �0.49 �1.89 �1.62 �1.1 �1.47 23
Zhu et al. (2010) (n 5 428), gray matter volume 90 (AAL) �0.26 nr �1.20 �1.03 �1.17 23
MRI studies that analyzed networks with N[1000
Functional
Eguı́luz et al. (2005) (n 5 7), Averaged values over 2 tasks; finger-tapping
task and listening to music

4891 0.15 6.0 168.54 1 168.54 0.08

van den Heuvel et al. (2008) (n 5 28), resting-state functional MRI 0.01--
0.09 Hz

10 000 �0.52 �1.75 �1.9 �1.03 �1.85 20

Zhang et al. (2009) (n 5 1), finger movement task 1397 0.54 2.59 11.25 1.3 8.65 4.80
Fornito et al. (2010) (n 5 30), resting-state functional MRI 0.04--0.08 Hz 4320 �0.62 �1.9 �1.35 � 1.06 �1.28 20
Hayasaka and Laurienti (2010) (n 5 10), resting-state functional MRI
0.009--0.08 Hz

16 000 0.24 3 �7 �1.22 6 0.79

Zhang et al. (2010) (n 5 4), finger movement task 2255 0.46 5.39 26.74 2.14 12.50 1.44
White matter
Hagmann et al. (2007) (n 5 1), DSI 4052 0.3 3 20 1 20 0.61
Zalesky et al. (2010) (n 5 3), comparison of DTI and HARDI 4000 DTI �0.28 �8.85 111.7 1.8 62.05 �0.25

4000 HARDI �0.24 �6.15 77.5 1.4 55.36 �0.28

Note: N, the number of nodes in the networks; C, the average cluster coefficient; L, the average minimum path length; c, the ratio of the networks cluster coefficient and that of its randomized version; k,
the ratio of the average minimum path length of the network and that of its randomized version; r, the small world coefficient (c/k); and finally, s, the sparsity of the network in percentage connections.
nr is ‘‘not reported’’. AAL is the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al. 2002). We tried to get measurements for the network values that corresponded to a similar sparsity as the

present study (23%), if this was not possible, we chose the maximum sparsity available. We did not include the studies by van den Heuvel et al. (2009), Yuan et al. (2010), Telesford et al. (2010), and

Fransson et al. (2011) that also investigated network sizes of[1000 because they did not report network sparsity or network property values.
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In particular, the value of c in those studies was 1--100 times
higher than in our study (min = 1.35; max = 168.54), resulting
in higher values for r. This variation might be explained by
differences in procedures used to construct random networks

but also by the low sparsity of these networks (min = 0.08%;
max = 0.79%) in comparison with the present study (23%).
Since the functional and white matter networks are compara-

ble in size, this leaves an interesting question as to whether
keeping sparsity constant would give rise to more similar
networks across different scanning modalities.

Spatial Distribution of the Degrees within the Networks

We tested how the spatial distribution of the number of

connections (i.e., degree) of the nodes in a network compared
with the distribution reported in a previous study that derived
cortical thickness correlations between anatomical areas in

groups (Lerch et al. 2006). In that study, the associative
cortices were found to have the highest correlations in
thickness with other regions of the brain. Figure 3a shows
for each of the 14 subjects a slice from the medial right

hemisphere with the standardized degree for all cubes
resulting in a spatial distribution of the degree values. Each
square is a side of a cube, with warmer colors indicating

a higher degree. The figure shows that all individuals had
a unique spatial distribution of the degree values. To
demonstrate that it is possible to combine these networks

into a single group network, the average of the individual
patterns was plotted after warping these to a standard space
and averaging standardized degree values over subjects (Fig.

