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Abstract
Computationally predicting drug^target interactions is useful to select possible drug (or target) candidates for fur-
ther biochemical verification.We focus on machine learning-based approaches, particularly similarity-basedmethods
that use drug and target similarities, which show relationships among drugs and those among targets, respectively.
These two similarities represent two emerging concepts, the chemical space and the genomic space. Typically, the
methods combine these two types of similarities to generate models for predicting new drug^target interactions.
This process is also closely related to a lot of work in pharmacogenomics or chemical biology that attempt to under-
stand the relationships between the chemical and genomic spaces. This background makes the similarity-based
approaches attractive and promising.This article reviews the similarity-based machine learning methods for predict-
ing drug^target interactions, which are state-of-the-art and have aroused great interest in bioinformatics.We de-
scribe each of these methods briefly, and empirically compare these methods under a uniform experimental
setting to explore their advantages and limitations.
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INTRODUCTION
Interactions between drugs and targets (proteins) are

of importance in drug research, such as facilitating

the process of drug discovery [1], drug side-effect

prediction [2, 3] and drug repurposing [4–6]. Drugs

have specific impacts on multiple proteins called tar-

gets by changing pharmaceutical functions of the

targets [7], such as enzymes, ion channels, G pro-

tein-coupled receptors (GPCRs) and nuclear recep-

tors. Known drug–target interactions, however, are

very limited [8–10]. In fact, PubChem [11] contains

around 35 million compounds, although only <7000

compounds have target protein information. This

gives us a strong incentive to develop more effective

and efficient methods to predict drug–target

interactions.

Biochemical experiments or in vitro methods for

finding drug–target interaction are extremely costly

and time-consuming [12–14]. In contrast, compu-

tational or in silico methods can find potential

interactions for in vitro validation more efficiently

[1, 15]. Two major in silico approaches are docking
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simulation and machine learning. Docking simula-

tion is widely used in biology but has two serious

problems: (1) we need to know the three-dimen-

sional structure of a target to compute the binding

of each drug candidate to the target [16–20], but the

three-dimensional structures of many targets, espe-

cially GPCRs, are still unavailable [21, 22]; and (2)

simulation is time-consuming, in that a large amount

of computational resources are needed. On the other

hand, machine learning is more efficient, allowing

larger-scale predictions than docking simulation,

and thus examining a larger number of promising

candidates for further experimental screening. In

this review, we focus on machine learning-based

methods for predicting drug–target interactions.

Machine learning-based methods proposed so far

can be classified into three types:

(i) Feature vector-based approach: The input of

general machine learning is instances, which can

be represented by feature vectors. In our setting,

instances are drug–target interactions, and the fea-

ture vectors can be generated by combining

(structural) chemical descriptors of drugs and

sequences of targets. Then with these inputs, we

can use any standard machine learning method,

such as support vector machines (SVMs) [23–25].

(ii) Similarity-based approach: We can generate

a similarity matrix for drugs, where the (i,j)-
element of the matrix is the similarity of drug

i and drug j, typically being computed by chem-

ical structures. Likewise, a target similarity

matrix can be generated by protein sequence

alignment. Recently, these two similarity matri-

ces have been used in many methods, including

kernel regression [26], bipartite local method

(BLM) [27], pairwise kernel method (PKM)

[28], Laplacian regularized least squares

(LapRLS) [29], net Laplacian regularized least

squares (NetLapRLS) [29], Gaussian interaction

profile (GIP) [30] and kernelized Bayesian

matrix factorization with twin kernels

(KBMF2K) [31]. These similarity-based meth-

ods have a number of clear advantages: (1)

compared with feature vector-based approaches,

similarity-based approaches do not need feature

extraction or selection, which is usually a com-

plex and difficult process. (2) Computing simi-

larity measures such as chemical structure

similarity for drugs and genomic sequence simi-

larity for targets have been already fully

developed and widely used. (3) Similarity-

based approaches can be directly related to

well-developed kernel methods, which can pro-

vide high-performance prediction results. (4)

Similarity matrices show the relationships

among drugs and genes, being consistent with

recent concepts, the chemical space and the gen-
omic space, respectively. These advantages make

similarity-based approaches more promising

than other approaches. In addition, for drugs

or targets, not only a single matrix but also dif-

ferent similarity matrices can be combined [32].

(iii) Other approaches: We can use other informa-

tion, including pharmacological information of

drugs [33] and biomedical documents, from

which implicit co-occurrent compound–protein

relations can be extracted by text mining tech-

niques [34]. However, one major drawback of

the relations from documents is that they might

not be real drug–target interactions.

In light of the properties of these three appro-

aches, we focus on similarity-based machine learning

methods in this review.

Predicting drug–target interactions has currently

attracted much attention in bioinformatics and che-

moinformatics. There already exist three recent

reviews with different emphasis [35–37] and one

special issue [38], to the best of our knowledge.

However, these reviews and special issue have not

been written from a viewpoint of developing ma-

chine learning methods. More detailed comparison

and analysis of machine learning methods would be

useful for biologists and chemists to choose the most

suitable model and for computer scientists to develop

higher-performance prediction methods. In particu-

lar, the most promising similarity-based methods

should be checked more carefully. In addition,

latest methods, such as GIP, KBMF2K and net-

work-based inference (NBI), have not been included

in any of the reviews and the special issue. In this

review, we focus on similarity-based machine learn-

ing methods and systematically compare these meth-

ods, models and information used. Furthermore, we

extensively compare the performance of several rep-

resentative methods under a uniform experimental

setting. We will summarize the performance advan-

tages and drawbacks of the compared methods, and

discuss future perspectives.

