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Abstract. In many applications of natural language processing (NLP) it is necessary to deter-
mine the likelihood of a given word combination. For example, a speech recognizer may need to
determine which of the two word combinations “eat a peach” and “eat a beach” is more likely.
Statistical NLP methods determine the likelihood of a word combination from its frequency in
a training corpus. However, the nature of language is such that many word combinations are
infrequent and do not occur in any given corpus. In this work we propose a method for estimating
the probability of such previously unseen word combinations using available information on “most
similar” words.
We describe probabilistic word association models based on distributional word similarity, and

apply them to two tasks, language modeling and pseudo-word disambiguation. In the language
modeling task, a similarity-based model is used to improve probability estimates for unseen bi-
grams in a back-off language model. The similarity-based method yields a 20% perplexity im-
provement in the prediction of unseen bigrams and statistically significant reductions in speech-
recognition error.
We also compare four similarity-based estimation methods against back-off and maximum-

likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled
for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate
high-frequency configurations. The similarity-based methods perform up to 40% better on this
particular task.

Keywords: Statistical language modeling; sense disambiguation
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1. Introduction

Data sparseness is an inherent problem in statistical methods for natural language
processing. Such methods use statistics on the relative frequencies of configurations
of elements in a training corpus to learn how to evaluate alternative analyses or
interpretations of new samples of text or speech. The most likely analysis will be
taken to be the one that contains the most frequent configurations. The problem of
data sparseness, also known as the zero-frequency problem (Witten & Bell, 1991),
arises when analyses contain configurations that never occurred in the training
corpus. Then it is not possible to estimate probabilities from observed frequencies,
and some other estimation scheme that can generalize from the training data has
to be used.

In language processing applications, the sparse data problem occurs even for very
large data sets. For example, Essen and Steinbiss (1992) report that in a 75%-25%
split of the million-word LOB corpus, 12% of the bigrams in the test partition
did not occur in the training portion. For trigrams, the sparse data problem is
even more severe: for instance, researchers at IBM (Brown, DellaPietra, deSouza,
Lai, & Mercer, 1992) examined a training corpus consisting of almost 366 million
English words, and discovered that one can expect 14.7% of the word triples in
any new English text to be absent from the training sample. Thus, estimating the
probability of unseen configurations is crucial to accurate language modeling, since
the aggregate probability of these unseen events can be significant.

We focus here on a particular kind of configuration, word cooccurrence. Exam-
ples of such cooccurrences include relationships between head words in syntactic
constructions (verb-object or adjective-noun, for instance) and word sequences (n-
grams). In commonly used models, the probability estimate for a previously unseen
cooccurrence is a function of the probability estimates for the words in the cooc-
currence. For example, in word bigram models, the probability P (w2|w1) of a
conditioned word w2 that has never occurred in training following the conditioning
word w1 is typically calculated from the probability of w2, as estimated by w2’s fre-
quency in the corpus (Jelinek, Mercer, & Roukos, 1992; Katz, 1987). This method
makes an independence assumption on the cooccurrence of w1 and w2: the more
frequent w2 is, the higher the estimate of P (w2|w1) will be, regardless of w1.

Class-based and similarity-based models provide an alternative to the indepen-
dence assumption. In these models, the relationship between given words is modeled
by analogy with other words that are in some sense similar to the given ones.

For instance, Brown et al. (1992) suggest a class-based n-gram model in which
words with similar cooccurrence distributions are clustered into word classes. The
cooccurrence probability of a given pair of words is then estimated according to
an averaged cooccurrence probability of the two corresponding classes. Pereira,
Tishby, and Lee (1993) propose a “soft” distributional clustering scheme for certain
grammatical cooccurrences in which membership of a word in a class is probabilistic.
Cooccurrence probabilities of words are then modeled by averaged cooccurrence
probabilities of word clusters.
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Dagan, Marcus, and Markovitch (1993, 1995) present a similarity-based model,
which avoids building clusters. Instead, each word is modeled by its own specific
class, a set of words that are most similar to it. Using this scheme, they predict
which unobserved cooccurrences are more likely than others. Their model, however,
does not provide probability estimates and so cannot be used as a component of a
larger probabilistic model, as would be required in, say, speech recognition.
Class-based and similarity-based methods for cooccurrence modeling may at first

sight seem to be special cases of clustering and weighted nearest-neighbor ap-
proaches used widely in machine learning and pattern recognition (Aha, Kibler,
& Albert, 1991; Cover & Hart, 1967; Duda & Hart, 1973; Stanfill & Waltz, 1986;
Devroye, Györfi, & Lugosi, 1996; Atkeson, Moore, & Schaal, 1997). There are
important differences between those methods and ours. Clustering and nearest-
neighbor techniques often rely on representing objects as points in a multidimen-
sional space with coordinates determined by the values of intrinsic object features.
However, in most language-modeling settings, all we know about a word are the
frequencies of its cooccurrences with other words in certain configurations. Since
the purpose of modeling is to estimate the probabilities of cooccurrences, the same
cooccurrence statistics are the basis for both the similarity measure and the model
predictions. That is, the only means we have for measuring word similarity are
the predictions words make about what words they cooccur with, whereas in typ-
ical instance or (non-distributional) clustering learning methods, word similarity
is defined from intrinsic features independently of the predictions (cooccurrence
probabilities or classifications) associated with particular words (see for instance
the work of Cardie (1993), Ng and Lee (1996), Ng (1997), and Zavrel and Daele-
mans (1997)).

1.1. Main Contributions

Our main contributions are a general scheme for using word similarity to improve
the probability estimates of back-off models, and a comparative analysis of several
similarity measures and parameter settings in two important language processing
tasks, language modeling and disambiguation, showing that similarity-based esti-
mates are indeed useful.

In our initial study, a language-model evaluation, we used a similarity-based
model to estimate unseen bigram probabilities for Wall Street Journal text and
compared it to a standard back-off model (Katz, 1987). Testing on a held-out
sample, the similarity model achieved a 20% perplexity reduction over back-off for
unseen bigrams. These constituted 10.6% of the test sample, leading to an overall
reduction in test-set perplexity of 2.4%. The similarity-based model was also tested
in a speech-recognition task, where it yielded a statistically significant reduction
(32 versus 64 mistakes in cases where there was disagreement with the back-off
model) in recognition error.
In the disambiguation evaluation, we compared several variants of our initial

method and the cooccurrence smoothing method of Essen and Steinbiss (1992)
against the estimation method of Katz in a decision task involving unseen pairs
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of direct objects and verbs. We found that all the similarity-based models per-
formed almost 40% better than back-off, which yielded about 49% accuracy in our
experimental setting. Furthermore, a scheme based on the Jensen-Shannon diver-
gence (Rao, 1982; Lin, 1991)1 yielded statistically significant improvement in error
rate over cooccurrence smoothing.
We also investigated the effect of removing extremely low-frequency events from

the training set. We found that, in contrast to back-off smoothing, where such
events are often discarded from training with little discernible effect, similarity-
based smoothing methods suffer noticeable performance degradation when single-
tons (events that occur exactly once) are omitted.
The paper is organized as follows. Section 2 describes the general similarity-based

framework; in particular, Section 2.3 presents the functions we use as measures of
similarity. Section 3 details our initial language modeling experiments. Section
4 describes our comparison experiments on a pseudo-word disambiguation task.
Section 5 discusses related work. Finally, Section 6 summarizes our contributions
and outlines future directions.