3b). Finally, we also used the SPM tool SurfRend to plot the
group result on an inflated surface (Fig. 3c, thresholded for
computational reasons to include just the hubs, i.e., nodes with

Figure 3. (a) A plot of the degree of all cubes for one slice (right medial hemisphere) from each individual subject. The degrees were standardized by their maximal value.
Warmer colors indicate that a cube has more structural similarities with other cubes in the brain than cubes with cooler colors. (b) Shows the group average of the degree
patterns after warping to standard Montreal Neurological Institute space, which supports that most subjects have hubs along the right medial surface of the brain. (c) Shows the
spatial distribution of hubs (nodes with a degree higher than one SD above the mean) averaged over all 14 subjects and plotted on a surface. To quantify the spatial degree
distribution, we plotted the average percentage of hubs for both hemispheres based on the degree (d) and on the BC (e) for 26 anatomical areas (Supplementary Table 2 lists full
names). Each symbol and color combination in all bar plots represents an individual percentage of hubs in that area.
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a degree higher than one SD above the mean). We further
quantified the individual spatial degree patterns by assessing
the spatial distribution of hubs over 26 distinct anatomical
areas per hemisphere extracted with an anatomical mask

(constructed with the WFU Pick-Atlas, http://www.fmri.w-
fubmc.edu, Advanced Neuroscience Imaging Research Core.
See Supplementary Table 2 for a list of the anatomical areas,

their abbreviations, and sizes). The anatomical mask incorpo-
rated approximately the same regions as used in previous
studies that extracted morphological networks using cortical

thickness (He, Chen, et al. 2007; Chen et al. 2008; He et al.
2008). The mask was warped to the individual native spaces,
using the inverted parameter matrices from normalization of

the scans to standard space. Next, for each subject, the degree
hubs (nodes with a degree higher than one SD above the mean,
within a subject) were identified, and the percentage of hubs
was calculated for each anatomical area. The bar plot in Figure

3d confirms that on average 77% of the hubs were located in
the prefrontal (superior, medial, middle, and inferior frontal
gyri, precentral gyrus), the cingulate posterior regions (post-

central gyrus and precuneus), and the insula and temporal
areas (superior, transverse, and middle temporal gyri). For
comparison with other studies, we also plotted the spatial

distribution of the hubs for BC in Figure 3e (hubs defined as
having a BC value that is higher than one SD above the mean
BC), which resulted in a similar spatial distribution with 77% of
the hubs in the same areas as Figure 3d. In Table 2, these areas

are summarized with their corresponding average degree and
BC. Table 2 also indicates other studies that found the same
areas with structural MRI using cortical volume (Bassett

et al. 2008) or cortical thickness (He, Chen, et al. 2007; Chen
et al. 2008), white matter (Iturria-Medina et al. 2008; Gong et al.
2009), and functional MRI (Achard et al. 2006; Buckner et al.

2009). Our hub areas have all been reported by at least one of
the studies above. However, we found a strong relationship
between the percentage of hubs and the region size in both

hemispheres (left hemisphere: r = 0.95, P = 1.72 3 10
–13; and

right hemisphere: r = 0.95, P = 1.65 3 10–13), which might
explain why these areas were also reported as hubs in other
studies (also see: Bassett et al. 2010).

Reproducibility of the Measures

Finally, we assessed the robustness of the method by measuring
the network metrics for scans that were acquired at 2 different

time points in Figure 4. The number of nodes was highly stable
(ICC = 0.98, P = 3.48 3 10–11, Fig. 4a), as was the mean degree
(ICC = 0.92, P = 2.11 3 10–7, Fig. 4b) and the BC (ICC = 0.98, P =

4.97 3 10
–9, Fig. 4f). The mean path length (ICC = 0.77, P = 2.47

3 10–4, Fig. 4c), mean clustering coefficient (ICC = 0.59, P = 8.33
3 10–3, Fig. 4d), and the small world property (ICC = 0.60, P =

0.007, Fig. 4e) were also reproducible, supporting the
robustness of the method for the number of nodes, the mean
degree, and the BC and demonstrating moderate reliability for
the mean path length, mean clustering coefficient, and the

small world property. The reproducibility of the degree,
average minimum path length, and the betweenness coefficient
might reflect their relationship with the number of nodes.

Discussion

We have presented a new method to statistically describe gray
matter from individual T1-weighted MRI scans. The method was

used to construct networks for individual cortices, where the
nodes represented small 3D areas that were connected by
computing intracortical similarities in gray matter morphology.

