
The Visual Computer manuscript No.
(will be inserted by the editor)

Shuhua Lai · Fuhua (Frank) Cheng

Similarity based Interpolation
using Catmull-Clark Subdivision Surfaces

Abstract A new method for constructing a Catmull-
Clark subdivision surface (CCSS) that interpolates the
vertices of a given mesh with arbitrary topology is pre-
sented. The new method handles both open and closed
meshes. Normals or derivatives specified at any vertices
of the mesh (which can actually be anywhere) can also
be interpolated. The construction process is based on the
assumption that, in addition to interpolating the vertices
of the given mesh, the interpolating surface is also sim-
ilar to the limit surface of the given mesh. Therefore,
construction of the interpolating surface can use informa-
tion from the given mesh as well as its limit surface. This
approach, called similarity based interpolation, gives us
more control on the smoothness of the interpolating sur-
face and, consequently, avoids the need of shape fairing in
the construction of the interpolating surface. The compu-
tation of the interpolating surface’s control mesh follows
a new approach, which does not require the resulting
global linear system to be solvable. An approximate solu-
tion provided by any fast iterative linear system solver is
sufficient. Nevertheless, interpolation of the given mesh
is guaranteed. This is an important improvement over
previous methods because with these features, the new
method can handle meshes with large number of ver-
tices efficiently. Although the new method is presented
for CCSSes, the concept of similarity based interpolation
can be used for other subdivision surfaces as well.

Keywords subdivision · subdivision surfaces · Catmull-
Clark subdivision surfaces · interpolation

Shuhua Lai, Fuhua (Frank) Cheng
Graphics & Geometric Modeling Lab,
Department of Computer Science
University of Kentucky, Lexington, Kentucky 40506-0046
Tel.: +1 859 257 6760
Fax: +1 859 323 1971
E-mail: {slai2, cheng}@cs.uky.edu

1 Introduction

Given a 3D mesh, there exist infinitely many smooth sur-
faces that interpolate the mesh vertices. Any of them can
be used as a solution to the interpolation problem. But,
to a shape designer, usually only one of them is the sur-
face he really wants. That surface, called the designer’s
concept surface, is a piece of important information for
the interpolation process. If that information is available
to the interpolation system, then by constructing an in-
terpolating surface whose shape is most ‘similar’ to the
designer’s concept surface, we get the best result one can
get for the interpolation process. We call an interpolation
process similarity based interpolation if the interpolation
also depends on establishing ‘similarity’ with a reference
surface. In the above case, the reference surface is the
designer’s concept surface.

The result of a similarity based interpolation depends
on the quality of the reference surface. The closer the
shape of the reference surface to the designer’s concept
surface, the better the result. The designer’s concept sur-
face usually is not available to the interpolation system.
But it is reasonable to assume that the given mesh car-
ries a shape similar to the designer’s concept surface. Af-
terall, these are the vertices the user extracted from his
concept surface. Consequently, limit surface of the given
mesh, when viewed as the control mesh of a Catmull-
Clark subdivision surface [2], would be similar to the de-
signer’s concept surface. Therefore, using the limit sur-
face as the reference surface in the interpolation process,
i.e., constructing an interpolating surface of a given mesh
that is also similar to the limit surface of the given mesh,
we should get an interpolating surface that is relatively
close to the designer’s concept surface. This interpolation
concept has not been studied with subdivision surfaces
before, although interpolation using subdivision surfaces
has already been studied for a while [3,4,7,10,12].

2 Shuhua Lai, Fuhua (Frank) Cheng

1.1 Previous Work: A Brief Review

There are two major ways to interpolate a given mesh
with a subdivision surface: interpolating subdivision [3,6,
7,12,16] or global optimization [4,10]. In the first case, a
subdivision scheme that interpolates the control vertices,
such as the Butterfly scheme[3], Zorin et al’s improved
version [16] or Kobbelt’s scheme [7], is used to generate
the interpolating surface. New vertices are defined as lo-
cal affine combinations of nearby vertices. This approach
is simple and easy to implement. It can handle meshes
with large number of vertices. However, since no vertex
is ever moved once it is computed, any distortion in the
early stage of the subdivision will persist. This makes
interpolating subdivision very sensitive to the irregular-
ity in the given mesh. In addition, it is difficult for this
approach to interpolate normals or derivatives.

