
Similarity-based Retrieval of Time-Series Data
Using Multi-Scale Histograms

Lei Chen, M. Tamer Özsu
University of Waterloo

School of Computer Science
Waterloo, Canada

{l6chen,tozsu}@uwaterloo.ca

Technical Report CS-2003-31 Sept 2003

1

Abstract

Queries for similarity-based time series data retrieval can be cat-
egorized into two types: (1) pattern existence queries, and (2) exact
match queries. Pattern existence queries find the time series data with
certain patterns while exact match queries search over the time series
data by specifying exact values and detailed temporal information. In
this paper, we propose multi-scale time series histograms that can be
used to answer both types of queries, thus offering users more flexi-
bility. The experimental results show that multi-scale histograms can
effectively find the patterns in time series data as well as answer exact
match queries, even when the data contain noise, local time shifting,
local time scaling, amplitude shifting and amplitude scaling.

1 Introduction

Similarity-based time series data retrieval has been attracting increasing in-
terest in database and knowledge discovery communities because of its wide
use in various applications, such as stock data or weather data analysis. Ba-
sically, two types of queries on time series data are studied: pattern existence
queries [2, 25, 23], and exact match queries [1, 6, 8, 24, 32, 15, 11, 4].

In pattern existence queries, users are interested in the general shape of
time series data and ignore the specific details. For example,

• “Give me all the stock data of last month that have a head and shoulder
pattern”; or

• “Give me all the temperature data of patients in last 24 hours that
have two peaks”.

The second query, for example, is used for detecting “goalpost fever”, one
of the symptoms of Hodgkin’s disease, in the time series data that contain
peaks exactly twice within 24 hours [25]. Figure 1(a) shows an example time
series with two peaks. Using this as query data, a two peaks existence query
should retrieve various time series that contain two peaks as shown in 1(b).
Therefore, for pattern existence queries, as long as the time series data have
the specified pattern, they will be retrieved, no matter when the pattern
appears and how it appears.

The retrieval techniques for pattern existence queries should be invariant
to the following:

• Noise. In Figure 2(a), two similar time series TA and TB are shown.
However, position 3 (which could be a noise data point) will introduce a
large difference value when the Euclidean distance is computed between
two time series, which may cause them to be determined as dissimilar.

2

0 20 40 60 80 100 120 140
−8

−6

−4

−2

0

2

4
Tquery

(a) An example query time series with two
peaks

0 20 40 60 80 100 120 140
−5

0

5

10

15

20

25

30

35

40
T1
T2
T3
T4

(b) Various candidate time series contain two
peaks

Figure 1: A pattern existence query on two peaks

X

t

TB

TA

1
2

5
6

9
7

8 10

3

4

(a) Two similar time series
with noise

x

t

TB

TA

(b) Two similar time series with
amplitude scaling

x

t

TB

TA

(c) Two similar time series
with time shifting

x

t

TB

TA

(d) Two similar time series with
time scaling

Figure 2: The different factors that may affect the similarity between two
time series

3

• Amplitude scaling and shifting. In Figure 2(b), the two time series
are similar in terms of the pattern that they contain (they both have
“two bottom” pattern), but the amplitudes are different.

• Time shifting and scaling. In Figures 2(c) and 2(d), time series
TA and TB will be considered dissimilar if we simply compare their
positions. However, it can be argued that TA and TB are similar because
they contain the same pattern (“two peaks”).

Several approximation approaches [2, 25, 23] have been proposed to trans-
form time series data to character strings over a discrete alphabet and apply
string matching techniques to find the patterns. However, the transforma-
tion process is sensitive to noise. Furthermore, because of the quantization
of the value space for transforming time series data into strings, data points
located near the boundaries of two quantized subspaces may be assigned to
different alphabets. As a consequence, they are considered to be different by
string comparison techniques.

For exact match queries, the exact result of a query is defined in terms
of specific values. The actual match results are the time series data that
are within a specific threshold to the exact result. For example, “Give me
all the stock data of last month that is similar to the IBM’s stock data
of last month”. As shown in Figure 3, we are looking for the stock data
within the boundaries that are described by two dashed curves. Most of
the previous work focus on solving exact match queries. Euclidean distances
are widely used to measure the similarity between two time series [1, 6,
24]. However, it requires two time series to have the same length and same
sampling rate. Dynamic time warping (DTW) is proposed to measure two
time series with different lengths and different sampling rates [3, 32, 15, 11].
However, DTW is sensitive to noise since it also requires matching all the data
points, even for outliers [27]. Bozkaya et al. [4] present a modified version of
edit distance, called longest common subsequences (LCSS), to compute the
distance between two sequences of feature vectors, which were extracted from
image sequences. However, a threshold must be set to determine whether or
not the elements from two sequences match. It is difficult to find a suitable
threshold value without prior knowledge of data. Therefore, a robust and
easy-to-set similarity measure is needed for exact match queries.