The rest of this article is organized as follows:

GENERAL FRAMEWORK describes the data
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and information used in the latest similarity-based

machine learning methods. METHODS briefly ex-

plains these methods. EXPERIMENTS empirically

compares the performance of the methods under a

uniform experimental setting. DISCUSSION AND

CONCLUSION discusses the advantages, limita-

tions and future perspectives of prediction methods.

GENERAL FRAMEWORK
Data sources
Machine learning methods are data-driven. Data on

drugs, targets and drug–target interactions are avail-

able in the following databases: KEGG BRITE [9],

BRENDA [39], SuperTarget [40], DrugBank [41],

DCDB [42] and ChEBI [43]. Table 1 shows two

datasets, Dataset 1 and Dataset 2, that have been

used in experiments of recent similarity-based

machine learning methods.

Major drug similarity matrices can be categorized

into three types: (1) chemical structure-based simi-

larity that can be computed from chemical structures

of drugs by using databases such as DrugBank [41] or

KEGG LIGAND [9]; (2) side-effect-based similarity

that can be computed from side-effect information

of drugs in databases such as SIDER [44] and (3)

gene-expression-based similarity that is computed

from the response of gene expression to drugs,

which can be retrieved from databases such as the

Connectivity Map project [45].

Typical target similarities can be classified into the

following three types: (1) sequence-based similarity

can be computed using sequence information from

databases such as KEGG GENES [9]; (2) protein–

protein interaction (PPI) network-based similarity

can be derived from the distance between two tar-

gets in the PPI network [46–50] and (3) Gene

Ontology (GO) semantic similarity can be computed

using GO annotations [51] in some databases such as

UniProt [52].

It is noteworthy that the similarity between two

drug–target interactions can be directly computed

[28, 53]. One method will be shown in Pairwise

kernel method.

Learning and prediction
The general framework of machine learning for pre-

dicting drug–target interactions has two stages: (1)

training a model and (2) predicting the interaction

of a given drug–target pair by the trained model.

A key underlying assumption of similarity-based

machine learning methods is that similar drugs tend

to share similar targets and vice versa [54–56].

Learning can be of three types: supervised, semi-

supervised or unsupervised learning. In supervised

learning, training data with known labels are used

to train a prediction model. Techniques used in

supervised learning are SVM, kernel methods, logis-

tic regression etc. In semi-supervised learning, train-

ing data with and without labels are used in the

learning process. Typical techniques in semi-super-

vised learning use a graph-based representation.

Unsupervised learning does not need labels, and

unlabeled data are the input. Typical techniques

are clustering methods.

Prediction can be done for three cases: (1) predict-

ing a new target that can interact with a drug that

already has one or more targets, (2) predicting a new

drug that can interact with a target that already has

one or more drugs or (3) predicting a new inter-

action for the pair of a drug and a target that already

has one or more interactions.

METHODS
We briefly introduce the procedure of recent key

similarity-based methods, which are nearest neighbor

(NN), BLM, PKM, LapRLS, NetLapRLS, GIP and

KBMF2K. Note that we do not raise kernel regres-

sion [26], as BLM [27] was empirically proven to

outperform the kernel regression method by system-

atic experiments already. In addition, we briefly ex-

plain NBI, which is not a similarity-based machine

learning method but proposed recently to allow

Table 1: Two datasets used in publications of similarity-based machine learning methods: Dataset 1 was used in
BLM, LapRLS, NetLapRLS,GIP, KBMF2K and NBI, whereas Dataset 2 was used in PKM only

Dataset Number of drugs (databases) Number of targets (databases) Number of interactions (databases)

Dataset 1 932 (KEGG LIGAND) 989 (KEGG GENES) 5127 (KEGG BRITE, BRENDA, SuperTarget,
DrugBank)

Dataset 2 1205 (KEGG LIGAND) 889 (KEGG GENES) 2782 (KEGG BRITE)
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predictions by using drug–target interactions. We

use the following notation throughout this article:

let D ¼ fd1,d2, . . . ,dmg be a drug set, and

T ¼ ft1,t2, . . . ,tng be a target set. Let Sd be a drug

similarity matrix, where the ði,jÞ element of Sd is

denoted by sdðdi,djÞ, which is the similarity score be-

tween drugs di and dj. Similarly, let St be a target

similarity matrix, where the ði,jÞ element of St is

denoted by stðti,tjÞ, being the similarity score be-

tween targets ti and tj. We assume that they are

given and can be an input of any method. Let Y
be a binary matrix of true labels of drug–target inter-

actions, where if drug di and target tj interact with

each other, Yij ¼ 1; otherwise Yij ¼ 0. Let F be a

score function (or matrix), where the ði,jÞ-element of

F, i.e. Fij, shows the score that drug di and target tj
interact with each other. The objectives of the meth-

ods in this section are to estimate F so that F should

be consistent with Y.