2. Distributional Similarity Models

We wish to model conditional probability distributions arising from the cooccur-
rence of linguistic objects, typically words, in certain configurations. We thus con-
sider pairs (w1, w2) ∈ V1×V2 for appropriate sets V1 and V2, not necessarily disjoint.
In what follows, we use subscript i for the ith element of a pair; thus P (w2|w1) is
the conditional probability (or rather, some empirical estimate drawn from a base
language model, the true probability being unknown) that a pair has second ele-
ment w2 given that its first element is w1; and P (w1|w2) denotes the probability
estimate, according to the base language model, that w1 is the first word of a pair
given that the second word is w2. P (w) denotes the base estimate for the unigram
probability of word w.
A similarity-based language model consists of three parts: a scheme for deciding

which word pairs require a similarity-based estimate, a method for combining in-
formation from similar words, and, of course, a function measuring the similarity
between words. We give the details of each of these three parts in the following
three sections. We will only be concerned with similarity between words in V1,
which are the conditioning events for the probabilities P (w2|w1) that we want to
estimate.

2.1. Discounting and Redistribution

Data sparseness makes the maximum likelihood estimate (MLE) for word pair prob-
abilities unreliable. The MLE for the probability of a word pair (w1, w2), conditional
on the appearance of word w1, is simply

PML(w2|w1) =
c(w1, w2)

c(w1)
, (1)
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where c(w1, w2) is the frequency of (w1, w2) in the training corpus and c(w1) is
the frequency of w1. However, PML is zero for any unseen word pair, that is, any
such pair would be predicted as impossible. More generally, the MLE is unreliable
for events with small nonzero counts as well as for those with zero counts. In
the language modeling literature, the term smoothing is used to refer to methods
for adjusting the probability estimates of small-count events away from the MLE
to try to alleviate its unreliability. Our proposals address the zero-count problem
exclusively, and we rely on existing techniques to smooth other small counts.

Previous proposals for the zero-count problem (Good, 1953; Jelinek et al., 1992;
Katz, 1987; Church & Gale, 1991) adjust the MLE so that the total probability of
seen word pairs is less than one, leaving some probability mass to be redistributed
among the unseen pairs. In general, the adjustment involves either interpolation,
in which the MLE is used in linear combination with an estimator guaranteed to
be nonzero for unseen word pairs, or discounting, in which a reduced MLE is used
for seen word pairs, with the probability mass left over from this reduction used to
model unseen pairs.

The back-off method of Katz (1987) is a prime example of discounting:

P̂ (w2|w1) =

{

Pd(w2|w1) c(w1, w2) > 0
α(w1)Pr(w2|w1) c(w1, w2) = 0

, (2)

where Pd represents the Good-Turing discounted estimate (Katz, 1987) for seen
word pairs, and Pr denotes the model for probability redistribution among the
unseen word pairs. α(w1) is a normalization factor. Since an extensive compar-
ison study by Chen and Goodman (1996) indicated that back-off is better than
interpolation for estimating bigram probabilities, we will not consider interpolation
methods here; however, one could easily incorporate similarity-based estimates into
an interpolation framework as well.

In his original back-off model, Katz used P (w2) as the model for predicting
P̂ (w2|w1) for unseen word pairs, that is, his model backed off to a unigram model
for unseen bigrams. However, it is conceivable that backing off to a more detailed
model than unigrams would be advantageous. Therefore, we generalize Katz’s for-
mulation by writing Pr(w2|w1) instead of P (w2), enabling us to use similarity-based
estimates for unseen word pairs instead of unigram frequency. Observe that simi-
larity estimates are used for unseen word pairs only.

We next investigate estimates for Pr(w2|w1) derived by averaging information
from words that are distributionally similar to w1.

2.2. Combining Evidence

Similarity-based models make the following assumption: if word w′1 is “similar”
to word w1, then w′1 can yield information about the probability of unseen word
pairs involving w1. We use a weighted average of the evidence provided by similar
words, or neighbors, where the weight given to a particular word w′1 depends on its
similarity to w1.
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More precisely, let W (w1, w
′
1) denote an increasing function of the similarity be-

tween w1 and w′1, and let S(w1) denote the set of words most similar to w1. Then
the general form of similarity model we consider is aW -weighted linear combination
of predictions of similar words:

PSIM(w2|w1) =
∑

w′
1
∈S(w1)

W (w1, w
′
1)

norm(w1)
P (w2|w

′
1) , (3)

where norm(w1) =
∑

w′
1
∈S(w1)

W (w1, w
′
1) is a normalization factor. According to

this formula, w2 is more likely to occur with w1 if it tends to occur with the words
that are most similar to w1.
Considerable latitude is allowed in defining the set S(w1), as is evidenced by

previous work that can be put in the above form. Essen and Steinbiss (1992)
and Karov and Edelman (1996) (implicitly) set S(w1) = V1. However, it may be
desirable to restrict S(w1) in some fashion for efficiency reasons, especially if V1 is
large. For instance, in the language modeling application of Section 3, we use the
closest k or fewer words w′1 such that the dissimilarity between w1 and w′1 is less
than a threshold value t; k and t are tuned experimentally.
One can directly replace Pr(w2|w1) in the back-off equation (2) with PSIM(w2|w1).

However, other variations are possible, such as interpolating with the unigram
probability P (w2):

Pr(w2|w1) = γP (w2) + (1− γ)PSIM(w2|w1) .

This represents, in effect, a linear combination of the similarity estimate and the
back-off estimate: if γ = 1, then we have exactly Katz’s back-off scheme. In
the language modeling task (Section 3) we set γ experimentally; to simplify our
comparison of different similarity models for sense disambiguation (Section 4), we
set γ to 0.
It would be possible to make γ depend on w1, so that the contribution of the

similarity estimate could vary among words. Such dependences are often used in
interpolated models (Jelinek & Mercer, 1980; Jelinek et al., 1992; Saul & Pereira,
1997) and are indeed advantageous. However, since they introduce hidden vari-
ables, they require a more complex training algorithm, and we did not pursue that
direction in the present work.