To the best of our knowledge, there are no techniques that have been
developed to answer both pattern existence queries and exact match queries.
A typical application that needs answers to both queries is an interactive
analysis of time series data. For example, users may be initially interested in
retrieving all the time series data that have some specific patterns that can
be quickly answered by pattern existence queries. After that, they may want
to retrieve all the time series which are similar to an interesting time series
that they find from the previous retrieval results. In this case, they can use

4

0 5 10 15 20 25 30 35
20

20.5

21

21.5

22

22.5

23

23.5

day

pr
ice

 ($
)

a

a

Figure 3: An exact match query using Euclidean distance

exact match queries.
In this paper, based on the observation that data distributions can cap-

ture patterns of time series data, we propose a multi-scale histogram-based
representation to approximate time series data, which is invariant to noise,
amplitude scaling and shifting, and time shifting. The multi-scale represen-
tation can answer both pattern existence queries and exact match queries
and offers users flexibility to search time series data with different precision
levels (scales). Weighted Euclidean distance is used to measure the similarity
between two time series with the consideration of bin similarity. We also in-
vestigate two different approaches in constructing histograms: equal bin size
and equal area size. The experimental results show that our histogram-based
representation, together with the weighted distance measure, can effectively
capture the patterns of time series data as well as the exact values of time
series data.

The rest of the paper is arranged as follows: Section 2 presents concepts
of time series histograms and two different types of time series histograms.
We present multi-scale time series histograms in Section 3. In Section 4,
we present experimental results using multi-scale time series histograms on
finding patterns and answering exact match queries, followed, in Section 5,
by a comparison of our work with earlier proposals. We conclude in Section
6 and indicate some further work.

2 Histogram-based data representation

A time series data T is defined as a sequence of pairs, each of which shows
the value (xi) that is sampled at a specific time denoted by a timestamp (ti):
T = [(x1, t1), . . . , (xn, tn)] where n, the number of data points in T , is defined
as the length of T . We refer to this sequence as the raw representation of the
time series data.

Given a set of N time series data T , we first normalize each time series

5

Ti into its normal form using its mean (µ) and variance (σ) [8]:

Norm(T) = [(
x1 − µ

σ
, t1), . . . , (

xn − µ

σ
, tn)]

The similarity measures computed from time series normal form are invariant
to amplitude scaling and shifting.

Given the definition and normal form representation of a time series, we
use time series histograms to compare them. Given the maximum and mini-
mum values of normalized time series data as maxT and minT , respectively,
we divide the range [minT , maxT] into τ disjoint equal size sub-regions, called
histogram bins. Given a time sequence T , we can compute the histogram H
of T by counting the number of data points hi (1 ≤ i ≤ n) that are located
in each histogram bin i: H = [h1, . . . , hτ].

We normalize the time series histogram by dividing the value of each his-
togram bin i by the total number of data points in the time series. Since
time series histograms are computed from normal form of time series data,
the distance that is computed from two time series histograms are invariant to
amplitude scaling and shifting. Furthermore, because time series histograms
ignore the temporal information, they are also robust to time shifting and
scaling. For example, in Figures 2(c) and 2(d), the histogram of normalized
TA is the same as that of TB. Moreover, since time series histograms show
the whole distribution of the data, and noise only make up a very small por-
tion, comparisons based on histograms can remove the disturbance caused
by noise. Therefore, time series histograms are ideal representations for an-
swering pattern existence queries. Algorithm 1 describes how to construct
time series histograms for data set T .

L1 or L2 norms [26] can be used to measure the similarity between two
histograms. However, these do not take the similarity between time series
histogram bins into consideration, which may lead to poor comparison re-
sults. Consider three histograms H1, H2 and H3 representing three time
series of equal length. Assume that H1 and H2 have the same value on con-
secutive bins and H3 has the same value in a bin which is quite far away
from these bins of H1 and H2. L1 and L2 distances between any two of these
three histograms are equal. However, for answering exact match queries, H1

is closer to H2 than it is to H3. Even for pattern existence queries, data
points which are located near the boundary of two histogram bins should be
treated differently compared to those points that are far apart, which is also
not considered by L1 and L2 distance measures.