The second approach, called global optimization, usu-
ally needs to build a global linear system with some con-
straints [11]. The solution to the global linear system is
an interpolating mesh whose limit surface interpolates
the control vertices in the given mesh. This approach
usually requires some fairness constraints in the interpo-
lation process, such as the energy functions presented in
[4], to avoid undesired undulations. Although this ap-
proach seems more complicated, it results in a tradi-
tional subdivision surface. For example, the method in [4]
results in a Catmull-Clark subdivision surface (CCSS),
which is C2 continuous almost everywhere and whose
properties are well studied and understood. The problem
with this approach is that a global linear system needs to
be built and solved. Hence it is difficult to handle meshes
with large number of control vertices.

There are also subdivision techniques that produce
surfaces to interpolate given curves or surfaces that near-
(or quasi-)interpolate given meshes [9,5]. But those tech-
niques are either of different natures or of different con-
cerns and, hence, will not be discussed here.

1.2 Evaluation of a CCSS Patch

Several approaches [13–15,8] have been presented for
exact evaluation of an extraordinary patch at any pa-
rameter point (u, v). In this paper, we will follow the
parametrization technique presented in [8], because this
method is numerically stable, employs less eigen basis
functions, and can be used for the evaluation of 3D posi-
tion and normal vector of any point in the limit surface
exactly and explicitly. Some most related results of [8]
are summarized below.

The parametrization/evaluation approach in [8] is pre-
sented for general Catmull-Clark subdivision surface. That
is, the new vertex point V′ of V after one subdivision is
computed as follows:

V′ = αnV + βn

n∑

i=1

Ei/n + γn

n∑

i=1

Fi/n

where αn, βn and γn are positive numbers and αn +βn +
γn = 1. In a general Catmull-Clark subdivision surface,
new face points and edge points are computed the same
way as in an ordinary Catmull-Clark subdivision surface
[2]. The parametrization/evaluation approach in [8] is
based on an Ω − partition of the parameter space [13,
8]. After a detoured subdivision path and some specific
transforms [8], every point in the parameter space of a
patch can be exactly and explicitly evaluated as follows:

S(u, v) = WT Km
n+5∑

j=0

λm−1
j Mb,j G (1)

where n is the valance of the extraordinary patch 1, W is
a vector containing the 16 B-spline power basis functions:

WT (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3,
u3v, u2v2, uv3, u3v2, u2v3, u3v3] ,

K is a diagonal constant matrix:

K = Diag(1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 64),

and integers m and b can be explicitly computed from
u and v [8]. λj , 0 ≤ j ≤ n + 5, are eigenvalues of the
Catmull-Clark subdivision matrix and Mb,j , 1 ≤ b ≤ 3,
0 ≤ j ≤ n + 5, are matrices of dimension 16× (2n + 8).
λj and Mb,j are independent of (u, v) and their exact
expressions are given in [8]. G is the vector of control
points [8].

One can compute the derivatives of S(u, v) to any
order simply by differentiating W (u, v) in Eq. (1) ac-
cordingly. For example,

∂

∂u
S(u, v) = (

∂W

∂u
)T Km

n+5∑

j=0

λm−1
j Mb,j G. (2)

With the explicit expression of S(u, v) and its par-
tial derivatives, one can easily get the limit point of an
extraordinary vertex in a general Catmull Clark subdi-
vision surface:

S(0, 0) = [1, 0, · · · , 0] ·Mb,n+1 ·G (3)

and the first and second derivatives:

Du = [0, 1, 0, 0, · · · , 0] ·M2,2 ·P
Dv = [0, 0, 1, 0, · · · , 0] ·M2,2 ·P
Duu = [0, 0, 0, 2, 0, · · · , 0] ·M2,2 ·P
Duv = [0, 0, 0, 0, 1, 0, · · · , 0] ·M2,2 ·P
Dvv = [0, 0, 0, 0, 0, 2, 0, · · · , 0] ·M2,2 ·P

where M2,n+1 and M2,2 are of dimension 16 × (2n + 8)
constant matrices [8], Du, Dv, Duu, Duv and Dvv are
the direction vectors of ∂S(0,0)

∂u , ∂S(0,0)
∂v , ∂2S(0,0)

∂u∂u , ∂2S(0,0)
∂u∂v

and ∂2S(0,0)
∂v∂v , respectively. The normal vector at (0, 0) is

the cross product of Du and Dv.
1 Eq. (1) works for regular patches as well, i.e., when n = 4.