2.3. Measures of Similarity

We now consider several word similarity measures that can be derived automatically
from the statistics of a training corpus, as opposed to being derived from manually-
constructed word classes (Yarowsky, 1992; Resnik, 1992, 1995; Luk, 1995; Lin,
1997). Sections 2.3.1 and 2.3.2 discuss two related information-theoretic functions,
the KL divergence and the Jensen-Shannon divergence. Section 2.3.3 describes
the L1 norm, a geometric distance function. Section 2.3.4 examines the confusion
probability, which has been previously employed in language modeling tasks. There
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are, of course, many other possible functions; we have opted to restrict our attention
to this reasonably diverse set.
For each function, a corresponding weight functionW (w1, w

′
1) is given. The choice

of weight function is to some extent arbitrary; the requirement that it be increasing
in the similarity between w1 and w′1 is not extremely constraining. While clearly
performance depends on using a good weight function, it would be impossible to
try all conceivable W (w1, w

′
1). Therefore, in section 4.5, we describe experiments

evaluating similarity-based models both with and without weight functions.
All the similarity functions we describe depend on some base language model

P (w2|w1), which may or may not be the Katz discounted model P̂ (w2|w1) from
Section 2.1 above. While we discuss the complexity of computing each similarity
function, it should be noted that in our current implementation, this is a one-time
cost: we construct the |V1| × |V1| matrix of word-to-word similarities before any
parameter training takes place.

2.3.1. KL divergence The Kullback-Leibler (KL) divergence is a standard infor-
mation-theoretic measure of the dissimilarity between two probability mass func-
tions (Kullback, 1959; Cover & Thomas, 1991). We can apply it to the conditional
distributions induced by words in V1 on words in V2:

D(w1‖w
′
1) =

∑

w2

P (w2|w1) log
P (w2|w1)

P (w2|w′1)
. (4)

D(w1‖w
′
1) is non-negative, and is zero if and only if P (w2|w1) = P (w2|w

′
1) for all

w2. However, the KL divergence is non-symmetric and does not obey the triangle
inequality.
For D(w1‖w

′
1) to be defined it must be the case that P (w2|w

′
1) > 0 whenever

P (w2|w1) > 0. Unfortunately, this generally does not hold for MLEs based on
samples; we must use smoothed estimates that redistribute some probability mass
to zero-frequency events. But this forces the sum in (4) to be over all w2 ∈ V2,
which makes this calculation expensive for large vocabularies.
Once the divergence D(w1‖w

′
1) is computed, we set

WD(w1, w
′
1) = 10−βD(w1||w

′
1) .

The role of the free parameter β is to control the relative influence of the neighbors
closest to w1: if β is high, then WD(w1, w

′
1) is non-negligible only for those w′1 that

are extremely close to w1, whereas if β is low, distant neighbors also contribute to
the estimate. We chose a negative exponential function of the KL divergence for
the weight function by analogy with the form of the cluster membership function in
related distributional clustering work (Pereira et al., 1993) and also because that is
the form for the probability that w1’s distribution arose from a sample drawn from
the distribution of w′1 (Cover & Thomas, 1991; Lee, 1997). However, these reasons
are heuristic rather than theoretical, since we do not have a rigorous probabilistic
justification for similarity-based methods.
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2.3.2. Jensen-Shannon divergence A related measure is the Jensen-Shannon di-
vergence (Rao, 1982; Lin, 1991), which can be defined as the average of the KL
divergence of each of two distributions to their average distribution:

J(w1, w
′
1) =

1

2

[

D

(

w1

∥

∥

∥

∥

w1 + w′1
2

)

+D

(

w′1

∥

∥

∥

∥

w1 + w′1
2

)]

, (5)

where (w1 + w′1)/2 is shorthand for the distribution

1

2
(P (w2|w1) + P (w2|w

′
1)) .

Since the KL divergence is nonnegative, J(w1, w
′
1) is also nonnegative. Further-

more, letting p(w2) = P (w2|w1) and p′(w2) = P (w2|w
′
1), it is easy to see that

J(w1, w
′
1) = H

(

p+ p′

2

)

−
1

2
H(p)−

1

2
H(p′) , (6)

where H(q) = −
∑

w q(w) log q(w) is the entropy of the discrete density q. This
equation shows that J gives the information gain achieved by distinguishing the
two distributions p and p′ (conditioning on contexts w1 and w′1) over pooling the
two distributions (ignoring the distinction between w1 and w′1).
It is also easy to see that J can be computed efficiently, since it depends only

on those conditioned words that occur in both contexts. Indeed, letting C = {w2 :
p(w2) > 0, p′(w2) > 0}, and grouping the terms of (6) appropriately, we obtain

J(w1, w
′
1) = log 2 +

1

2

∑

w2∈C

{h (p(w2) + p′(w2))− h(p(w2))− h(p′(w2))} ,

where h(x) = −x log x. Therefore, J(w1, w
′
1) is bounded, ranging between 0 and

log 2, and smoothed estimates are not required because probability ratios are not
involved.
As in the KL divergence case, we set WJ(w1, w

′
1) = 10−βJ(w1,w

′
1); β plays the

same role as before.

2.3.3. L1 norm The L1 norm is defined as

L(w1, w
′
1) =

∑

w2

|P (w2|w1)− P (w2|w
′
1)| . (7)

By grouping terms as before, we can express L(w1, w
′
1) in a form depending only

on the “common” w2:

L(w1, w
′
1) = 2−

∑

w2∈C

p(w2)−
∑

w2∈C

p′(w2) +
∑

w2∈C

|p(w2)− p′(w2)| .

It follows from the triangle inequality that 0 ≤ L(w1, w
′
1) ≤ 2, with equality to 2

if and only if there are no words w2 such that both P (w2|w1) and P (w2|w
′
1) are

strictly positive.
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Since we require a weighting scheme that is decreasing in L, we set

WL(w1, w
′
1) = (2− L(w1, w

′
1))

β ,

with β again free.2 As before, the higher β is, the more relative influence is accorded
to the nearest neighbors.
It is interesting to note the following relations between the L1 norm, the KL-

divergence, and the Jensen-Shannon divergence. Cover and Thomas (1991) give
the following lower bound:

L(w1, w
′
1) ≤

√

D(w1||w′1) · 2 log b ,

where b is the base of the logarithm function. Lin (1991) notes that L is an upper
bound for J :

J(w1, w
′
1) ≤ L(w1, w

′
1) .

2.3.4. Confusion probability Extending work by Sugawara, Nishimura, Toshioka,
Okochi, and Kaneko (1985), Essen and Steinbiss (1992) used confusion probability to
estimate word cooccurrence probabilities.3 They report 14% improvement in test-
set perplexity (defined below) on a small corpus. The confusion probability was
also used by Grishman and Sterling (1993) to estimate the likelihood of selectional
patterns.
The confusion probability is an estimate of the probability that word w′1 can be

substituted for word w1, in the sense of being found in the same contexts:

PC(w
′
1|w1) =

∑

w2

P (w1|w2)P (w′1|w2)P (w2)

P (w1)

= WC(w1, w
′
1)

(P (w1) serves as a normalization factor). In contrast to the distance functions
described above, PC has the curious property that w1 may not necessarily be the
“closest” word to itself, that is, there may exist a word w′1 such that PC(w

′
1|w1) >

PC(w1|w1); see Section 4.4 for an example.
The confusion probability can be computed from empirical estimates provided

all unigram estimates are nonzero (as we assume throughout). In fact, the use of
smoothed estimates such as those provided by Katz’s back-off scheme is problem-
atic, because those estimates typically do not preserve consistency with respect to
marginal estimates and Bayes’s rule (that is, it may be that

∑

w2
P (w1|w2)P (w2) 6=

P (w1)). However, using consistent estimates (such as the MLE), we can safely apply
Bayes’s rule to rewrite PC as follows:

PC(w
′
1|w1) =

∑

w2

P (w2|w1)

P (w2)
· P (w2|w

′
1)P (w′1) . (8)
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Table 1. Summary of Similarity Function Properties

name range base LM constraints tune?