A weighted Euclidean distance can be used to compute the distance be-
tween two color histograms [10]. We adapt this distance function to measure
the similarity between two time series histograms. Given two time series TA

and TB, the weighted Euclidean distance (WED) between their time series
histograms HA and HB is:

6

Algorithm 1 The algorithm for constructing histograms for data set T
Require: /*input: a time series data set T and the number of histogram

bins τ */
Ensure: /*output: a histogram data set */
1: find maxT and minT of the data set T
2: divide [minT ,maxT] into τ disjoint equal size histogram bins hi

3: for all each time series Ti of T do
4: for each data point xi of Ti do
5: for each histogram bin hi do
6: if hi,lowerbound ≤ xi < hi,upperbound then
7: hi = hi + 1 ;
8: break;
9: end if

10: end for
11: end for
12: insert generated Hi to the result data set
13: end for
14: return the result data set

WED(HA, HB) = ZT AZ

where Z = (HA − HB), ZT is the transpose of Z, and A = [aij] is a sim-
ilarity matrix whose element aij denotes similarity between two time series
histogram bins i and j. The larger is aij, the more similar are bins i and j.
We define aij as: aij = (1 − |j − i|/τ), where τ is the number of bins. The
algorithm for answering pattern existence queries is given in Algorithm 2.

Algorithm 2 The algorithm for answering pattern existence queries

Require: /*input: A example time series T , its histogram H, a matching
threshold ε. T contains the specified patterns*/

Ensure: /*output: A list of time series who contain the specified patterns*/
1: for all time series histograms Hi of Ti in the database do
2: if WED(Hi, H) ≤ ε then
3: insert the time series id i into the result list
4: end if
5: end for
6: return the result list

In Algorithm 2, a matching threshold has to be set to determine whether
the examined time series contains a pattern similar to that of the query
time series. In our experiments, we find a suitable threshold based on the
histogram of the query time series.

7

(a) Values of a 16 bin equal bin size histogram (b) Values of a 16 bin equal area size histogram

Figure 4: A comparison of data distributions of an equal bin size histogram
and an equal area size histogram

In the previous section, we defined a histogram with equal bin sizes.
However, values of time series data normally are not uniformly distributed,
leaving a lot of bins empty. In such cases, computing the distances between
two time series histograms that contain many zeros is not helpful to differ-
entiate the corresponding time series data. It has been claimed [19] that
distributions of most time series data follow normal distribution. We have
verified this phenomenon on the data sets that we use in our experiments.

Consequently, instead of segmenting the value space into τ equal size sub-
regions, we segment the value space into sub-regions (called sub-spaces) that
have the same area size under the normal distribution curve of that data. The
boundary of each subspace can be computed as follows. Assuming that xi is
the lower bound of subspace i and xi+1 is the upper bound:

∫ maxT
minT

p(x)dx =∑ ∫ xi+1

xi
p(x)dx where p(x) is the normal distribution function, 1 ≤ i ≤ τ ,

x1 = minT , and xτ+1 = maxT . Even though we use normal distribution
function to create equal area size histogram bins, the idea can be easily
extended to other data distributions.

With equal area size segmentation, we assign equal probability to each
histogram bin that data points of time series fall in. For example, for the
“cameramouse” data that we used in our experiment, the average filling ratio
of 16 bin equal area size histograms is about 98%. However, it is only 40%
for the 16 bin equal bin size histograms. Figure 4 shows the values of equal
area size and equal bin size histograms of a randomly selected data from
“cameramouse” data set. From Figure 4, we can see that the values in the
equal area size histogram are well distributed and values in the equal bin size
histogram concentrate on a few bins.

In our experiments, we compare the effectiveness of equal bin size his-
tograms and equal area size histograms in terms of classification accuracy.
By changing line 2 of Algorithm 1 to construct histogram bins with equal area
size, we can use the same algorithm to construct equal area size histograms.

8

3 Multi-scale Time Series Histograms

The time series histograms, as defined in the previous section, give a global
view of the data distribution of time series data. However, they do not
consider the temporal appearance order of values. For example, in Figure 5,
two time series, TA and TB, are quite different in terms of appearance order.
However, they have the same histograms as shown in Figures 6(a) and 6(c).

0 100 200 300 400 500 600
15

20

25

30

35

40

45

day

pr
ic

e
($

)

TA
TB

Figure 5: Two different time series with the same time series histogram

A multi-scale representation of time series histogram is designed for better
discrimination of time series data based on their temporal details to facilitate
exact match queries. A time series TA of length n, can be equally divided
into δ (1 ≤ δ ≤ n) segments. For each segment, we can compute its time
series histogram. If δ = 1, we get the histogram for the entire time series as
defined in the previous section. If further precision is required in comparing
two time series, one can set δ > 1, build a histogram for each segment (for
both time series) and compare the corresponding histograms. Thus, we can
develop multi-scale histograms on time series data by proper setting of δ and
a specific δ value defines the precision level (i.e. scale) of the histogram.
Figure 6 shows 2-scale histograms for time series TA and TB of Figure 5. In
Figure 6, TA and TB can be easily distinguished at the second level (δ = 2).