With the use of simple statistics from graph theory, we found
that all networks had the small world property because they
had a higher clustering coefficient than random networks and
a similar minimum path length. All individual networks also

showed intersubject variability that was most evident in the
spatial distributions of the degree values. The values of the
clustering and small world coefficients were similar to other

morphological networks measured at a comparable sparsity
level (He, Chen, et al. 2007, 2008; Bassett et al. 2008; Sanabria-
Diaz et al. 2010; Yao et al. 2010). All network property values

were highly similar to 2 resting-state functional MRI networks
of comparable size and sparsity (van den Heuvel et al. 2008;
Fornito et al. 2010). However, in comparison to the other
functional (Eguı́luz et al. 2005; Zhang et al. 2009, 2010;

Hayasaka and Laurienti 2010) and white matter MRI studies
(Hagmann et al. 2007; Zalesky et al. 2010), all the property
values (apart from the clustering coefficient) were lower in the

present networks. Finally, the graph theoretic properties were
reproducible, supporting the robustness of the method.

Spatial Distribution of Hubs

The spatial distribution of the hubs (nodes with a high degree)
in our networks showed a striking similarity with the spatial
distribution of hubs based on correlations in cortical thickness

(Lerch et al. 2006). It is important to note that in our study, the
spatial distribution of degree values was measured for each
individual separately, while the cortical thickness study
computed correlations between anatomical areas using obser-

vations from different people. Possibly, the similarity of gray
matter morphology within an individual brain could contribute
to cortical thickness correlations found in the group data.

In the present study, the hubs were mostly located along the
cortical midline. This spatial distribution has a remarkable

Table 2

Hub regions based on degree and BC and comparison with previous studies

Area Av. %
hubs

Av. BC
310�4

Av. deg
310�3

Other studies

CINGr 11.98 1.99 2.76 b2, c2
SFGr 11.76 1.8 2.75 a1, b1, b2, c1,c2, c3
SFGl 11.23 1.77 2.74 a1, b1, b2, c3
MFGl 10.41 2.19 2.74 a1, a2, b2
MFGr 9.89 1.84 2.73 a1, a2, b1, b2, c2
stTGl 9.18 2.05 2.74 a1, b2
CINGl 8.49 1.96 2.73 a2, c2
MidFGr 8.1 2.14 2.74 a1, a2, c2, c3
stTGr 7.7 1.93 2.74 a1, c1,b3
MidFGl 7.28 1.74 2.75 a1, a2, b2, c2, c3
IFGl 7.06 1.55 2.73 a1, a2, c1, c2, c3
IFGr 6.96 1.59 2.74 a1, c2, c3
MTGl 6.84 1.9 2.72 a1, a2, b2, c3
MTGr 6.5 1.94 2.75 a1, a2, b2, c1, c2, c3
PRcGl 4.78 1.48 2.74 a1, b2, c1, c2, c3
PRcGr 4.16 1.51 2.75 a1, b2, c1, c2, c3
INSl 4.06 1.75 2.73 b1
POcGl 3.9 2.42 2.73 a1, b2, c3
PCUr 3.81 1.52 2.75 a1, a2, b1, b2
PCUl 3.77 1.59 2.74 a1, a2, b1, b2

Note: Av. denotes average, BC, the betweenness centrality, and deg., the degree. We compared

our results with a1 Functional study: Achard et al. (2006), a2 Functional study: Buckner et al.

(2009), b1 DTI study: Gong et al. (2009), b2 DTI study: Iturria-Medina et al. (2008), c1

Morphological study: Chen et al. (2008), c2 Morphological study: Bassett et al. (2008), and c3

Morphological study: He, Chen, et al. (2007).

Cerebral Cortex Page 7 of 12

http://www.fmri.wfubmc.edu
http://www.fmri.wfubmc.edu
http://cercor.oxfordjournals.org/cgi/content/full/bhr221/DC1


overlap with the default mode network of brain function
(Raichle et al. 2001) that includes dorsal medial frontal regions
(BAs 8, 9, 10, and 32), superior and middle frontal gyri (BAs 8, 9,

and 10), the medial posterior cingulate (BAs 30 and 31), the
precuneus (BA 7), the paracentral lobule (BA 5), inferior
parietal regions (BAs 40, 39, and 7), the angular gyri (BAs 19
and 39), and inferior frontal areas (BAs 10 and 47). These

regions have shown decreased activation during attention
related tasks but show tonic activation during rest. Recently,
robust structural connections between some of these regions

were found in combined functional and DTI studies, further
supporting the idea that functional connectivity might reflect
structural connectivity (Skudlarski et al. 2008; Greicius et al.