Nearest neighbor
NN is used as a baseline method in [27]. Let ydi be a

binary vector, called interactionprofile of drug di, where

the j-th element of ydi is 1 if drug di interacts with

target tj; otherwise 0. Similarly, let ytj be a binary

vector, called interaction profile of target tj.
For new drug dnew, NN computes interaction pro-

file ydnew of dnew as follows:

ydnew ¼ sdðdnew,dnearestÞydnearest ,

where dnearest is the known, most similar drug, i.e.

dnearest ¼ arg maxd sdðdnew,dÞ. Similarly, NN computes

interaction profile ytnew of tnew as follows:

ytnew ¼ stðtnew,tnearestÞytnearest ,

where tnearest is the known, most similar target, i.e.

tnearest ¼ arg maxt stðtnew,tÞ. In this way, we can fill all

elements of ydnew and ytnew , by which we can predict

the score of pairs ðdnew,tjÞ and ðdi,tnewÞ, respectively,

for all i and j. This means that there are two ways of

predicting the score of any pair ðdi,tjÞ, for which the

score is unknown. Thus in this case, we can simply

take the average of the two possible scores.

NN is very efficient, using which we can predict

many new drug–target pairs quickly.

Bipartite local models
BLM extends the idea, called local models, which was

proposed in [27, 57, 58]. BLM turns the problem of

predicting edges in a bipartite graph into a binary

supervised problem.

Drug–target interactions are represented by a

bipartite graph. Figure 1 shows an example of the

bipartite graph, where circles are drugs fd1,d2, . . . ,dmg
and squares are targets ft1,t2, . . . ,tng. If drug di inter-

acts with target tj, then edge Yij connects nodes di
and tj. Suppose that we predict whether t3 interacts

with d2 in Figure 1.

We first focus on d2. We check whether a known

target interacts with d2 and give a label of þ1 if so;

otherwise a label of �1. We repeat this operation for

all known targets. SVM does not need feature vec-

tors of examples but instead similarity (kernel) be-

tween instances [59]. Thus we use the similarity

matrix of targets with the generated labels of all

known targets to train an SVM classifier. We then

use the trained classifier to predict the label of t3, i.e.

whether t3 interacts with d2. Figure 2 shows this pro-

cess schematically in the left-hand side.

The reverse way is also possible. That is, we first

repeat labeling all known drugs by whether interact-

ing with t3 or not. We then train an SVM classifier to

predict if d2 interacts with t3. This part is shown in

the right-hand side of Figure 2. The final prediction

is obtained by averaging the two obtained scores.

BLM can build a classifier for specific drug–target

interactions, which, however, causes a serious com-

putational problem, because BLM has to train

unique classifiers for each of all possible pairs, includ-

ing new drugs or targets.

Pairwise kernel method
SVM in general needs a similarity matrix (kernel) of

instances with labels [28]. PKM is a straightforward

Figure 1: Bipartite graph representing a drug-protein
interaction network.
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SVM-based method and uses drug–target inter-

actions as instances, implying that the similarity be-

tween drug–target pairs needs to be computed. PKM

thus computes the similarity (pairwise kernel) of

drug–target pairs from the drug similarity score and

the target similarity score as follows:

sððd,tÞ,ðd0,t0ÞÞ ¼ sdðd,d
0Þ � stðt,t

0Þ ð1Þ

Figure 3 is a schematic figure of this process,

where the similarity between drug–target pairs is

denoted by S.

PKM then uses the similarity matrix (kernel) of

drug–target pairs with known labels to train an

SVM classifier, which can then predict the scores

of arbitrary drug–target pairs. PKM is more efficient

than BLM, as only one classifier needs to be trained,

by which all new drug–target pairs can be predicted.

However, practically, the kernel matrix can be very

large. For example, for 600 drugs and 500 target

proteins, which are both standard numbers, the size

of the kernel matrix is (600� 500)� (600� 500). In

practice, we cannot use all instances for training, and

negative instances must be randomly sampled to

meet the size limitation of the main memory.

Laplacian regularized least squares and
Net Laplacian regularized least squares
LapRLS attempts to directly estimate interaction

score matrix F for drugs and targets, separately,

which we denote by Fd and Ft, respectively. For

drugs, LapRLS minimizes the squared loss between

Y and Fd with a regularized term of Sd and Fd

[29]. This minimization leads to an analytical solu-

tion by which Fd can be updated by a rule containing

Sd and Y. The same procedure can be performed for

targets. Finally, F is obtained by averaging over Fd

and Ft. LapRLS is efficient because it can predict the

scores of all drug–target pairs at one time.

NetLapRLS is a modification of LapRLS to consider

drug–target interactions more directly [29]. Simply,

NetLapRLS is the same regularized least squares

method as LapRLS, except that Sd in LapRLS is

replaced with another matrix that considers drug–

target interactions.

Gaussian interaction profile
More than one method is proposed in [30]. We

select a method called RLS-Kron average in [30] as

GIP, as this method achieves the best performance

among the methods proposed in [30]. At the first

step, GIP generates a Gaussian kernel from the inter-

action profiles. In this step, GIP considers drugs and

targets separately, and so we first explain the drug

side. For drugs di and dj, a Gaussian kernel is given

as follows:

KGIPðdi,djÞ ¼ expð�gdjydi � ydj j
2Þ,

where gd is a parameter that controls the width of the

Gaussian distribution. GIP then linearly combines

the Gaussian kernel with the drug similarity matrix

into the kernel to be used further. This means that

GIP can consider both the drug similarity score Sd

and the interaction profile similarity. In other words,

GIP can consider only the interaction profile simi-

larity, which means that GIP works without Sd. The

totally same procedure is done for targets. We then

Figure 3: Schematic figure of PKM. Similarity be-
tween (d, t) and (d0, t0) can be computed by the inner
product of the drug similarity between d and d0 and
the target similarity between t and t0.