With multi-scale time series histograms, the exact match queries can be
answered at several precision levels. Users can specify the scale levels when
they submit a query. We use the average of the weighted Euclidean distances
as the result of comparison at scale level δ:

Dδ =

∑δ
i=1 WED(HA,i, HB,i)

δ

By extending the Theorem for color histograms in [20], we have:

9

(a) a histogram of TA at scale
level 1

(b) two histograms of TA at scale level 2

(c) a histogram of TB at scale
level 1

(d) two histograms of TB at scale level 2

Figure 6: Two scale histograms of TA and TB

Theorem 1 In a n-level multi-scale time series histogram, if Dl denotes
the distance between two time series histograms at scale level l, then Dl−1 ≤
Dl ≤ Dl+1, where 2 ≤ l ≤ n.

Proof: Straightforward extension from proof in [20].
When we answer an exact match query at higher scale level l, instead of

directly computing the WED at level l,we can start computing the WED
for each candidate time series at level 1, and then level 2 and so on [18]. Ac-
cording to Theorem 1, this multi-step filtering processing will not introduce
false dismissals.

For both pattern existence queries and exact match queries, directly com-
paring τ -dimensional time series histograms is computationally expensive,
even with the help of some multidimensional access methods (MAM) such as
the R-tree [9]. Since τ is higher than 8-12 dimensions, the performance will
be worse than sequential scan [30]. Therefore, we use the weighted average

10

of time series histogram to avoid comparisons on full histograms.
The average of a time series histogram is defined as the weighted average.

Suppose C = [c1, c2, . . . , cτ] is a 1 × τ matrix whose ith column ci is the
upper bound value of histogram bin i (xi+1). Given two τ dimensional time
series histograms X and Y , the average histograms are: Xavg = CX and
Yavg = CY . The squared average distance between Xavg and Yavg is defined
as: WAD = (Xavg − Yavg)

T (Xavg − Yavg) = (X − Y)T CT C(X − Y).
Theorem 2 [10] With WED and WAD defined as above, if Ã is positive

semidefinite, then for all vectors X and Y , WAD ≤ WED/
√

λ1, where λ1 is
the minimum eigenvalue of the generalized eigenvalue problem ÃZ̃ = λW̃ Z̃
where W = CT C, W̃ is the first n− 1 elements of W , Z = (X − Y), Z̃ and
Ã are defined with respect to Z and A, respectively.

Therefore, instead of directly computing the weighted histograms, we can
first compute the distance between the weighted averages of two time series
histograms to prune false alarms from the database. Weighted averages can
be considered as the first filter when we use multi-step filtering to answer an
exact match query at a higher scale l. The algorithm for multi-step filtering
is given in Algorithm 3.

4 Experiments and Discussion

In this section, we present the results of some experiments that we conducted
to evaluate the efficacy and robustness of the histogram-based similarity mea-
sure and the matching algorithm. All the programs are written in C and run
on a Sun-Blade-1000 workstation under Solaris 2.8 with 1GB of memory.

4.1 Efficacy and Robustness of Similarity Measures

Our first experiment is designed to test how well the weighted Euclidean dis-
tances computed from histograms perform in finding patterns in time series
data. We first compare our approach with the approach proposed in [25] on
the labelled time series data sets: Cylinder-Bell-Funnel (CBF). The reason
for selecting CBF data sets is that it contains very simple distinct patterns,
allowing a direct comparison of the techniques. The CBF data set has three
distinct classes of times series: cylinder, bell and funnel as shown in Figure
7. We generate 1000 CBF data sets with 100 examples for each class. We
implemented Shatkay’s algorithms using the best line fitting. In order to
capture the overall shapes, a larger error threshold (1.2) was used. However
the general shape of bell and funnel are treated as similar in [25], because
both of them contain a peak. Therefore, for fairness, we only used cylinder
and bell data sets to test for existence queries. In order to test robustness
of the similarity measures, we added random Gaussian noise and local time

11

warping to both data sets using a modified program of [28]. We added to
this program non-interpolated noise and large time warping (20 − 30% of
the series length) since pattern existence queries are only interested in the
existence of a given pattern. Figure 8 shows the best fitting line segments
(dashed lines) for the cylinder and bell data sets that contain noise and time
wrapping. The slope of each line segment is mapped into a symbol according
to the predefined mapping tables (e.g. Table 1 [23]) and consecutive symbols
are connected together to form a string.