Similarity based Interpolation using Catmull-Clark Subdivision Surfaces 3

1.3 Overview

In this paper, we will address some of the problems with
current vertex interpolation techniques by similarity based
interpolation technique developed for CCSSes. Given a
3D mesh P with arbitrary topology, the new method
calculates a control mesh Q whose CCSS interpolates
the vertices of P . The CCSS of Q is constructed with
the additional assumption that its shape is similar to a
reference surface, the limit surface of P . A shape fair-
ing process is not required in the construction process of
the interpolating surface. The computation of the control
mesh Q follows a new approach which does not require
the resulting global linear system to be solvable. An ap-
proximate solution provided by any fast iterative linear
system solver is sufficient. Hence, handling meshes with
large number of vertices is not a problem. Nevertheless,
interpolation of the given mesh is guaranteed. The new
method can handle both closed and open meshes. The
interpolating surface can interpolate not only vertices of
a given mesh, but also derivatives and normals anywhere
in the parameter space of the surface.

The remaining part of the paper is arranged as fol-
lows. In Section 2, the similarity based interpolation tech-
nique for closed meshes is presented. A technique that
works for open meshes is presented in Section 3. Imple-
mentation issues and test results are presented in Section
4. A summary is presented in Section 5.

2 Similarity based Interpolation

2.1 Mathematical Setup

Given a 3D mesh with n vertices: P = {P1,P2, · · · ,Pn},
the goal here is to construct a control mesh Q whose
CCSS interpolates P (the vertices of P , for now). The
construction of Q follows the following path. First, we
perform one or more levels of Catmull-Clark subdivision
on P to get a finer control mesh G. G satisfies the fol-
lowing property: each face of G is a quadrilateral and
each face of G has at most one extra-ordinary vertex.
The vertices of G are divided into two groups. A vertex
of G is called a Type I vertex if it corresponds to a vertex
of P . Otherwise it is called a Type II vertex. Q is then
defined as a control mesh with the same number of ver-
tices and the same topology as G. We assume Q has m
vertices Q = {Q1,Q2, · · · ,Qm}, m > n, and the first n
vertices correspond to the n Type I vertices of G (and,
consequently, the n vertices of P). These n vertices of
Q will also be called Type I vertices and the remaining
m−n vertices Type II vertices. This way of setting up Q
is to ensure the parametric form developed for a CCSS
patch [13,8,15,14] can be used for the limit surface of Q,
denoted S(Q), and we have enough degree of freedom in
our subsequent work. Note that m is usually much big-

ger than n. The remaining job then is to determine the
position of each vertex of Q.

In previous methods [4,10] the n Type I vertices of Q
are set as independent variables, the m− n Type II ver-
tices are represented as linear combinations of the Type
I vertices. Since m−n is bigger than n, this setting leads
to an over-determined system. Without any freedom in
adjusting the solution of the system, one has no control
on the shape of the resulting interpolating surface S(Q)
even if it carries undesirable undulations. In this paper,
instead, the m − n Type II vertices are set as indepen-
dent variables and the n Type I vertices are represented
as linear combinations of the Type II vertices. This ap-
proach provides us with enough degrees of freedom to
adjust the solution of the resulting linear system and,
consequently, more control on the shape of the interpo-
lating surface S(Q).

2.2 Interpolation Requirements

Recall that Type I vertices of Q are those vertices that
correspond to vertices of P . Hence, each vertex of P is
the limit point of a Type I vertex of Q. We assume the
limit point of Qi is Pi, 1 ≤ i ≤ n. Then for each Type I
vertex Qi (1 ≤ i ≤ n), we have

Qi = Ci · Q̃ + cPi (4)

where Q̃ = {Qn+1,Qn+2, · · · ,Qm} is the vector of Type
II vertices. Vector Ci and constant c depend on the topol-
ogy of P and the degree of vertex Pi. Ci and c can be
easily obtained using the formula for calculating the limit
point of a CCSS [4,13,14,8]. The conditions in eq. (4) are
called interpolation requirements, because they have to
be exactly satisfied.

Note that the interpolation requirements in eq. (4)
form a system of linear equations. By solving this sys-
tem of linear equations, we solve the interpolation prob-
lem [10]. But in this case one tends to get undesired
undulations on the resulting interpolating surface [4].