D [0,∞] P (w2|w′1) 6= 0 if P (w2|w1) 6= 0 yes
J [0, log 2] none yes
L [0, 2] none yes
PC [0, 1

2
maxw2 P (w2)] Bayes consistency no

As with the Jensen-Shannon divergence and the L1 norm, this sum requires com-
putation only over the “common” w2’s.

Examination of Equation (8) reveals an important difference between the con-
fusion probability and the functions D, J , and L described in the previous sec-
tions. Those functions rate w′1 as similar to w1 if, roughly, P (w2|w

′
1) is high when

P (w2|w1) is. PC(w
′
1|w1), however, is greater for those w′1 for which P (w′1, w2) is

large when P (w2|w1)/P (w2) is. When this ratio is large, we may think of w2 as
being exceptional, since if w2 is infrequent, we do not expect P (w2|w1) to be large.

2.3.5. Summary Several features of the measures of similarity listed above are
summarized in Table 1. “Base LM constraints” are conditions that must be satisfied
by the probability estimates of the base language model. The last column indicates
whether the weight W (w1, w

′
1) associated with each similarity function depends on

a parameter that needs to be tuned experimentally.

3. Language Modeling

The goal of our first set of experiments, described in this section, was to provide
proof of concept by showing that similarity-based models can achieve better lan-
guage modeling performance than back-off. We therefore only used one similarity
measure. The success of these experiments convinced us that similarity-based meth-
ods are worth examining more closely; the results of our second set of experiments,
comparing several similarity functions on a pseudo-word disambiguation task, are
described in the next section.

Our language modeling experiments used a similarity-based model, with the KL
divergence as (dis)similarity measure, as an alternative to unigram frequency when
backing off in a bigram model. That is, we used the bigram language model defined
by:

P̂ (w2|w1) =

{

Pd(w2|w1) c(w1, w2) > 0
α(w1)Pr(w2|w1) c(w1, w2) = 0

Pr(w2|w1) = γP (w2) + (1− γ)PSIM(w2|w1)

PSIM(w2|w1) =
∑

w′
1
∈S(w1)

W (w1, w
′
1)

norm(w1)
P (w2|w

′
1) (9)
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W (w1, w
′
1) = 10−βD(w1||w

′
1) ,

where V1 = V2 = V , the entire vocabulary. As noted earlier, the estimates of
P (w2|w

′
1) must be smoothed to avoid division by zero when computing D(w1||w

′
1);

we employed the standard Katz bigram back-off model for that purpose. Since |V | =
20, 000 in this application, we considered only a small fraction of V in computing
PSIM, using the tunable thresholds k and t described in Section 2.2 for this purpose.
The standard evaluation metric for language models is the likelihood of the test

data according to the model, or, more intuitively, the test-set perplexity

N

√

√

√

√

N
∏

i=1

P (wi|wi−1)−1 ,

which represents the average number of alternatives presented by the (bigram)
model after each test word. Thus, a better model will have a lower perplexity. In
our task, lower perplexity will indicate better prediction of unseen bigrams.
We evaluated the above model by comparing its test-set perplexity and effect on

speech-recognition accuracy with the baseline bigram back-off model developed by
MIT Lincoln Laboratories for the Wall Street Journal (WSJ) text and dictation
corpora provided by ARPA’s HLT program (Paul, 1991).4 The baseline back-off
model follows the Katz design, except that, for the sake of compactness, all fre-
quency one bigrams are ignored. The counts used in this model and in ours were
obtained from 40.5 million words of WSJ text from the years 1987-89.
For perplexity evaluation, we tuned the similarity model parameters by minimiz-

ing perplexity on an additional sample of 57.5 thousand words of WSJ text, drawn
from the ARPA HLT development test set. The best parameter values found were
k = 60, t = 2.5, β = 4 and γ = 0.15. For these values, the improvement in
perplexity for unseen bigrams in a held-out 18 thousand word sample (the ARPA
HLT evaluation test set) is just over 20%. Since unseen bigrams comprise 10.6% of
this sample, the improvement on unseen bigrams corresponds to an overall test set
perplexity improvement of 2.4% (from 237.4 to 231.7). Table 2 shows reductions
in training and test perplexity, sorted by training reduction, for different choices of
the number k of closest neighbors used. The values of β, γ and t are the best ones
found for each k.5

From equation (9), it is clear that the computational cost of applying the sim-
ilarity model to an unseen bigram is O(k). Therefore, lower values for k (and t)
are computationally preferable. From the table, we can see that reducing k to 30
incurs a penalty of less than 1% in the perplexity improvement, so relatively low
values of k appear to be sufficient to achieve most of the benefit of the similarity
model. As the table also shows, the best value of γ increases as k decreases; that
is, for lower k, a greater weight is given to the conditioned word’s frequency. This
suggests that the predictive power of neighbors beyond the closest 30 or so can be
modeled fairly well by the overall frequency of the conditioned word.
The bigram similarity model was also tested as a language model in speech recog-

nition. The test data for this experiment were pruned word lattices for 403 WSJ
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Table 2. Perplexity Reduction on Unseen Bigrams for Different Model
Parameters

k t β γ training reduction (%) test reduction (%)

60 2.5 4.0 0.15 18.4 20.51
50 2.5 4.0 0.15 18.38 20.45
40 2.5 4.0 0.2 18.34 20.03
30 2.5 4.0 0.25 18.33 19.76
70 2.5 4.0 0.1 18.3 20.53
80 2.5 4.5 0.1 18.25 20.55
100 2.5 4.5 0.1 18.23 20.54
90 2.5 4.5 0.1 18.23 20.59
20 1.5 4.0 0.3 18.04 18.7
10 1.5 3.5 0.3 16.64 16.94

closed-vocabulary test sentences. Arc scores in these lattices are sums of an acous-
tic score (negative log likelihood) and a language-model score, which in this case
was the negative log probability provided by the baseline bigram model.

From the given lattices, we constructed new lattices in which the arc scores were
modified to use the similarity model instead of the baseline model. We compared
the best sentence hypothesis in each original lattice with the best hypothesis in the
modified one, and counted the word disagreements in which one of the hypotheses
was correct. There were a total of 96 such disagreements; the similarity model was
correct in 64 cases, and the back-off model in 32. This advantage for the similarity
model is statistically significant at the 0.01 level. The overall reduction in error
rate is small, from 21.4% to 20.9%, because the number of disagreements is small
compared with the overall number of errors in the recognition setup employed in
these experiments.