Algorithm 3 The algorithm for answering exact match queries with multi-
scale filtering

Require: /*input: A example time series T , its histogram H, a matching
threshold ε. precision level δ*/

Ensure: /*output: A list of time series who match T*/
1: for all multi-scale time series histograms Hi of Ti in the database do
2: Compute WAD between the weighted average of H and that of Hi

3: if WAD ≤ ε/
√

λ1 then
4: insert the time series id i into the result list R0

5: end if
6: end for
7: j = 1
8: repeat
9: for each i in Rj−1 do

10: if WED(Hi, H) ≤ ε then
11: insert the time series id i into the result list Rj

12: end if
13: end for
14: j = j + 1
15: until (j == δ + 1) or (Rj−1 is empty)
16: if Rj−1 is empty then
17: return NULL
18: else
19: return the result list Rδ

20: end if

Slope symbol Slope partiton
U(Up) (tan(π/6),∞)
F(flat) (tan(−π/6), tan(π/6))
D(Down) (−∞, tan(−π/6))

Table 1: An example of mapping quantized slope subspaces into symbols

In [25], regular expressions are used to query the converted strings for

12

0 20 40 60 80 100 120 140
−2

0

2

4

6

8

10

(a) Cylinder
0 20 40 60 80 100 120 140

−4

−2

0

2

4

6

8

(b) Bell
0 20 40 60 80 100 120 140

−2

−1

0

1

2

3

4

5

6

7

8

(c) Funnel

Figure 7: Cylinder-Bell-Funnel data set

0 20 40 60 80 100 120 140
−6

−4

−2

0

2

4

6

8

10

12

cylinder data
best fitting lines

(a) best fitting lines for cylinder time series

0 20 40 60 80 100 120 140
−4

−2

0

2

4

6

8

bell data
best fitting lines

(b) best fitting lines for bell time series

Figure 8: Best fittings lines for cylinder and bell data

certain patterns. The regular expression for retrieving time series that con-
tain cylinder shape is F ∗UF+DF ∗ and F ∗UDF ∗ for bell shape. We use
Algorithm 1 to search the patterns in the time series data. We generated
another “pure” CBF data set of size 150 as query data, each class contains
50 examples. The histograms are also computed from the query data set.
We use precision and recall to measure our retrieval results which are well
known metrics in information retrieval. Precision measures the proportion
of correctly found time series, while recall measures the proportion of cor-

13

rect time series that are detected. In this experiment, we need to determine
the matching threshold ε. We tested several values and found that half the
weighted Euclidean distance between the query histogram and an empty his-
togram gave the best results. We run the query for 50 times and averaged
the results, as shown in Table 2. Even though the regular expression ap-
proach achieves relatively high precision, its recall is very low. This is the
effect of noise. Our histogram-based approach can achieve relatively high
precision and recall, which confirms that our approach is suitable for answer-
ing pattern existence queries. From Table 2, we also find that dividing the
value space into too many sub-regions (histogram bins) does not improve the
results significantly; we can achieve reasonably good results around 16 bins.

Cylinder Bell
precision recall precision recall

regular expression 81.48 44.00 75.61 31.00
his(τ = 8) 72.22 91.00 63.39 71.00
his(τ = 16) 72.44 92.00 78.43 80.00
his(τ = 32) 75.63 90.00 79.28 88.00
his(τ = 64) 72.58 90.00 79.44 85.00

Table 2: Precision and Recall on Pattern Existences Queries

The second experiment is designed to check the effectiveness and robust-
ness of multi-scale histograms in answering exact match queries. Since the
objective measurements of the quality of a proposed similarity measure can
be readily obtained by running simple classification experiments on labelled
data sets [14], we first compare the classification error rates in results pro-
duced by the weighted Euclidean distances to those of DTW and LCSS by
evaluating them on the Control-Chart (CC) data set. We compare WED with
DTW and LCSS because DTW and LCSS can also handle local time shifting
or noise disturbances. The classification error rate is defined as a ratio of the
number of misclassified time series to the total number of the time series.
There are six different classes of control charts: “normal”, “cyclic”, “in-
creasing trend”, “decreasing trend”, “upward shift”, and “downward shift”.
Each class contains 100 examples. We later tested our techniques using more
complicated data sets. We added non-interpolated noise and time warping
(10− 20% of the series length) to test the robustness of weighted Euclidean
distance in answering exact match queries. For simplicity, we carried out a
simple classification using 1-Nearest Neighbor with three similarity measures
and checked the classification results using the “leave one out” verification
mechanism.1 We repeat the experiment on all the time series of CC data

1The “leave one out” verification mechanism takes one sample data from a class and
finds a nearest neighbor of the data in the entire data set by applying the predefined

14

set. The error rates using DTW and LCSS are 0.127 and 0.163, respectively.
It has been claimed that LCSS is more accurate than DTW [27]. However,
our experiments could not replicate this result. The possible reason for this
discrepancy is the difference in the choice of the matching threshold value.
This experiment also verifies the claim that we made in Section 1, namely
that it is really difficult to set a proper matching threshold for LCSS.