2.3 Similarity Constraints

Two CCSSes are said to be similar if their control meshes
have the same topology and they have similar ith deriva-
tives (1 ≤ i < ∞) everywhere. The first condition of this
definition is a sufficient condition for the second condi-
tion to be true, because it ensures the considered CCSSes
have the same parameter space. The CCSSes considered
here, S(Q) and S(G), satisfy the first condition. Hence,
we have the sufficient condition to make the assumption
that S(Q) and S(G) are similar. In the following, we as-
sume S(Q) and S(G) are similar in the sense of the above
definition.

With explicit parameterization of a CCSS available
[13,8,15,14], it is possible for us to consider derivatives

4 Shuhua Lai, Fuhua (Frank) Cheng

of S(Q) and S(G) at any point of their parameter space.
However, to avoid costly integration of derivative expres-
sions, we will only consider derivatives sampled at the
following parameter points [17]

{(k1/2i, k2/2j) | 0 ≤ i, j ≤ ∞ , 0 ≤ k1 ≤ 2i, 0 ≤ k2 ≤ 2j}
(5)

for each patch of S(Q) and S(G). In the above similarity
definition, two derivatives are said to be similar if they
have the same direction. In the following, we use the sim-
ilarity condition to set up constraints in the construction
process of S(Q).

Given two surfaces, let Du and Dv be the u and v
derivatives of the first surface and D̂u and D̂v the u and
v derivatives of the second surface. These derivatives are
similar if the following condition holds:

Du × D̂u = 0 and Dv × D̂v = 0 (6)

A different condition, shown below, is used in [4,10].

Du · (D̂u × D̂v) = 0 and Dv · (D̂u × D̂v) = 0 (7)

These two conditions are not necessarily equivalent. Our
test cases show that eq. (6) gives better interpolating
surfaces. This is because eq. (7) only requires the corre-
sponding derivatives to lie in the same tangent plane, no
restrictions on their directions. As a result, using eq. (7)
could result in unnecessary undulations. Note that eq.
(6) requires directions of Du and Dv to be the same as
that of D̂u and D̂v, respectively.

Conditions of the type shown in eq. (6) are called sim-
ilarity constraints. These constraints do not have to be
satisfied exactly, only to the extent possible. The inter-
polation method used in [10] considers interpolation re-
quirements only. The method in [4] also includes fairness
constraints to avoid undesired undulations and artifacts.

2.4 Global Linear System

If the derivatives of S(Q) and S(G) are sampled at a
point in eq. (5) then, according to eq. (6) and the deriva-
tive of the parametric form of a CCSS patch [13,17], we
would have

(V T ·Q)× (V T ·G) = 0 (8)

where V is a constant vector of scalars whose values de-
pend on the type of the derivative and the point where
the sampling is performed. This expression actually con-
tains 3 equations, one for each component. Replace the
Type I vertices Q1,Q2, · · · ,Qn in the above expression
with eq. (4) and combine all the similarity constraints,
we get a system of linear equations which can be repre-
sented in matrix form as follows:

D ·X = C

where X is a vector of length 3(m − n), whose entries
are the x, y and z components of Q̃. D usually is not
a square matrix. Hence we need to find an X such that
(D·X−C)T ·(D·X−C) is minimized. This is a quadratic
programming problem and can be solved using a linear
least squares method. It is basically a process of finding
a solution of the following linear system:

A ·X = B (9)

where A = DT D and B = DT C. A is a symmetric ma-
trix. Hence only half of its elements need to be calculated
and stored. Once X is known, i.e., Q̃ is known, we can
find Q1,Q2, · · · ,Qn using eq. (4).

The matrix D could be very big if many sample points
or constrains are used. Fortunately, we do not have to
calculate and store the matrix D and the vector C. Note
that A and B can be written as

A =
∑

Di(Di)T and B =
∑

Dici

where (Di)T is the ith row of D and ci is the ith entry of
C. Note that the number of rows (constrains) of D can
be as large as possible, but the number of its columns
is fixed, 3(m − n). Suppose the ith constraint (See eq.
(8)), with Q1,Q2, · · · ,Qn replaced, is written in vector
form as UT ·X = u. Then UT is the ith row of matrix D
and u is the ith entry of C. Hence rows of matrix D and
entries of C can be calculated independently from eq.
(8) for each constraint of each sample point. Therefore,
A and B can be accumulatively calculated, constraint
by constraint. No matter how many sample points are
used, and no matter how many constraints are considered
for every sample point, only a fixed amount memory is
required for the entire process and the size of matrix A
is always the same, 3(m− n)× 3(m− n).