Figure 2: Procedure of predicting (d2, t3) by BLM.
Circles indicate drugs and squares indicate targets. The
label in a triangle indicates that the corresponding pair
interacts (þ1) or does not (�1).

738 Ding et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/15/5/734/2422306 by guest on 21 August 2022

-
-
-
-
-
-
since 
-
3.4 
 (LapRLS)
 (NetLapRLS) [29]
LapRLS 
-
-
-
3.5 
 (GIP) [30]
s
are
since 
which 


proceed to the second step, where GIP incorporates

the idea of PKM, which computes a pairwise kernel

over drug–target pairs that are shown in Equation

(1). Finally, the resultant kernel matrix is used in

the straight-forward framework of regularized least

squares, which minimize the square loss between the

score function and the true labels with a regularizer.

GIP keeps the same efficiency level as LapRLS but

has a serious limitation that it cannot predict targets

of a new drug or drugs of a new target, because it

uses the interaction profile that cannot be computed

for new drugs (and targets).

Kernelized Bayesianmatrix factorization
with twin kernels
The idea behind KBMF2K is first to project the drug

and target spaces into two low-dimensional spaces

through kernels (similarity matrices) and then to

estimate drug–target interactions under the low-

dimensional spaces [31]. More concretely, for

drugs, KBMF2K has parameter matrix Ad to pro-

ject drug similarity matrix (kernel) Sd into low-

dimensional space Gd. Similarly, target similarity

matrix St is projected by parameter matrix At into

low-dimensional space Gt. Then drug–target inter-

action score matrix F is estimated to be consistent

with both two low-dimensional spaces, Gd and Gt,

i.e. F ¼ GT
d Gt. Figure 4 is a graphical model of

KBMF2K. KBMF2K is inefficient, because estimat-

ing three matrices, F, Ad and At, is an iterative pro-

cess, starting with random initial values.

Network-based inference
As shown in BLM, drug–target interactions can be

represented by a bipartite graph. NBI considers tran-

sition processes over the bipartite graph to compute

the score if a drug and a target interact with each

other [60]. In the bipartite graph, let wi be the degree

of node i, i.e. the number of edges connecting to

node i.
Suppose that we predict the interaction between

drug di and target tj. NBI first computes connection

score vtj!tl between target tj and target tl, by summing

up 1
wk

of drug dk, which connects to both targets tj
and tl, for all dk, as follows:

vtj!tl ¼
X

kjtj!dk!tl

1

wk

This means that if two targets share a larger

number of drugs, the connection score increases. In

particular, if the intermediate drug dk has a lower

degree, the connection score is larger. Then NBI

further extends the connection (from target tl) to

drug di. Connection score vtj!di through target tl
can be computed by summing up vtj!tl weighted

by 1
wl

for all targets tl as follows:

vtj!di ¼
X

ljtl!di

1

wl
vtj!tl

This means that again if drug di connects to a

larger number of targets, the connection score in-

creases, being weighted by the connection score of

the targets. In particular, if the target has a lower

degree, the added connection score is larger.

Finally, the connection score vtj!di is assigned to

the score function F as follows:

Fij ¼ vtj!di

In a general machine learning sense, NBI is not

necessarily a machine learning method and also not a

similarity-based method. However, NBI earns the

score function from given drug–target interactions,

where drug–target interactions can be replaced with

the similarity over drug–target pairs. Thus we add

NBI to this review. Note that NBI cannot predict

targets of a new drug or drugs of a new target, be-

cause a new drug (or a new target) has no edges to

targets (or drugs), by which we cannot compute the

connection scores.

EXPERIMENTS
We empirically checked the performance of the

recent similarity-based machine learning methods.

Data
We used exactly the same data as those in [27].

Drug^target interaction data
Two datasets have been used in the experiments

of recent similarity-based machine learning methods

(See Datasets 1 and 2 in Table 1). However, Dataset

2 is not a drug–target dataset but a ligand–proteinFigure 4: Graphical model of KBMF2K.
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dataset, where ligands are mostly chemical com-

pounds but not drugs. In addition, PKM, the only

method that used Dataset 2, was not originally in-

tended to predict drug–target interactions, but pro-

tein–ligand interactions. Furthermore, most (more

than 77%) of the drugs in Dataset 2 also appear in

Dataset 1, which means that there are very large

overlaps between these two datasets. For these rea-

sons, in our experiments, we just considered Dataset

1, which has four subsets, namely, Nuclear receptors,
GPCRs, Ion channels and Enzymes, obtained from

KEGG BRITE [9], BRENDA [39], SuperTarget

[40] and DrugBank [41]. Table 2 shows the statistics

of these four subsets.

Drug similarity
Drug similarity was computed from the chemical

structures of drugs (obtained from KEGG

LIGAND [9]) by using SIMCOMP [61], which

computes the drug similarity between two drugs d
and d0 as follows:

sdðd,d
0Þ ¼ jd \ d0j=jd [ d0j,

where jd \ d0j is the number of all substructures

shared by d and d0 and jd [ d0j is the number of all

substructures that either of d and d0 has.

Target similarity
Target similarity was computed from target se-

quences (obtained from KEGG GENES [9]) by

using a normalized Smith–Waterman score [62] of

targets t and t0 as follows:

stðt,t
0Þ ¼

SWðt,t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWðt,tÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWðt0,t0Þ

p ,

where SWð�,�Þ is the original Smith–Waterman

score.