Table 3 shows some examples of speech recognition disagreements between the
two models. The hypotheses are labeled ‘B’ for back-off and ‘S’ for similarity, and
the bold-face words are errors. The similarity model seems to be better at modeling
regularities such as semantic parallelism in lists and avoiding a past tense form after
“to.” On the other hand, the similarity model makes several mistakes in which a
function word is inserted in a place where punctuation would be found in written
text.

4. Word-Sense Disambiguation

Since the experiments described in the previous section demonstrated promising
results for similarity-based estimation, we ran a second set of experiments designed
to help us compare and analyze the somewhat diverse set of similarity measures
given in Table 1. Unfortunately, the KL divergence and the confusion probability
have different requirements on the base language model, and so we could not run
a direct four-way comparison. As explained below, we elected to omit the KL
divergence from consideration.
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Table 3. Speech Recognition Disagreements between Models

B commitments . . . from leaders felt the three point six billion dollars

S commitments . . . from leaders fell to three point six billion dollars

B followed by France the US agreed in Italy

S followed by France the US Greece . . . Italy

B he whispers to made a

S he whispers to an aide

B the necessity for change exist

S the necessity for change exists

B without . . . additional reserves Centrust would have reported

S without . . . additional reserves of Centrust would have reported

B in the darkness past the church

S in the darkness passed the church

We chose to evaluate the three remaining measures on a word sense disambigua-
tion task, in which each method was presented with a noun and two verbs, and was
asked which verb was more likely to have the noun as a direct object. Thus, we
did not measure the absolute quality of the assignment of probabilities, as would
be the case in a perplexity evaluation, but rather the relative quality. We could
therefore ignore constant factors, which is why we did not normalize the similarity
measures.

4.1. Task Definition

In the usual word sense disambiguation problem, the method to be tested is pre-
sented with an ambiguous word in some context, and is asked to identify the correct
sense of the word from that context. For example, a test instance might be the
sentence fragment “robbed the bank”; the question is whether “bank” refers to a
river bank, a savings bank, or perhaps some other alternative meaning.

While sense disambiguation is clearly an important problem for language process-
ing applications, as an evaluation task it presents numerous experimental difficul-
ties. First, the very notion of “sense” is not clearly defined; for instance, dictionaries
may provide sense distinctions that are too fine or too coarse for the data at hand.
Also, one needs to have training data for which the correct senses have been as-
signed; acquiring these correct senses generally requires considerable human effort.
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Furthermore, some words have many possible senses, whereas others are essentially
monosemous; this means that test cases are not all uniformly hard.
To circumvent these and other difficulties, we set up a pseudo-word disambigua-

tion experiment (Schütze, 1992a; Gale, Church, & Yarowsky, 1992), the format of
which is as follows. First, a list of pseudo-words is constructed, each of which is the
combination of two different words in V2. Each word in V2 contributes to exactly
one pseudo-word. Then, every w2 in the test set is replaced with its corresponding
pseudo-word. For example, if a pseudo-word is created out of the words “make”
and “take”, then the data is altered as follows:

make plans ⇒ {make, take} plans
take action ⇒ {make, take} action

The method being tested must choose between the two words that make up the
pseudo-word.
The advantages of using pseudo-words are two-fold. First, the alternative “senses”

are under the control of the experimenter. Each test instance presents exactly two
alternatives to the disambiguation method, and the alternatives can be chosen to
be of the same frequency, the same part of speech, and so on. Secondly, the pre-
transformation data yields the correct answer, so that no hand-tagging of the word
senses is necessary. These advantages make pseudo-word experiments an elegant
and simple means to test the efficacy of different language models; of course they
may not provide a completely accurate picture of how the models would perform
in real disambiguation tasks, although one could create more realistic settings by
making pseudo-words out of more than two words, varying the frequencies of the
alternative pseudo-senses, and so on.
For ease of comparison, we did not consider interpolation with unigram probabil-

ities. Thus, the model we used for these experiments differs slightly from that used
in the language modeling tests; it can be summarized as follows:

P̂ (w2|w1) =

{

Pd(w2|w1) c(w1, w2) > 0
α(w1)Pr(w2|w1) c(w1, w2) = 0

Pr(w2|w1) = PSIM(w2|w1)

PSIM(w2|w1) =
∑

w′
1
∈S(w1)

W (w1, w
′
1)

norm(w1)
P (w2|w

′
1)

4.2. Data

We used a statistical part-of-speech tagger (Church, 1988) and pattern matching
and concordancing tools (due to David Yarowsky) to identify transitive main verbs
(V2) and head nouns (V1) of the corresponding direct objects in 44 million words
of 1988 Associated Press newswire. We selected the noun-verb pairs for the 1000
most frequent nouns in the corpus. These pairs are undoubtedly somewhat noisy
given the errors inherent in the part-of-speech tagging and pattern matching.
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We used 80%, or 587, 833, of the pairs so derived for building models, reserving
20% for testing purposes. As some, but not all, of the similarity measures require
smoothed models, we calculated both a Katz back-off model (P = P̂ in equation
(2), with Pr(w2|w1) = P (w2)), and a maximum-likelihood model (P = PML).
Furthermore, we wished to evaluate the hypothesis that a more compact language
model can be built without affecting model quality by deleting singletons, word
pairs that occur only once, from the training set. This claim had been made in
particular for language modeling (Katz, 1987). We therefore built four base models,
summarized in Table 4.

Table 4. Base Language Models

with singletons no singletons
(587,833 pairs) (505,426 pairs)

MLE MLE-1 MLE-o1
Katz BO-1 BO-o1

Since we wished to test the effectiveness of using similarity for unseen word cooc-
currences, we removed from the test data any verb-object pairs that occurred in the
training set; this resulted in 17, 152 unseen pairs (some occurred multiple times).
The unseen pairs were further divided into five equal-sized parts, T1 through T5,
which formed the basis for fivefold cross-validation: in each of five runs, one of the
Ti was used as a performance test set, with the other four combined into one set
used for tuning parameters (if necessary) via a simple grid search that evaluated
the error on the tuning set at regularly spaced points in parameter space. Finally,
test pseudo-words were created from pairs of verbs with similar frequencies, so as
to control for word frequency in the decision task. Our method was to simply rank
the verbs by frequency and create pseudo-words out of all adjacent pairs (thus, each
verb participated in exactly one pseudoword). Table 5 lists some randomly chosen
pseudowords and the frequencies of the corresponding verbs.

Table 5. Sample pseudoword verbs and frequencies. The word “meeet” is a typo
occurring in the corpus.

make (14782)/take (12871)
fetch (35)/renegotiate (35)
magnify (13)/exit (13)
meeet (1)/stupefy (1)
relabel (1)/entomb (1)

We use error rate as our performance metric, defined as

1

N
(# of incorrect choices + (# of ties)/2)
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where N was the size of the test corpus. A tie occurs when the two words making
up a pseudo-word are deemed equally likely.