2009; also see Honey et al. 2009). Our networks showed similar
properties to 2 resting-state functional MRI network studies of
comparable size and sparsity (van den Heuvel et al. 2008;

Fornito et al. 2010), also suggesting an overlap between the
organization of intracortical similarities and functional corre-
lations in the brain. It would be interesting to investigate how
similarities in gray matter morphology might be related to

functional coactivation within individuals.

Intracortical Similarities

We can only speculate about the mechanisms that underlie
morphological similarities in the cortex and their relationship to
connectivity. One possible explanation comes from the axon
tension theory proposed by van Essen (1997). He posited that

axons between connected cortical areas cause a mechanical
force, resulting in a tension that pulls connected areas together,
whereas areas that are not connected simply drift apart. Several

predictions resulting from the axon tension hypothesis have
been demonstrated in monkey and human brains. Hilgetag and

Barbas (2005, 2006) showed with a series of tracer studies in
monkey brains that axonal tension shifts cortical layers resulting
in either thinner (heavily pulled on) or thicker cortex, as

predicted by van Essen (1997). In the human brain using
structural MRI, Im et al. (2006) found that cortical thickness and
folding area could account for 50% of the variance in fractal
dimension (i.e., an indication of repetition of structure at

different spatial scales) of the cerebral cortex. They suggested
that a high fractal dimension, combined with a thinner and more
convoluted cortex, is in keeping with the axon tension theory.

Finally, Casanova et al. (2009) reported that in comparison to
controls, people with autism had a reduced gyral window, which
is measured by the depth of gyral white matter and gives an

indication of the space available for connections to and from the
cortex. This measure was correlated with abnormalities in
microcolumnar arrangement of neurons.

The above research indicates that connectivity of the brain
can have an effect on its morphology. Even if intracortical
similarities in gray matter morphology do not have a clear direct
relationship with anatomical connectivity, it does provide

a concise description of the structure of individual cortices.

Methodological Issues and Future Research

The nodes of the networks had a fixed resolution that was
based on the lowest possible scale that can measure both
folding and thickness (Kiselev et al. 2003), combined with
a voxel size that is generally used in functional MRI studies. In

future research, we want to find out how different spatial
resolutions will influence the results.

Another limitation is the rigid extraction of the cubes that

might not optimally correspond to the convolutions of the
brain. Further studies will aim at addressing this issue.

Figure 4. Reproducibility plotted for 2 scans of each subject, represented by a unique symbol and gray shade combination for all the measures: (a) the number of nodes, (b) the
mean degree, (c) mean path length, (d) mean clustering coefficient, (e) the small world property (sigma), and (f) the BC. The value of the ICC is indicated above each plot, with its
corresponding P value. All the measures were reproducible for a P\ 0.05, indicating that the method is robust.
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The number of nodes and the average degree influence the
network property values, as shown here and in recent studies
(He, Chen, et al. 2007; Bassett et al. 2008, 2010; He et al. 2008;
Fornito et al. 2010; van Wijk et al. 2010; Zalesky et al. 2010). As

a consequence, the fact that the number of nodes was highly
stable over time might have caused the stability of the degree,
average minimum path length, and the betweenness coeffi-

cient. In general, such intricate relationships greatly complicate
the comparison of networks, when everything but the network
property of interest should be held constant. However, this is

not always possible. With our approach, the number of nodes
could not be kept constant because the subjects were analyzed
in native space to keep their individual variability intact. But

even when warping individual brains to a standard space where
the same number of nodes are defined for all individual
subjects, some nodes might not be present in their native space
(or might consist of a slightly different combination of gyri and/

or sulci; e.g., Paus et al. (1996) showed in a sample of 247
subjects that a small percentage of them did not have
a paracingulate sulcus in either the left (8%) or the right