Settings
Procedure
We compared the performance of the eight similar-

ity-based methods—NN, BLM, PKM, LapRLS,

NetLapRLS, GIP, KBMF2K and NBI—under five

trials of 10-fold cross-validation (CV). Note that the

same folds were used for all methods. Further note

that the size of the Nuclear receptor subset is much

smaller than the other subsets, by which random

division in CV might be less stable and so the result-

ant performance on this subset might be also more

unstable and less significant than the other subsets.

The CV was done in three different manners:

(1) drug prediction: all drugs were divided into

10-folds, (2) target prediction: all targets were

divided into 10-folds and (3) pair prediction: all

drug–target interactions were divided into 10-folds.

For drug prediction, in each round of 10-fold CV,

90% of rows in Y are used as training data, and the

remaining 10% of rows in Y are used as test data. For

target prediction, in each round, 90% of columns in

Y are used as training data, and the remaining 10%

of columns in Y are used as test data. For pair pre-

diction, in each round, 90% of elements in Y are

used as training data, and the remaining 10% of

elements in Y are used as test data. Note that drug,

target and pair predictions correspond to predicting

new drugs, new targets and new drug–target inter-

actions, respectively. GIP and NBI cannot be applied

to the drug and target predictions, by which only six

methods were compared in the drug and target

predictions.

A standard measure for evaluating prediction re-

sults in supervised learning is AUC (Area Under the

Receiver Operating Characteristic curve), which is

not affected by the ratio of positives to negatives.

Drug–target interactions have much fewer positives

than negatives, and false-positives should be weighed

more. AUPR (Area Under the Precision-Recall

curve) punishes false-positives more than AUC

[63]. We thus evaluated the performance of the

eight methods by both AUC and AUPR. We

denote AUC obtained by drug, target and pair pre-

dictions of CV by AUCd, AUCt and AUCp, re-

spectively. Similarly, AUPR obtained by the three

Table 2: The details of Dataset 1, which was used in our experiments, downloaded from (http://cbio.ensmp.
fr/yyamanishi/bipartitelocal/) [27]

Statistics Nuclear receptor GPCR Ion channel Enzyme

Number of drugs 54 223 210 445
Number of targets 26 95 204 664
Number of drug^target interactions 90 635 1476 2926
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types of CV are denoted by AUPRd, AUPRt and

AUPRp, respectively.

Parameters
We implemented NN and NBI, according to [27]

and [60], respectively. We used LIBSVM [64] for

implementing BLM and PKM. For BLM and

PKM, we used nested CV to evaluate their perform-

ances. The inner-loop CV is used to tune the regu-

larization coefficient C of each SVM classifier in the

range of f0:01,0:1,1,10,100,1000g. For PKM, in

each round of 10-fold CV, the training set

(9-folds) was divided into three partitions of the

same size to select the best-performed C in terms

of AUC by 3-fold CV. We then trained the predic-

tion model using all training data (9-folds) with the

selected C, and made predictions on the test data

(1-fold). For BLM, due to the scarcity of positive

examples for drug and target classifiers, we used

leave-one-out CV and accuracy as the evaluation

metric in the inner loop of nested CV. We randomly

chose the same number of negative instances as that

of positive instances in the implementation of PKM,

due to the limitation of the main memory size. We

implemented LapRLS and NetLapRLS, which were

run by the same parameter values as those in [29].

For GIP and KBMF2K, we used the software pro-

vided by the authors, which were run by the same

parameter settings as those in [30] and [31], respect-

ively. The detailed parameter settings are shown in

the Supplement. The software availability of all simi-

larity-based methods (except NN) is summarized in

Table 3.

Results
Tables 4–9 show AUC and AUPR values of the

eight compared methods, with P-values (of paired

t-test between each method and the best method

in the same column) shown within brackets to

show the statistical significance of the improvement

obtained by the best methods, where for each

column, the highest value is in boldface. From

Tables 4 and 6, we can see that in terms of AUCt

and AUCd, PKM performed the best, implying the

superiority of the pairwise kernel shown in Equation

(1). A comparable performance was obtained by

KBMF2K, and only a little lower performance was

obtained by LapRLS and NetLapRLS, being further

followed by BLM and NN.

Tables 5 and 7 show that in terms of AUPRt and

AUPRd, LapRLS performed the best, slightly

outperforming NetLapRLS. The performance was

followed by KBMF2K and PKM, and further by

BLM and NN. Note that both PKM and

KBMF2K achieved high AUC performance,

whereas this was not the case for AUPR. On the

other hand, LapRLS and NetLapRLS were very

strong in terms of AUPR. We may say that SVM

achieves the best performance in general evaluation,

such as AUC, whereas this might not be the case

with predicting drug–target interactions, a special

situation in machine learning. Another point is that

NetLapRLS was worse than LapRLS. The difference

of LapRLS and NetLapRLS was only that Sd (St) has

drug–target interaction information in NetLapRLS

but not in LapRLS. This means that the drug–

target information in Sd (St) of NetLapRLS does

not work to improve the performance of predicting

new drugs or new targets.