Note that the solution of eq. (9) only determines the
positions of Type II vertices of Q. Type I vertices of Q are
represented as linear combinations of Type II vertices in
the interpolation requirements defined in eq. (4). Since
interpolation of the vertices of P is determined by the
interpolation requirements (See eq. (4)) only, this means
as long as we can find a solution for eq. (9), the task of
constructing an interpolating surface that interpolates
the vertices of P can always be fulfilled, even if the solu-
tion is not precise. Hence, an exact solution to the linear
system eq. (9) is not a must for our method. An approx-
imate solution provided by a fast iterative linear system
solver is sufficient. As a result, the new method can han-
dle meshes with large number of vertices efficiently. This
is an important improvement over previous methods.

With the similarity assumption, the surface interpo-
lation problem is basically a process of using an iterative
method to find an approximate solution for the global
linear system eq. (9). An initial guess for the iterative
process can be obtained directly from G by scaling G
properly, such that dimension of the scaled limit sur-
face is the same as the interpolating surface. The re-
quired scaling factors sx, sy and sz for such a task can

Similarity based Interpolation using Catmull-Clark Subdivision Surfaces 5

be determined by the condition that the bounding box of
the scaled limit surface is the same as the bounding box
of the interpolating surface. This can easily be done by
comparing the maxima and minima of the vertices of the
given mesh in all three directions with the maxima and
minima of their corresponding limit points. The scaled
mesh called Ĝ, is a good initial guess for the iterative
process because Ĝ is actually very close to the control
mesh of the interpolating surface we want to obtain. In
our implementation, the Gauss-Seidel method is used for
the iterative process. The iterative process would con-
verge to a good approximate solution very rapidly with
this initial guess. However, it should be pointed out that
there is no need to carry out the iterative process to a
very precise level. According to our test cases, a residual
tolerance of the size ε = 10−6 does not produce much
noticeable improvement on the quality of the interpolat-
ing surface than a residual tolerance of the size ε = 10−3,
while the former takes much more time than the latter.
Therefore a relatively large residual tolerance can be sup-
plied to the iterative linear system solver to prevent it
from running too long on the iterative process, while not
improving the quality of the interpolating surface much.
This is especially important for processing meshes with
large number of vertices.

2.5 Additional Interpolation Requirements

In addition to the interpolation requirements considered
in eq. (4), other interpolation requirements can be in-
cluded in the global linear system as well. One can also
modify or remove some of the interpolation requirements
in eq. (4). For example, if we wants the first u−derivative
of the interpolating surface at Pi to be Du, we need to
set up a condition similar to eq. (8) as follows:

(V T ·Q)×Du = 0

where V is a constant vector. The difference here is, this
is not a similarity constraint, but an interpolation re-
quirement. However, if we want a particular normal to
be interpolated, we should set up interpolation require-
ments for the u derivative and the v derivative whose
cross product equals this normal, instead of setting up
an interpolation requirement for the normal directly, to
avoid the involvement of non-linear equations in the sys-
tem. Then by combining all the new interpolation re-
quirements with the original interpolation requirements
in eq. (4), we get all the expressions for vertices that
are not considered independent variables in the linear
system in eq. (9). Note that including a new interpola-
tion requirement in the interpolation requirement pool
requires us to change a variable vertex in eq. (9) to a
non-variable vertex. Actually, interpolation requirements
can be specified for any points of the interpolating sur-
face, not just for vertices of P . This is possible because
we have a parametric representation for each patch of

a CCSS [13,8,15,14]. For example, if we want the po-
sition of a patch at (1/2, 1/4) to be T, we can set up
an interpolation requirement of the form: V T · Q = T
where V is a constant vector whose values depend on
(1/2, 1/4). Therefore the interpolating surface can inter-
polate positions, derivatives and normals anywhere in
the parameter space.