4.3. Baseline Experiments

The performances of the four base language models are shown in Table 6. MLE-1
and MLE-o1 both have error rates of exactly .5 because the test sets consist of
unseen bigrams, which are all assigned a probability of 0 by maximum-likelihood
estimates, and thus are all ties for this method. The back-off models BO-1 and
BO-o1 also perform similarly.

Table 6. Base Language Model Error Rates

T1 T2 T3 T4 T5

MLE-1 .5 .5 .5 .5 .5
MLE-o1 ˝ ˝ ˝ ˝ ˝
BO-1 0.517 0.520 0.512 0.513 0.516
BO-o1 0.517 0.520 0.512 0.513 0.516

Since the back-off models consistently performed worse than the MLE models, we
chose to use only the MLE models in our subsequent experiments. Therefore, we
only ran comparisons between the measures that could utilize unsmoothed data,
namely, the L1 norm, L(w1, w

′
1); the Jensen-Shannon divergence, J(w1, w

′
1); and

the confusion probability, PC(w
′
1|w1).

6

4.4. Sample Closest Words

In this section, we examine the closest words to a randomly selected noun, “guy”,
according to the three measures L, J , and PC.

Table 7 shows the ten closest words, in order, when the base language model is
MLE-1. There is some overlap between the closest words for L and the closest
words for J , but very little overlap between the closest words for these measures
and the closest words with respect to PC: only the words “man” and “lot” are
common to all three. Also observe that the word “guy” itself is only fourth on the
list of words with the highest confusion probability with respect to “guy”.

Let us examine the case of the nouns “kid” and “role” more closely. According
to the similarity functions L and J , “kid” is the second closest word to “guy”,
and “role” is considered relatively distant. In the PC case, however, “role” has the
highest confusion probability with respect to “guy,” whereas “kid” has only the
80th highest confusion probability. What accounts for these differences?

Table 8, which gives the ten verbs most likely to occur with “guy”, “kid”, and
“role”, indicates that both L and J rate words as similar if they tend to cooccur with
the same verbs. Observe that four of the ten most likely verbs to occur with “kid”
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Table 7. 10 closest words to the word “guy” for L, J ,
and PC, using MLE-1 as the base language model. The
rank of the words “role” and “kid” are also shown if they
are not among the top ten.

L J PC

GUY 0.0 GUY 0.0 role 0.033
kid 1.23 kid 0.15 people 0.024
lot 1.35 thing 0.1645 fire 0.013
thing 1.39 lot 0.165 GUY 0.0127
man 1.46 man 0.175 man 0.012
doctor 1.46 mother 0.184 year 0.01
girl 1.48 doctor 0.185 lot 0.0095
rest 1.485 friend 0.186 today 0.009
son 1.497 boy 0.187 way 0.008778
bit 1.498 son 0.188 part 0.008772
(role: rank 173) (role: rank 43) (kid: rank 80)

Table 8. For each noun w1, the ten verbs w2 with highest P (w2|w1).
Bold-face verbs occur with both the given noun and with “guy.” The
base language model is MLE-1.

Noun Most Likely Verbs

guy see get play let give catch tell do pick need

kid get see take help want tell teach send give love
role play take lead support assume star expand accept sing limit

Table 9. Verbs with highest P (w2|“guy”)/P (w2) ratios. The numbers
in parentheses are ranks.

(1) electrocute (2) shortchange (3) bedevil (4) admire (5) bore (6) fool
(7) bless · · · (26) play · · · (49) get · · ·

are also very likely to occur with “guy”, whereas only the verb “play” commonly
occurs with both “role” and “guy”.

If we sort the verbs by decreasing P (w2|“guy”)/P (w2), a different order emerges
(Table 9): “play”, the most likely verb to cooccur with “role”, is ranked higher
than “get”, the most likely verb to cooccur with “kid”, thus indicating why “role”
has a higher confusion probability with respect to “guy” than “kid” does.

Finally, we examine the effect of deleting singletons from the base language model.
Table 10 shows the ten closest words, in order, when the base language model is
MLE-o1. The relative order of the four closest words remains the same; however,
the next six words are quite different from those for MLE-1. This data suggests
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Table 10. 10 closest words to the word “guy” for L, J ,
and PC, using MLE-o1 as the base language model.

L J PC

GUY 0.0 GUY 0.0 role 0.05
kid 1.17 kid 0.15 people 0.025
lot 1.40 thing 0.16 fire 0.021
thing 1.41 lot 0.17 GUY 0.018
reason 1.417 mother 0.182 work 0.016
break 1.42 answer 0.1832 man 0.012
ball 1.439 reason 0.1836 lot 0.0113
answer 1.44 doctor 0.187 job 0.01099
tape 1.449 boost 0.189 thing 0.01092
rest 1.453 ball 0.19 reporter 0.0106

that the effect of singletons on calculations of similarity is quite strong, as is borne
out by the experimental evaluations described in Section 4.5.
We conjecture that this effect is due to the fact that there are many very low-

frequency verbs in the data (65% of the verbs appeared with 10 or fewer nouns;
the most common verb occurred with 710 nouns). Omitting singletons involving
such verbs may well drastically alter the number of verbs that cooccur with both
of two given nouns w1 and w′1. Since the similarity functions we consider in this
set of experiments depend on such words, it is not surprising that the effect of
deleting singletons is rather dramatic. In contrast, a back-off language model is not
as sensitive to missing singletons because of the Good-Turing discounting of small
counts and inflation of zero counts.

4.5. Performance of Similarity-Based Methods

Figure 1 shows the results of our experiments on the five test sets, using MLE-1 as
the base language model. The parameter β was always set to the optimal value for
the corresponding training set. RAND, which is shown for comparison purposes,
simply chooses the weights W (w1, w

′
1) randomly. S(w1) was set equal to V1 in all

cases.
The similarity-based methods consistently outperformed Katz’s back-off method

and the MLE (recall that both yielded error rates of about .5) by a large margin,
indicating that information from other word pairs is very useful for unseen pairs
when unigram frequency is not informative. The similarity-based methods also do
much better than RAND, which indicates that it is not enough to simply combine
information from other words arbitrarily: word similarity should be taken into
account. In all cases, J edged out the other methods. The average improvement in
using J instead of PC is .0082; this difference is significant to the .1 level (p < .085),
according to the paired t-test.
The results for the MLE-o1 case are depicted in Figure 2. Again, we see the

similarity-based methods achieving far lower error rates than the MLE, back-off,
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Figure 1. Error rates for each test set, where the base language model was MLE-1. The methods,
going from left to right, are RAND , PC, L, and J . The performances shown are for settings of β
that were optimal for the corresponding training set. β ranged from 4.0 to 4.5 for L and from 20
to 26 for J .

and RAND methods, and again, J always performed the best. However, omitting
singletons amplified the disparity between J and PC: the average difference was
.024, which is significant to the .01 level (paired t-test).
An important observation is that all methods, including RAND, suffered a per-

formance hit if singletons were deleted from the base language model. This seems
to indicate that seen bigrams should be treated differently from unseen bigrams,
even if the seen bigrams are extremely rare. We thus conclude that one cannot cre-
ate a compressed similarity-based language model by omitting singletons without
hurting performance, at least for this task.
We now analyze the role of the parameter β. Recall that β appears in the weight

functions for the Jensen-Shannon divergence and the L1 norm:

WJ(w1, w
′
1) = 10−βJ(w1,w

′
1) , WL(w1, w

′
1) = (2− L(w1, w

′
1))

β .