We report comparable results using the weighted Euclidean distances in
Table 3. We run the experiment with different number of bins (τ) and scales
(δ) using WED on time series histograms with equal bin size.

number of bins τ

scale δ 8 16 32 64
1 0.628 0.590 0.563 0.536
2 0.223 0.157 0.123 0.130
3 0.257 0.158 0.140 0.127
4 0.223 0.158 0.140 0.130
5 0.167 0.143 0.128 0.123
6 0.140 0.105 0.105 0.100
7 0.172 0.137 0.126 0.268
8 0.182 0.137 0.108 0.298
9 0.190 0.137 0.117 0.253
10 0.122 0.137 0.105 0.248
11 0.168 0.130 0.118 0.298
12 0.153 0.148 0.125 0.298
13 0.197 0.150 0.137 0.268
14 0.243 0.168 0.143 0.298
15 0.243 0.188 0.143 0.298
16 0.243 0.188 0.143 0.298

Table 3: Error rates using WED on time series histograms with equal bin
size

Comparing the error rates of DTW (0.127), LCSS (0.163) and those of
Table 3, we observe that WED performs better than the other two simi-
larity measures in answering exact match queries. From Table 3, we find
an interesting fact that very high scales (i,e., high values of δ) may lead to
worse classification results. This is because the higher the scale, the more
temporal details will be involved in computing WED, which causes time se-
ries histograms at that scale level to be more sensitive to local time shifting
and scaling. Another fact demonstrated in Table 3 is that higher number of
bins may not lead to more accurate classification results. This is because the
higher the number of bins, the more detailed information will be captured

distance metrics. If the found nearest neighbor belongs to the same class as the sample
data, it is a hit, otherwise, it is a miss.

15

in time series histogram, including noise. These characteristics of multi-scale
time series histograms exactly fit our needs, since they suggest that we only
need to check the first few scale histograms with small number of histogram
bins. However, compared to results of DTW or LCSS, the improvements
reported in Table 3 are modest, especially for the first few scale histograms
(i.e. lower values of δ).

To better understand these results, we investigated the filling ratio of
equal bin size histograms. The filling ratio is defined as the number of non-
empty bins to the total number of bins. We found that nearly 50% of the
bins are empty! Consequently, WED between two time series histograms are
not able to distinguish them properly, since most of the bins are identical!
Therefore, we run the same experiment on time series histograms with equal
area size. Table 4 reports the results.

number of bins τ

scale δ 8 16 32 64
1 0.168 0.116 0.123 0.112
2 0.098 0.078 0.783 0.069
3 0.085 0.070 0.058 0.063
4 0.073 0.050 0.068 0.065
5 0.073 0.055 0.068 0.052
6 0.063 0.058 0.055 0.095
7 0.107 0.083 0.090 0.135
8 0.102 0.090 0.086 0.106
9 0.145 0.120 0.121 0.132
10 0.132 0.107 0.115 0.127
11 0.143 0.123 0.133 0.157
12 0.153 0.128 0.137 0.153
13 0.167 0.155 0.167 0.151
14 0.147 0.131 0.151 0.167
15 0.167 0.158 0.163 0.163
16 0.167 0.158 0.167 0.169

Table 4: Error rates using WED on time series histograms with equal area
size

The results of Tables 3 and 4 demonstrate that the improvement when
equal area size is used is nearly 2 times for CC data! The filling ratio of time
series histogram is around 80%. Table 4 also shows that using only the first
few scales (e.g. δ = 4), provides reasonably high accuracy.

In our third experiment, we test the matching accuracy of multi-scale
time histograms versus DTW and LCSS on classifying time series data with
more complicated shapes, such as the time series data in Figure 9. Classifying
these types of time series requires matching on temporal details of the data.