Tables 8 and 9 show that for both AUCp and

AUPRp, GIP achieved the best performance, imply-

ing that the interaction profiles of drugs and targets

worked well. For AUCp, however, the performance

of GIP, NetLapRLS, KBMF2K, LapRLS and PKM

was relatively comparable, being followed by BLM,

NBI and NN. For example, for GPCR, AUCp was

0.94–0.95 by the top five methods and was

0.84–0.88 by the other three methods. Similarly

for Enzyme, AUCp was 0.96–0.97 by the top five

methods and was 0.89–0.93 by the other three

methods. On the other hand, for AUPRp, GIP

clearly outperformed the other methods, except

NetLapRLS, which achieved a slightly lower per-

formance than GIP. This means that the perform-

ance difference in AUPRp among the top five

methods by AUCp was much clearer. For example,

for GPCR, AUPRp by GIP was 0.73, being fol-

lowed by NetLapRLS of 0.71, KBMF2K of 0.69

and LapRLS of 0.64. The next best AUPRp was

NBI of 0.62, being followed by BLM, PKM and

Table 3: Software availability

Method Public URL

BLM Yes Available on request
PKM Yes http://bioinformatics.oxfordjournals.

org/content/24/19/2149/suppl/DC1/
LapRLS No ^
NetLapRLS No ^
GIP Yes http://cs.ru.nl/tvanlaarhoven/drugtarget2011/
KBMF2K Yes http://users.ics.tkk.fi/gonen/kbmf2k/
NBI No ^
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NN with AUPRp of 0.46–0.50, these values being

far lower than that of GIP. Another point of note is

that NetLapRLS outperformed LapRLS, implying

that incorporating drug–target interactions worked

well to boost AUCp and AUPRp.

Table 10 summarizes the features, time and space

complexities and experimental results of the eight

compared methods.

Dataset 1, the dataset we used in this article, was

generated in 2008, implying that currently there

must be new drug–target interactions. To evaluate

the practical predicting ability of similarity-based

machine learning methods further, we checked the

names of the top five non-interacting drug–target

pairs, which were predicted by the three most

high-performance methods, i.e. NetLapRLS, GIP

Table 4: AUCt by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUCt Nuclear receptor GPCR Ion channel Enzyme

NN 0.707 (3:46� 10�2) 0.646 (9:68� 10�22) 0.652 (7:02� 10�34) 0.555 (2:97� 10�48)
BLM 0.458 (1:21� 10�16) 0.627 (1:02� 10�21) 0.881 (9:91� 10�15) 0.843 (2:70� 10�16)
PKM 0.688 (1:75� 10�5) 0.880 0.943 0.946
LapRLS 0.563 (1:03� 10�11) 0.788 (3:02� 10�15) 0.920 (1:11� 10�5) 0.914 (1:34� 10�12)
NetLapRLS 0.561 (1:06� 10�11) 0.787 (1:15� 10�15) 0.916 (9:13� 10�8) 0.909 (7:80� 10�13)
KBMF2K 0.756 0.837 (8:43� 10�7) 0.924 (6:98� 10�5) 0.889 (9:38� 10�18)

Table 6: AUCd by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUCd Nuclear receptor GPCR Ion channel Enzyme

NN 0.599 (7:96� 10�19) 0.533 (2:99� 10�40) 0.518 (1:60� 10�29) 0.521 (5:19� 10�42)
BLM 0.693 (4:17� 10�12) 0.829 (4:66� 10�13) 0.770 (5:21� 10�4) 0.781 (5:56� 10�24)
PKM 0.847 0.872 0.798 (1:57� 10�1) 0.870
LapRLS 0.820 (3:22� 10�7) 0.845 (2:69� 10�9) 0.796 (8:92� 10�2) 0.801 (3:26� 10�12)
NetLapRLS 0.819 (2:39� 10�7) 0.834 (5:74� 10�11) 0.783 (9:40� 10�3) 0.791 (4:64� 10�17)
KBMF2K 0.831 (3:95� 10�2) 0.844 (1:55� 10�5) 0.808 0.783 (7:01� 10�12)

Table 5: AUPRt by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUPRt Nuclear receptor GPCR Ion channel Enzyme

NN 0.438 0.224 (2:31� 10�14) 0.243 (6:05� 10�33) 0.088 (2:49� 10�45)
BLM 0.325 (3:10� 10�3) 0.367 (2:90� 10�15) 0.641 (2:26� 10�21) 0.611 (7:92� 10�25)
PKM 0.431 (4:30� 10�1) 0.427 (3:44� 10�9) 0.684 (3:35� 10�20) 0.605 (3:29� 10�30)
LapRLS 0.432 (4:47� 10�1) 0.508 0.778 0.792
NetLapRLS 0.433 (4:49� 10�1) 0.503 (3:65� 10�2) 0.762 (1:35� 10�9) 0.787 (4:45� 10�4)
KBMF2K 0.404 (2:19� 10�1) 0.412 (1:01� 10�6) 0.725 (6:90� 10�8) 0.607 (4:48� 10�28)

Table 7: AUPRd by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUPRd Nuclear receptor GPCR Ion channel Enzyme

NN 0.230 (3:88� 10�11) 0.068 (1:25� 10�31) 0.062 (1:53� 10�19) 0.032 (2:73� 10�25)
BLM 0.194 (3:49� 10�20) 0.210 (6:50� 10�29) 0.167 (1:51� 10�20) 0.092 (1:29� 10�26)
PKM 0.504 0.337 (3:11� 10�10) 0.328 (3:03� 10�5) 0.267 (5:95� 10�15)
LapRLS 0.482 (1:79� 10�2) 0.397 (5:01� 10�1) 0.366 0.368
NetLapRLS 0.481 (1:96� 10�2) 0.397 0.343 (1:50� 10�3) 0.298 (1:36� 10�12)
KBMF2K 0.450 (3:46� 10�4) 0.357 (5:14� 10�6) 0.296 (2:15� 10�7) 0.253 (3:09� 10�17)
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and KBMF2K. We manually checked whether these

top five interactions can be found in the latest online

version of STITCH [65]. Table 11 lists the top five

predictions for Nuclear receptor, where interactions

found in STITCH were in boldface. From the table,

we can see that all predicted interactions, except

three cases, were already in the database (whereas

they were not in the training data), demonstrating

the high practical predicting ability of the three

similarity-based methods.