(15%) hemisphere). In addition to the number of nodes, the
number of edges in a network could be kept constant.
However, such a procedure will introduce spurious connec-

tions because edges might not exist in some individuals. We
tried to avoid different rates of spurious connections between
individuals, by ensuring that all individual networks had the
same 5% chance of spurious connections. A disadvantage of this

approach is that it can result in different spatial degree
distributions for all individuals. How to compare such different
networks raises important methodological issues that deserve

more attention (Sporns et al. 2005; Rubinov and Sporns 2010;
van Wijk et al. 2010) but lie outside the scope of the present
study. The present method contributes to solving these issues,

by offering an approach that can be applied to different
modalities to extract networks in a similar manner per
individual or group.

Addition of noise to the data was limited by keeping the MRI
scans in their native space, but voxels might still have been
assigned to the incorrect tissue class during segmentation (e.g.,
due to partial volume effects). However, as the method mostly

concerns the spatial relationship between voxels within small
cortical areas, these errors should not have a prominent effect
on the results. Addition of noise to the data was further limited

by using only angles that did not require interpolation to
correct for rotation when computing the correlation co-
efficient. A simulation study (with the use of a simplified model

to represent structural MRI, see Supplementary Figure 1)
estimated that approximately 1% of the similarities could have
been missed using just these angles.

The spatial distribution of the degree and BC hubs showed

a strong positive relationship with the size of an anatomical
region. This relationship might explain why those regions have
been indicated as hubs in other studies as well. This illustrates

how a priori anatomical templates can influence results and
that it is important to develop alternative anatomical parcella-
tion schemes that lead to similarly sized anatomical regions

(e.g., see Hagman et al. 2007; Meunier et al. 2009; Zalesky et al.
2010). Our method does not require a priori parcellation
schemes, and therefore, the results can be easily projected on

any other alternative.
Because the scans can be processed in their native space, the

method would be particularly suited to study connectivity

patterns in subtle neuropsychiatric disorders that do not show
gross disruptions in brain structure. In this case, small changes or
cortical abnormalities could be filtered out during warping
procedures. Most importantly, now the morphology of gray

matter can be described for each individual separately, while
groups could be compared by averaging the descriptive statistics
without the need to warp individual brains to a standard space

or to use a prior model to define anatomical areas.
The subjects were scanned twice within a 6-month period,

and the results indicated that network property values were

stable over that period. We have interpreted this result as an
indication of the robustness of the method since it was
assumed that the structure of subjects’ brains would be stable

over such a period. However, some studies have shown that
gray matter volume can change over time as a result of training
or experience (Andrews et al. 1997; Draganski et al. 2004;
Mechelli et al. 2004; Hyde et al. 2009; but also see Thomas et al.

2009). Even though the present study did not include any
learning or training tasks, we cannot exclude that such effects
might have influenced the results. It would be interesting to

investigate whether the proposed method could find such
subtle differences with a controlled experiment.

Our method shows some resemblance to methods that

compute the fractal dimension (see e.g., Chuang et al. 1991;
Bullmore et al. 1994; Free et al. 1996; Kiselev et al. 2003; Im
et al. 2006; Jiang et al. 2008). Those methods result in one value
per individual, the fractal dimension, which indicates whether

structures are repeated at different spatial scales. By assessing
intracortical similarities within a spatial scale, we have shown
that it is possible to represent the morphology of the cortex as

a network. An important next step would be to investigate how
intracortical similarities contribute to the fractal dimension by
using different spatial resolutions for the cubes.

To conclude, it would be interesting to study how changes
in functional connectivity and in the morphology of the brain
interact. Dysfunctional connectivity between brain regions

seems to be at the core of many mental diseases, such as
schizophrenia (e.g., Friston and Frith 1995; Friston 1998;
Stephan et al. 2009) and autism (e.g., Belmonte et al. 2004).
Although studies have established that both functional and

structural MRI seem to be different in disease than in health,
the interaction of structural and functional changes is not well
understood. Our method could contribute to further un-

derstanding of such interactions by combining individual
anatomical networks with individual functional imaging data.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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