16

We evaluate WED, DTW and LCSS by two labelled trajectory data sets
that are generated from the Australian Sign Language (ASL)2 data and the
“cameramouse” [7] data. Only x positions are used for both data sets. We
first select a “seed” time series from each of the two data sets and then
create two additional data sets by adding interpolated Gaussian noise and
small time warping (5-10% of the time series length) to these seeds [28].
The ASL data set from UCI data consists of samples of Australian Sign
Language signs. Various parameters were recorded when a signer was signing
one of 95 words in ASL. We extracted one recording from each of following 9
words as “seed” time series of ASL data: “Norway”, “cold”, “crazy”, “eat”,
“forget”, “happy”, “innocent”, “later”, and “lose” as shown in Figure 9. The
“cameramouse” data set contains 15 trajectories of 5 words (3 for each word)
obtained by tracking the finger tip when people write various words. We use
all trajectories of each word as the seeds. The data set that is generated
from seeds of “cameramouse” contains 5 classes and 30 examples of each
class, while the one from ASL seeds contains 9 classes and each class has 10
examples. We use the same classification and verification algorithms as in
the second experiment. Based on the observation of the second experiment,
we use time series histogram with same area size. Tables 5 and 6 report the
results.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Norway
0 10 20 30 40 50 60 70

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) cold
0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(c) crazy

0 10 20 30 40 50 60
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(d) eat
0 10 20 30 40 50 60

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(e) forget
0 10 20 30 40 50 60 70

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(f) happy

0 10 20 30 40 50 60
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(g) innocent
0 10 20 30 40 50 60 70 80

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(h) later
0 5 10 15 20 25 30 35 40 45 50

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(i) lose

Figure 9: ASL data set

The results of Tables 5 and 6 show that WED again achieves better clas-
sification result. For both data sets, WED can get 0 error rate. A surprising

2http://kdd.ics.uci.edu

17

ASL data Cameramouse data
DTW 0.09 0.08
LCSS 0.29 0.30

Table 5: Error rates of LCSS and DTW

ASL DATA Cameramouse DATA
number of bins τ number of bins τ

scale 8 16 32 64 8 16 32 64
1 0.07778 0.05555 0.04444 0.03333 0.13333 0.01333 0.06667 0.07333
2 0.05556 0.04444 0.02222 0.02222 0.01333 0.01333 0.03333 0.04
3 0.05556 0.03333 0.02222 0.04444 0.02 0.06 0.01333 0.01333
4 0.05556 0.05556 0.04444 0.04444 0.02667 0.0.2 0.01333 0.01333
5 0.03333 0.04444 0.03333 0.04444 0.08667 0.02 0.01333 0.03333
6 0.04444 0.05556 0.02222 0.03333 0.04 0.01333 0 0.01333
7 0.05556 0.02222 0.03333 0 0.04 0.01333 0 0.01333
8 0.03333 0.04444 0.04444 0 0.04667 0.02 0.04 0.04667
9 0.03333 0.05556 0.05556 0.04444 0.04667 0.01333 0.01333 0.06
10 0.02222 0.05556 0.02222 0.02222 0.02 0.06667 0.04 0.04
11 0.02222 0.04444 0.02222 0.02222 0.04667 0.05333 0.03333 0.03333
12 0.05556 0.02222 0.02222 0.03333 0.02 0.03333 0.04 0.05333
13 0.02222 0.05556 0.02222 0.02222 0.05333 0.05333 0.02667 0.04
14 0.05556 0.02222 0.03333 0.02222 0.01333 0.04 0.01333 0.05333
15 0.03333 0.04444 0.03333 0.02222 0.04 0.04667 0.05333 0.05333
16 0.05556 0.02222 0.04444 0.02222 0.04 0.04 0.02 0.04667

Table 6: Error rates using WED on time series histograms with equal area
size

18

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

50

55
querying stock data
1st retireved stock data
2nd retireved stock data
3rd retireved stock data

(a) 3-NN results on stock data using DTW

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50
querying stock data
1st retrieved stock data
2nd retrieved stock data
3rd retrieved stock data

(b) 3-NN results on stock data using LCSS

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

querying stock data
1st retrieved stock data
2nd retrieved stock data
3rd retrieved stock data

(c) 3-NN results on stock data using WED

Figure 10: A comparison of 3-NN queries using DTW, LCSS and WED

19

observation is that at very low scale (e.g. δ = 2), using WED can already
achieve better results than DTW and LCSS. Through the investigation of
the filling ratios of both histograms, we find that the number of empty bins
only accounts for less than 5% of the total number of bins. The standard
deviations of both data sets are also very high with respect to their mean val-
ues, which indicates that data points are widely spread in their value space.
Compared with results of the second experiment, we conclude that WED on
time series data whose data points are widely distributed in their value space
(higher histogram filling ratio) can achieve better classification accuracy even
at lower scales.