DISCUSSIONAND CONCLUSION
We have reviewed state-of-the-art similarity-based

machine learning methods for predicting drug–

target interactions. Our empirical results showed

Table 10: Methods summary

Method DT Techniques Type Train Time test Space AUC AUPR

d t p d t p

NN Yes NN S O(1) O(nd þ nt) O(ndnt) 6 6 6 6 6 7
BLM Yes SVM & BG S O(ndntðn2d þ n2t Þ) O(1) O(ndnt) 5 5 7 5 5 8
PKM Yes SVM & PK S O(n3dn

3
t ) O(1) O(n2dn

2
t ) 1 1 5 3 4 6

LapRLS Yes RLS SS O(n3d þ n3t ) O(1) O(ndnt) 3 3 4 1 1 4
NetLapRLS Yes RLS SS O(n3d þ n3t ) O(1) O(ndnt) 4 4 3 2 2 2
GIP No RLS & GK SS O(n3d þ n3t ) O(1) O(ndnt) ^ ^ 1 ^ ^ 1
KBMF2K Yes MF S O(Rðn3d þ n3t Þt) O(1) O(ndnt) 2 2 2 4 3 3
NBI No BG ^ O(1) O(ndnt) O(ndnt) ^ ^ 8 ^ ^ 5

DT indicates whether drug (and target) prediction is possible. BG, PK, RLS,GK and MF indicate bipartite graphs, pairwise kernel, regularized least
squares, Gaussian kernel and matrix factorization, respectively. S and SS indicate supervised learning and semi-supervised learning, respectively.
Time and Space indicate time and space complexities, respectively, where nd and nt are the number of drugs and targets, respectively, whereas in
KBMF2K, R and t are the feature space dimension and the number of iterations, respectively. The d, t and p in the column named AUC indicate
AUCd, AUCt and AUCp, respectively, where allmethods are ranked by their averaged AUC performance over four subsets.The same is followed
in the column named AUPR.

Table 8: AUCp by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUCp Nuclear receptor GPCR Ion channel Enzyme

NN 0.820 (4:10� 10�8) 0.852 (8:31� 10�33) 0.889 (3:82� 10�39) 0.898 (1:01� 10�44)
BLM 0.694 (1:30� 10�15) 0.884 (7:13� 10�28) 0.918 (9:09� 10�29) 0.928 (2:78� 10�39)
PKM 0.856 (6:33� 10�6) 0.937 (4:96� 10�18) 0.967 (8:46� 10�27) 0.966 (1:69� 10�14)
LapRLS 0.855 (5:01� 10�5) 0.941 (1:41� 10�9) 0.969 (5:41� 10�18) 0.962 (2:16� 10�24)
NetLapRLS 0.859 (2:57� 10�4) 0.946 (5:00� 10�5) 0.977 (1:26� 10�6) 0.968 (2:94� 10�18)
GIP 0.869 (1:70� 10�2) 0.951 0.980 (2:70� 10�3) 0.973
KBMF2K 0.881 0.943 (5:68� 10�7) 0.982 0.966 (6:11� 10�15)
NBI 0.680 (4:53� 10�21) 0.835 (2:29� 10�31) 0.928 (1:50� 10�32) 0.894 (5:27� 10�42)

Table 9: AUPRp by 5�10-fold cross-validation, with P-values (of paired t-test) within brackets

AUPRp Nuclear receptor GPCR Ion channel Enzyme

NN 0.530 (6:24� 10�5) 0.474 (5:95� 10�39) 0.574 (4:21� 10�51) 0.659 (2:45� 10�50)
BLM 0.204 (2:09� 10�24) 0.464 (4:03� 10�35) 0.592 (1:45� 10�39) 0.496 (2:56� 10�53)
PKM 0.515 (2:35� 10�6) 0.503 (1:60� 10�33) 0.681 (1:70� 10�46) 0.633 (1:89� 10�49)
LapRLS 0.539 (3:29� 10�5) 0.640 (3:43� 10�29) 0.804 (1:08� 10�38) 0.826 (1:81� 10�38)
NetLapRLS 0.563 (7:04� 10�4) 0.708 (4:64� 10�13) 0.900 0.874 (2:17� 10�22)
GIP 0.604 0.727 0.898 (5:70� 10�3) 0.884
KBMF2K 0.508 (1:37� 10�8) 0.686 (1:03� 10�15) 0.876 (2:72� 10�15) 0.796 (4:12� 10�41)
NBI 0.425 (1:47� 10�13) 0.619 (1:18� 10�26) 0.832 (6:67� 10�30) 0.783 (8:39� 10�38)
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that the method with the highest performance varies

under different experimental settings and evaluation

measures. For example, GIP outperformed other

methods in both AUCp and AUPRp, whereas it

cannot be applied to other settings. Thus for AUCt

and AUCd, PKM and KBMF2K performed the best,

whereas LapRLS was the best for AUPRt and

AUPRd. Another finding was that drug prediction

and target prediction were more difficult than pair

prediction, because interactions by new drugs or new

targets are unknown. Furthermore, we could see that

target prediction was easier than drug prediction,

which indicates that target similarity was more

useful than drug similarity.