It controls the relative influence of the most similar words: their influence increases
with higher values of β.
Figure 3 shows how the value of β affects disambiguation performance. Four

curves are shown, each corresponding to a choice of similarity function and base
language model. The error bars depict the average and range of error rates over
the five disjoint test sets.
It is immediately clear that to get good performance results, β must be set much

higher for the Jensen-Shannon divergence than for the L1 norm. This phenomenon
results from the fact that the range of possible values for J is much smaller than
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Figure 2. Error rates for each test set, where the base language model was MLE-o1. β ranged
from 6 to 11 for L and from 21 to 22 for J .
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Figure 3. Average and range of test-set error rates as β is varied. The similarity function is
indicated by the point style; the base language model is indicated by the line style.

that for L. This “compression” of J values requires a large β to scale differences of
distances correctly.
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We also observe that setting β too low causes substantially worse error rates;
however, the curves level off rather than moving upwards again. That is, as long as
a sufficiently large value is chosen, setting β suboptimally does not greatly impact
performance. Furthermore, the shape of the curves is the same for both base
language models, suggesting that the relation between β and test-set performance
is relatively insensitive to variations in training data.

The fact that higher values of β seem to lead to better error rates suggests that
β’s role is to filter out distant neighbors. To test this hypothesis, we experimented
with using only the k most similar neighbors. Figure 4 shows how the error rate
depends on k for different fixed values of β. The two lowest curves depict the
performance of the Jensen-Shannon divergence and the L1 norm when β is set to
the optimal value with respect to average test set performance; it appears that
the more distant neighbors have essentially no effect on error rate because their
contribution to the sum (9) is negligible. In contrast, when too low a value of β is
chosen (the upper two curves), distant neighbors are weighted too heavily. In this
case, including more distant neighbors causes serious degradation of performance.
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Figure 4. Average and range of test-set error rates as k is varied. The base language model
was MLE-1. The similarity function is indicated by the point style; the dashed and dotted lines
indicate a suboptimal choice of β.

Interestingly, the behavior of the confusion probability is different from these
two cases: adding more neighbors actually improves the error rate. This seems
to indicate that the confusion probability is not correctly ranking similar words
in order of informativeness. However, an alternative explanation is that PC is at
a disadvantage only because it is not being employed in the context of a tunable
weighting scheme.
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To distinguish between these two possibilities, we ran an experiment that dis-
pensed with weights altogether. Instead, we took a vote of the k most similar
neighbors: the alternative chosen as more likely was the one preferred by a ma-
jority of the most similar neighbors (note that we ignored the degree to which
alternatives were preferred). The results are shown in Figure 5.
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Figure 5. Average and range of voting-scheme test-set error rates as k is varied. The similarity
function is indicated by the point style; the base language model is indicated by the line style.

We see that the k most similar neighbors according to J and L were always
more informative than those chosen according to the confusion probability, with
the largest performance gaps occurring for low k (of course, all methods performed
the same for k = 1000, since in that case they were using the same set of neighbors).
This graph provides clear evidence that the confusion probability is not as good a
measure of the informativeness of other words.

5. Related Work

There is a large body of work on notions of work similarity, word clustering, and
their applications. It is impossible to compare all those methods directly, since
the assumptions, experimental settings and applications of methods vary widely.
Therefore, the discussion below is mainly descriptive, highlighting some of the main
similarities and differences between the methods.
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5.1. Statistical similarity and clustering for disambiguation and language modeling

Our work is an instance of a growing body of research on using word similarity to
improve performance in language-processing problems. Similarity-based algorithms
either use the similarity scores between a word and other words directly in making
their predictions, or rely on similarity scores between a word and representatives
of precomputed similarity classes.

An early attempt to automatically classify words into semantic classes was car-
ried out in the Linguistic String Project (Grishman, Hirschman, & Nhan, 1986).
Semantic classes were derived from similar cooccurrence patterns of words within
syntactic relations. Cooccurrence statistics were then considered at the class level
and used to alleviate data sparseness in syntactic disambiguation.

Schütze (1992b, 1993) captures contextual word similarity by first reducing the
dimensionality of a context representation using singular value decomposition and
then using the reduced-dimensionality representation to characterize the possible
contexts of a word. This information is used for word sense disambiguation. All
occurrences of an ambiguous word are clustered and each cluster is mapped man-
ually to one of the senses of the word. The context vector of a new occurrence of
the ambiguous word is mapped to the nearest cluster which determines the sense
for that occurrence. Schütze emphasizes that his method avoids clustering words
into a pre-defined set of classes, claiming that such clustering is likely to introduce
artificial boundaries that cut off words from part of their semantic neighborhood.

Karov and Edelman (1996) have also addressed the data sparseness problem in
word sense disambiguation by using word similarity. They use a circular definition
for both a word similarity measure and a context similarity measure. The circu-
larity is resolved by an iterative process in which the system learns a set of typical
usages for each of the senses of an ambiguous word. Given a new occurrence of the
ambiguous word the system selects the sense whose typical context is most similar
to the current context, applying a procedure which resembles the sense selection
process of Shütze.

Our scheme for employing word similarity in disambiguation was influenced by
the work of Dagan et al. (1993, 1995). Their method computes a word similarity
measure directly from word cooccurrence data. A word is then modeled by a set
of most similar words, and the plausibility of an unseen cooccurrence is judged
by the cooccurrence statistics of the words in this set. The similarity measure is a
weighted Tanimoto measure, a version of which was also used by Grefenstette (1992,
1994). Word association is measured by mutual information, following earlier work
on word similarity by Hindle (1990).

The method of Dagan et al. does not provide probabilistic models. Disambigua-
tion decisions are based on comparing scores for different alternatives, but they do
not produce explicit probability estimates and therefore cannot be integrated di-
rectly within a larger probabilistic framework. The cooccurrence smoothing model
of Essen and Steinbiss (1992), like our model, produces explicit estimates of word
cooccurrence probabilities based on the cooccurrence statistics of similar words.
The similarity-based estimates are interpolated with direct estimates of n-gram
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probabilities to form a smoothed n-gram language model. Word similarity in this
model is computed by the confusion probability measure, which we described and
evaluated earlier.