2.6 Interpolation of Normal Vectors

The direction of normal vectors can be interpolated ex-
actly by using additional interpolation requirements. The
key idea is to change some similarity constrains to inter-
polation requirements, which means move some equa-
tions in eq. (8) into the linear system in eq. (4). Actu-
ally the direction of partial derivatives can also be inter-
polated by using such additional interpolation require-
ments. Additional interpolation requirements are condi-
tions like eq. (4) that are guaranteed to be satisfied and
hence, are not involved in the solving of the global linear
system in eq. (9).

However eq. (8) is only good for exactly interpolat-
ing partial derivatives. For exactly interpolating normal
vectors, we need to interpolate the derivatives in u- and
v-directions respectively to avoid the involvement of non-
linear systems. For example, for a given normal vector
V, whose direction is required to be interpolated at point
P in the interpolating surface. Assume the derivatives at
point P in the resulting interpolating surface in u- and v-
directions are D1 and D2, respectively. Then we need to
integrate the following two equations into linear system
eq. (4):

{
D1 × V = 0
D2 × V = 0 (10)

Note that here D1 and D2 can be linearly represented
using only the control points of the corresponding surface
patch [13,8,15,14] and these control points are unknowns
in eq. (4) and eq. (9). Because the above two equations
in eq. (10) now are in linear system eq. (4), which is
required to be satisfied exactly, the exact interpolation
of the direction of normal vector V is guaranteed. For
example, Fig. 1(f) is interpolated not only at vertex po-
sitions, but normal vectors at boundary vertics as well.

3 Handling Open Meshes

The interpolation process developed in the previous sec-
tion can not be used for open meshes, such as the one
shown in Fig. 1(a), directly. This is because boundary
vertices of an open mesh have no corresponding limit
points, nor derivatives, therefore, one can not set up in-
terpolation requirements for these vertices, as required
by the new interpolation process. One way to overcome
this problem is to add an additional ring of vertices along

6 Shuhua Lai, Fuhua (Frank) Cheng

(a) (b) (c) (d) (e) (f)

Fig. 1 Interpolating an open mesh: (a) given mesh; (b) limit surface of (a); (c) extended version of (a); (d) limit surface
of (c); (e) interpolating surface of (a) that uses (d) as a reference surface; (f) interpolating surface of (a) with additional
requirements.

the current boundary and connect the vertices of this
ring with corresponding vertices of the current bound-
ary to form an additional ring of faces, such as the ex-
ample shown in Figure 1(c). The newly added vertices
are called dummy vertices. We then apply the interpola-
tion method to the extended open mesh as to a closed
mesh except that there are no interpolation requirements
for the dummy vertices. This technique of extending the
boundary of a given mesh is similar to a technique pro-
posed for uniform B-spline surface representation in [1].

Note that in this case, the interpolation process does
not use the limit surface of the given mesh, but rather
the limit surface of the extended mesh as a reference
surface. Therefore, the shape of the interpolating sur-
face depends on locations of the dummy vertices as well.
Determining the location of a dummy vertex, however, is
a tricky issue, and the user should not be burdened with
such a tricky task. In our system, this is done by using
locations of the current boundary vertices of the given
mesh as the initial locations of the dummy vertices and
then solving the global linear system in eq. (9) to deter-
mine their final locations. This approach of generating
dummy vertices works fine because dummy vertices only
affect similarity constraints. Figure 1(e) is a surface that
interpolates the mesh given in Fig. 1(a) and uses 1(d) as
a reference surface.

The above setting of the dummy vertices usually is
not enough to create an interpolating surface with the de-
sired boundary shape. Additional requirements (not con-
straints) are needed in the interpolation process. As ex-
plained in Section 2.5, a platform that allows us to define
additional requirements can be created by treating the
dummy vertices as non-variables in eq. (9). We can then
specify new derivative conditions or normal conditions
to be satisfied at the original boundary vertices. With
the additional interpolation requirements, a designer has
more control on the shape of the interpolating surface in
areas along the boundary and, consequently, can gener-

ate an interpolating surface with the desired boundary
shape. For example, Figure 1(f) is an interpolating sur-
face of the mesh given in Figure 1(a), but generated with
additional interpolation requirements. The interpolating
surface obviously looks more like a real glass now.