The assumption of similarity-based methods is that

similar targets share similar drugs and vice versa. Low

prediction performance on Nuclear receptor can be

explained by this assumption: in Nuclear receptor,

the average number of interacting targets per drug is

the minimum among the four subsets. This is the

case with the number of interacting drugs per

target. For example, 26 targets and 90 drug–target

interactions in Nuclear receptor mean the average

number of interacting drugs per target is 3.46,

whereas this number is 6.68, 7.23 and 4.40 for

GPCR, Ion channel and Enzyme, respectively.

Similarly, the average number of interacting targets

per drug for Nuclear receptor is 1.66, whereas it is

2.84, 7.02 and 6.57 for GPCR, Ion channel and

Enzyme, respectively.

We then focused on some particular interactions,

which were in the training data but could not be

predicted well, and examined why these interactions

could not be predicted. Particularly, our focus was

on the interactions, to which very low prediction

scores were assigned by all three high-performance

methods, NetLapRLS, GIP and KBMF2K. In

Nuclear receptor, we found that, for example,

D05341 (palmitate) and hsa:3174 (HNF4G),

D00506 (phenobarbital) and hsa:9970 (NR1I3) and

D00163 (chenodeoxycholic acid) and hsa:9971

(NR1H4), the three interactions had very low

scores by all the three methods. Our finding from

these three interactions was that each interaction of

all these three pairs was the only interaction of the

corresponding drug and the corresponding target. It

is reasonable that this type of isolated interactions

cannot be predicted well by similarity-based meth-

ods, which points out the weakness of similarity-

based methods.

Here we raise general issues regarding machine

learning methods for predicting drug–target

interactions.

(i) Negative sample selection: Negative instances

are currently all or randomly selected non-inter-

acting drug–target pairs. Such negative instances

might include potential drug–target interactions,

which may be a possible reason why some con-

cepts, such as polypharmacology or drug prom-

iscuity, have been highlighted recently [1, 66]. In

fact, experimentally measured negatives are not

reported and unavailable, but they might im-

prove the performance of prediction methods.

(ii) Prediction tools orWeb site: There are already

a great number of methods proposed for

predicting drug–target interactions. Source

programs or software of some methods are

distributed, but more easy-to-use libraries or

Web servers are unavailable so far. They

would be definitely helpful for practitioners in

drug discovery to use the current most powerful

prediction methods.

(iii) Interpretability in prediction results: High

AUC or AUPR would not be a sufficient con-

dition for prediction methods. The prediction

results should be comprehensible and hopefully

provide some biological evidence, which can

help biologists to decide which drugs or targets

should be selected for the next biochemical

verification.

Table 11: Top five predicted interactions by
NetLapRLS,GIP and KBMF2K

Rank Drug Target

NetLapRLS
1 D00182 (Norethisterone) hsa:2099 (ESR1)
2 D00348 (Isotretinoin) hsa:5915 (RARB)
3 D00348 (Isotretinoin) hsa:5916 (RARG)
4 D00075 (Testosterone) hsa:5241 (PGR)
5 D00075 (Testosterone) hsa:2099 (ESR1)
GIP
1 D00182 (Norethisterone) hsa:2099 (ESR1)
2 D00316 (Etretinate) hsa:6096 (RORB)
3 D00075 (Testosterone) hsa:5241 (PGR)
4 D00327 (Testosterone) hsa:5241 (PGR)
5 D00348 (Isotretinoin) hsa:5915 (RARB)
KBMF2K
1 D00348 (Isotretinoin) hsa:5915 (RARB)
2 D00348 (Isotretinoin) hsa:5916 (RARG)
3 D00585 (Mifepristone) hsa:2099 (ESR1)
4 D01132 (Tazarotene) hsa:2099 (ESR1)
5 D00348 (Isotretinoin) hsa:6256 (RXRA)
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Regarding similarity-based methods, although the

methods have showed high AUC and AUPR in our

experiments, the underlying assumption, i.e. that

similar drugs share similar targets, can be a clear limi-

tation. In recent times, most drug companies often

select less costly and less risky ways to create new

products. That is, companies start with compounds

that are chemically similar to already known drugs

and optimize the efficacy or reduce the side-effect of

these drugs by modifying their structures within a

limited range. As a result, chemical compounds of

drug–target interactions are, in some cases, highly

similar to each other. In reality, so-called ‘me-too

drugs’ [67] have occupied a substantial portion

among the drugs approved by the U.S. Food and

Drug Administration. This situation makes the pre-

diction evaluation of similarity-based methods too

optimistic, which further makes it now difficult to

develop totally innovative new drugs. Thus develop-

ing computational methods beyond the structure (or

sequence) similarity would be a future direction. For

example, using different types of data, such as side-

effect similarity [35, 68], might be one promising

line.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Machine learning-based approaches for predicting drug^target
interactions, particularly similarity-based methods that use
drug and target similarities, have attracted intensive interest.

� Different strategies havebeen adopted, and their predictingper-
formances vary with differentmetrics and prediction tasks.

� Overall, for predicting interactions of new drugs or targets, in
terms of AUC, PKM performed the best, and in terms of
AUPR, LapRLS performed the best; for predicting interactions
of known drugs or targets,GIP was the bestmethod.

� In silico prediction of drug^target interaction can be further im-
provedby enhancing the procedure used to select negative sam-
ples, developing user-friendly prediction tools or Web sites and
exploring the interpretability in prediction results.
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