Several language modeling methods produce similarity-based probability esti-
mates through class-based models. These methods do not use a direct measure
of the similarity between a word and other words, but instead cluster the words
into classes using a global optimization criterion. Brown et al. (1992) present a
class-based n-gram model which records probabilities of sequences of word classes
instead of sequences of individual words. The probability estimate for a bigram
which contains a particular word is affected by bigram statistics for other words
in the same class, where all words in the same class are considered similar in their
cooccurrence behavior. Word classes are formed by a bottom-up hard-clustering
algorithm whose objective function is the average mutual information of class cooc-
currence. Ushioda (1996) introduces several improvements to mutual-information
clustering. His method, which was applied to part-of-speech tagging, records all
classes which contained a particular word during the bottom-up merging process.
The word is then represented by a mixture of these classes rather than by a single
class.

The algorithms of Kneser and Ney (1993) and Ueberla (1994) are similar to that
of Brown et al. (1992), although a different optimization criterion is used, and the
number of clusters remains constant throughout the membership assignment pro-
cess. Pereira et al. (1993) use a formalism from statistical mechanics to derive
a top-down soft-clustering algorithm with probabilistic class membership. Word
cooccurrence probability is then modeled by a weighted average of class cooccur-
rence probabilities, where the weights correspond to membership probabilities of
words within classes.

5.2. Thesaurus-based similarity

The approaches described in the previous section induce word similarity relation-
ships or word clusters from cooccurrence statistics in a corpus. Other researchers
developed methods which quantify similarity relationships based on information in
the manually crafted WordNet thesaurus (Miller, Beckwith, Fellbaum, Gross, &
Miller, 1990). Resnik (1992, 1995) proposes a node-based approach for measuring
the similarity between a pair of words in the thesaurus and applies it to various
disambiguation tasks. His similarity function is an information-theoretic measure
of the informativeness of the least general common ancestor of the two words in
the thesaurus classification. Jiang and Conrath (1997) combine the node-based ap-
proach with an edge-based approach, where the similarity of nodes in the thesaurus
is influenced by the path that connects them. Their similarity method was tested
on a data set of word pair similarity ratings derived from human judgments.

Lin (1997, 1998) derives a general concept-similarity measure from assumptions
on desired properties of similarity. His measure is a function of the number of
bits required to describe each of the two concepts as well as their “commonality”.
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He then describes an instantiation of the measure for a hierarchical thesaurus and
applies it to WordNet as part of a word sense disambiguation algorithm.

5.3. Contextual similarity for information retrieval

Query expansion in information retrieval (IR) provides an additional motivation
for automatic identification of word similarity. One line of work in the IR literature
considers two words as similar if they occur often in the same documents. Another
line of work considers the same type of word similarity we are concerned with, that
is, similarity measured derived from word-cooccurrence statistics.
Grefenstette (1992, 1994) argues that cooccurrence within a document yields

similarity judgements that are not sharp enough for query expansion. Instead, he
extracts coarse syntactic relationships from texts and represents a word by the set
of its word-cooccurrences within each relation. Word similarity is defined by a
weighted version of the Tanimoto measure which compares the cooccurrence statis-
tics of two words. The similarity method was evaluated by measuring its impact
on retrieval performance.
Ruge (1992) also extracted word cooccurrences within syntactic relationships and

evaluated several similarity measures on those data, focusing on versions of the
cosine measure. The similarity rankings obtained by these measures were compared
to those produced by human judges.

6. Conclusions

Similarity-based language models provide an appealing approach for dealing with
data sparseness. In this work, we proposed a general method for using similarity-
based models to improve the estimates of existing language models, and we eval-
uated a range of similarity-based models and parameter settings on important
language-processing tasks. In the pilot study, we compared the language modeling
performance of a similarity-based model with a standard back-off model. While
the improvement we achieved over a bigram back-off model is statistically signifi-
cant, it is relatively modest in its overall effect because of the small proportion of
unseen events. In a second, more detailed study we compared several similarity-
based models and parameter settings on a smaller, more manageable word-sense
disambiguation task. We observed that the similarity-based methods perform much
better on unseen word pairs, with the measure based on the Jensen-Shannon diver-
gence being the best overall.
Our experiments were restricted to bigram probability estimation for reasons

of simplicity and computational cost. However, the relatively small proportion of
unseen bigrams in test data makes the effect of similarity-based methods necessarily
modest in the overall tasks. We believe that the benefits of similarity-based methods
would be more substantial in tasks with a larger proportion of unseen events, for
instance language modeling with longer contexts. There is no obstacle in principle
to doing this: in the trigram case, for example, we would still be determining the
probability of pairs V1 × V2, but V1 would consist of word pairs instead of single
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words. However, the number of possible similar events to a given element in V1 is
then much larger than in the bigram case. Direct tabulation of the events most
similar to each event would thus not be practical, so more compact or approximate
representations would have to be investigated. It would also be worth investigating
the benefit of similarity-based methods to improve estimates for low-frequency seen
events. However, we would need to replace the back-off model by another one that
combines multiple estimates for the same event, for example an interpolated model
with context-dependent interpolation parameters.

Another area for further investigation is the relationship between similarity-based
and class-based approaches. As mentioned in the introduction, both rely on a com-
mon intuition, namely, that events can be modeled to some extent by similar events.
Class-based methods are more computationally expensive at training time than
nearest neighbor methods because they require searching for the best model struc-
ture (number of classes and, for hard clustering, class membership) and estimation
of hidden parameters (class membership probabilities in soft clustering). On the
other hand, class-based methods reduce dimensionality and are thus smaller and
more efficient at test time. Dimensionality reduction has also been claimed to im-
prove generalization to test data, but the evidence for this is mixed. Furthermore,
some class-based models have theoretically satisfying probabilistic interpretations
(Saul & Pereira, 1997), whereas the justification for our similarity-based models is
heuristic and empirical at present. Given the variety of class-based language mod-
eling algorithms, as described in the section on related work above, it is beyond
the scope of this paper to compare the performance of the two approaches. How-
ever, such a comparison, especially one that would bring both approaches under a
common probabilistic interpretation, would be well worth pursuing.
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Notes

1. To the best of our knowledge, this is the first use of this particular distribution dissimilarity
function in statistical language processing. The function itself is implicit in earlier work on
distributional clustering (Pereira et al., 1993) and has been used by Tishby (p.c.) in other
distributional similarity work. Finch (1993) discusses its use in word clustering, but does not
provide an experimental evaluation on actual data.

2. We experimented with using 10−βL(w1,w
′
1
) as well, but it yielded poorer performance results.

3. Actually, they present two alternative definitions. We use their model 2-B, which they found
yielded the best experimental results.

4. The ARPA WSJ development corpora come in two versions, one with verbalized punctuation
and the other without. We used the latter in all our experiments.

5. Values of β and t refer to base 10 logarithms and exponentials in all calculations.

6. It should be noted, however, that on BO-1 data, the KL-divergence performed slightly better
than the L1 norm.
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