4 Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on the
Windows platform. Quite a few examples have been tested
with the method described here. All the examples have
extra-ordinary vertices. Some of the tested results are
shown in Figures 1 and 2. Due to limited space, limit
surface of the Utah Teapot which is well known and limit
surface of the mesh shown in Figure 2(r) which is very
simple are not shown here. For all other cases, the limit
surfaces of the given meshes and the interpolating sur-
faces are both shown so that one can tell if these surfaces
are indeed similar to each other in the least squares sense.

In our implementation, only one subdivision is per-
formed on the given mesh for each example and the
first, second and third derivatives in u and v directions
are used to construct interpolation constraints and build
the global linear system. These derivatives are sampled
at points with parameters (1

2i ,
1
2j), i, j = 0, 1 or ∞, for

each patch. That is, 9 points are sampled for each patch,
which is good enough for most cases. For bigger patches
one can use more sample points because patches do not
have to be sampled uniformly.

The original Utah teapot consists of four separate
parts: lid, handle, body and spout. The mesh shown in
Figure 2(n) is actually a set of four meshes, one for each
component of the original Utah teapot. Each mesh is an
open mesh. Although each of these meshes can be inter-
polated separately, Figure 2(q) is generated by regarding
them as a single mesh. The mesh shown in Figure 2(f)

Similarity based Interpolation using Catmull-Clark Subdivision Surfaces 7

(a) Given Mesh (b) Limit Surface (c) Interpolating (d) Given (e) Limit

(f) Given Mesh (g) Limit Surface (h) Interpolating Surface (i) Interpolat-
ing

(j) Given Mesh (k) Limit Surface (l) Interpolating (m) Given Mesh

(n) Given Mesh (o) Limit Surface (p) Interpolating

(q) Interpolating Surface (r) Given Mesh (s) Interpolating Surface

Fig. 2 Interpolating meshes with arbitrary topology.

8 Shuhua Lai, Fuhua (Frank) Cheng

is another example of an open mesh with disconnected
boundaries. Figure 2(h) is the interpolating surface with-
out using additional interpolation requirements in the
construction process.

As can be seen from Figure 2, all the resulting in-
terpolating surface are very smooth and visually pleas-
ing, except the interpolating surface shown in Figure
2(p). The surface has some undulations around the neck,
but we do not think they are caused completely by our
method. We believe this is more of a problem with the
general interpolation concept. Note that the input mesh,
Figure 2(m), has some abrupt changes of vertex positions
and twists in the neck area. This is also reflected by some
visible undulations in the neck area of the limit surface,
Figure 2(o), even though they are not as clear as in the
interpolating surface. An approximation curve/surface,
like a spline curve, can be regarded as a low pass fil-
ter [16], which makes the given control polygon or mesh
smoother. An interpolation curve/surface, on the other
hand, can be regarded as a high pass filter, which magni-
fies undulations or twists in the input mesh. Since a limit
surface is an approximation surface, it reduces the im-
pact of abrupt vertex location changes and twists in the
input mesh while the interpolating surface enhances it.
This is why the undulations are more obvious in Figure
2(p) than in Figure 2(o).

The new interpolation method can handle meshes
with large number of vertices in a matter of seconds on
an ordinary PC (3.2GHz CPU, 512MB of RAM). For ex-
ample, the meshes shown in Figures 2(m), 2(d), 2(a) and
2(n) have 1022, 354, 272 and 138 vertices, respectively. It
takes 51, 14, 3 and 1 seconds, respectively, to interpolate
these meshes. For smaller meshes, like Figures 1(a), 2(j),
2(r) and 2(f), the interpolation process is done almost in
real time. Hence our interpolation method is suitable for
interactive shape design, where simple shapes with small
or medium-sized control vertex sets are constructed us-
ing design or interpolation methods, and then combined
using CSG trees to form complex objects.

5 Summary

A new interpolation method for meshes with arbitrary
topology using general CCSSes is presented. The devel-
opment of the method is based on the assumption that
the interpolating surface should be similar to the limit
surface of the given mesh. Our test results show that
this approach leads to good interpolation results even
for complicated data sets.

The new method has several special properties. First,
by using information from the vertices of the given mesh
as well as its limit surface, one has more control on the
smoothness of the interpolating surface. Hence, a surface
fairing process is not needed in the new method. Sec-
ond, there is no system solvability problem for the new
method. The global linear system that the new method

has to solve does not require an exact solution, an ap-
proximate solution is sufficient. The approximate solu-
tion can be provided by any fast iterative linear solver.
Consequently the new method can process meshes with
large number of vertices efficiently. Third, the new method
can handle both open and closed meshes. It can inter-
polate not only vertices, but normals and derivatives as
well. These normals and derivative can be anywhere, not
just at the vertices of the given mesh. Therefore, the new
method is general.

Acknowledgements Research work of the authors is sup-
ported by NSF under grants DMS-0310645 and DMI-0422126.
Data set of Figure 2(m) is downloaded from

research.microsoft.com/∼hoppe
and the original data sets of Figures 2(r) and 2(f) are down-
loaded from

mrl.nyu.edu/∼dzorin.

References

1. Barsky B A, End conditions and boundary conditions
for uniform B-spline curve and surface representation,
Computers in Industry, 1982, 3(1/2):17-29.

2. Catmull E, Clark J, Recursively generated B-spline sur-
faces on arbitrary topological meshes, Computer-Aided
Design, 1978, 10(6):350-355.

3. Dyn N, Levin D, and Gregory J A, A butterfly subdivi-
sion scheme for surface interpolation with tension control,
ACM Transactions on Graphics, 1990, 9(2):160-169.

4. Halstead M, Kass M, DeRose T, Efficient, fair interpo-
lation using Catmull-Clark surfaces, ACM SIGGRAPH,
1993:35-44.

5. Kersey S N, Smoothing and near-interpolatory subdivi-
sion surfaces, www.cs.georgiasouthern.edu/
faculty/kersey s/private/res/siam2003.pdf

6. Levin A, Interpolating nets of curves by smooth subdivi-
sion surfaces, ACM SIGGRAPH, 1999, 57-64.

7. Kobbelt L, Interpolatory subdivision on open quadrilat-
eral nets with arbitrary topology, Computer Graphics Fo-
rum, Eurographics, V.15, 1996.

8. Shuhua Lai, Fuhua (Frank) Cheng, Parametrization of
General Catmull-Clark Subdivision Surfaces and Its Ap-
plications Computer Aided Design & Applications, 3, 1-4
(2006), 513-522.

9. Litke N, Levin A, Schröder P, Fitting subdivision sur-
faces, Proceedings of the conference on Visualization
2001:319-324.

10. Nasri A H, Surface interpolation on irregular networks
with normal conditions, Computer Aided Geometric De-
sign, 1991, 8:89-96.

11. Nasri A H, Sabin M A, Taxonomy of interpolation con-
straints on recursive subdivision curves, The Visual Com-
puter, 2002, 18(4):259-272.

12. Schaefer S, Warren J, A Factored Interpolatory Subdivi-
sion Scheme for Quadrilateral Surfaces, Curves and Sur-
face Fitting, 2002, 373-382.

13. Stam J, Exact Evaluation of Catmull-Clark Subdivision
Surfaces at Arbitrary Parameter Values, Proceedings of
SIGGRAPH 1998:395-404.

14. Stam J, Evaluation of Loop Subdivision Surfaces, SIG-
GRAPH’99 Course Notes, 1999.

15. Zorin D, Kristjansson D, Evaluation of Piecewise
Smooth Subdivision Surfaces, The Visual Computer,
2002, 18(5/6):299-315.

Similarity based Interpolation using Catmull-Clark Subdivision Surfaces 9

16. D. Zorin, P. Schröder, W. Sweldens, Interpolating Sub-
division for meshes with arbitrary topology, ACM SIG-
GRAPH, 1996:189-192.

17. Kestutis Karciauskas and Jörg Peters, Guided
Subdivision, http://www.cise.ufl.edu/research/ Sur-
fLab/papers/05guiSub.pdf, 2005.

SHUHUA LAI currently is
a Ph.D student in the Depart-
ment of Computer Science at
the University of Kentucky. He
received a BS in Applied Math-
ematics and Computer Appli-
cations from the East China
Normal University, and an ME
in Computer Science and En-
gineering from the Shanghai
Jiaotong University. His re-
search interests include com-
puter graphics and modelling.

FUHUA (FRANK)
CHENG is Professor of
Computer Science and Di-
rector of the Graphics &
Geometric Modeling Lab at
the University of Kentucky.
He holds a PhD from the
Ohio State University, 1982.
His research interests include
computer aided geometric
modeling, computer graph-
ics, parallel computing in
geometric modeling and com-
puter graphics, approximation
theory, and collaborative
CAD.