In our fourth experiment, we test the matching quality of WED on multi-
scale time histograms in answering k-nearest neighbor (k-NN) search. For
comparison, we also run the experiment using DTW and LCSS. Given a
time series TA, k-NN search will return the top k time series in the database
that are most similar to TA. We use a real stock data set that contains
193 company stocks’ daily closing price from late 1993 to early 1996, each
consisting of 513 values [29]. We use each time series as a “seed” and create a
new data set by adding interpolated Gaussian noise and small time warping
(2-5% of the time series length) to each seed. The new data set contains 1930
time series (each seed is used to create 10 new time series). We randomly
select 10% of the sequences as query data. The results are that WED always
performs better DTW and LCSS. Figure 10 shows one of the results of 3-NN
search using WED (δ = 6, τ = 32), DTW and LCSS on stock data.

4.2 Efficiency of Multi-Step Filtering

Theorem 1 in Section 3 showed that multi-step filtering using multi-scale
time series histograms will not introduce false alarms. However, how many
histogram comparisons are saved using multi-step filtering? We run the ex-
periment on the real stock data set that is used in the fourth experiment. We
randomly select a time series and conduct a range query at precision level 6.
We compute the number of comparisons that are needed for searching using
only level 6, using level 1 and 6, and using all 6 levels on different range
thresholds. We run the experiments 100 times and the average results are
reported in Table 7.

From Table 7, we can see that the step-by-step filtering is the best strategy
to reduce the total number of comparisons for small thresholds. For large
thresholds, directly computing the distance at a higher level is a better choice
in terms of the number of comparisons. However, large thresholds are not
very useful for finding the desirable results, since a larger portion of the data
in the database will be returned.

The number of comparisons needed for computing the histogram dis-
tance only relates to the CPU computation cost. However, the I/O cost for

20

level 6 only level 1 and level 6 all 6 levels
ε = 0.5 11580 13498 17190
ε = 0.2 11580 12760 7590
ε = 0.1 11580 6838 3668
ε = 0.05 11580 2356 2072

Table 7: Number of comparisons of different filtering approaches

Figure 11: The punning power of lower bounding function

sequentially reading in the data files becomes a bottleneck with the growth of
database size. If we can filter out the false alarms without reading in the data
files, a significant speed-up will be achieved. For our time series histograms,
we stored their average weighted histograms separately from histograms. The
distances between the average histogram of query data and those of stored
data are first computed to remove the possible false alarms. Therefore, the
pruning power of average histograms is quite important. The pruning power
(P), which is defined as the fraction of the database that must be examined
before we can guarantee that we have found the nearest match to 1-Nearest
Neighbor query [13]. Figure 11 shows the pruning power on different data
sets of time series histograms with 16 bins (based on the previous experi-
mental results, WED can already achieve reasonable good results when the
histogram bin size is 16). Because “cameramouse” and ASL data sets are
small, we did not include them in this experiment. Figure 11 demonstrates
that using the average weighted Euclidean distance, we can remove nearly
40% of the false alarms, which will be helpful when the database size becomes
large.

21

5 Related Work

As mentioned in Section 1, significant research has been done on similarity-
based retrieval of time series data. The earliest proposal was by Agrawal
et. al. [1], which used Euclidean distance to measure the similarity between
time series data and applied Discrete Fourier Transform (DFT) to reduce
the dimensionality for fast retrieval. Later, this work was extended to allow
subsequence matching in [6]. Subsequent work have focused on two main
aspects: (1) new dimensionality reduction techniques (assuming that the
Euclidean distance is the similarity measure), such as Single Value Decompo-
sition (SVD) [16, 12], Discrete Wavelet Transform (DWT) [17, 22], Piecewise
Aggregate Approximation (PAA) [12, 31], and Adaptive Piecewise Constant
Approximation (APAC) [11]; and (2) new similarity measures, other than the
Euclidean distance, for measuring the similarity between two time series data.
The motivation of the second research direction is that the Euclidean distance
is too rigid and it is sensitive to noise, local time shifting, and scaling. There-
fore, Berndt and Clifford [3] introduced Dynamic Time Warping (DTW) to
measure the similarity between two time series. Compared to Euclidean dis-
tance, DTW allows time series data to “stretch” when they are compared
to each other. However, directly computing DTW between two time series
data is computational expensive, and several approaches [32, 15, 11] have
been proposed to index on the lower bounds of DTW. Bozkaya et al. [4] used
Longest Common Subsequences (LCSS) to measure the similarity between
two image sequences, which was then applied to time series data [5, 27].
Perng et al. [21] proposed a Landmark model based on the human intuition
and episodic memory. However, the Landmark model did not consider the
effects of noise. All these techniques can be put into the category of exact
match retrieval. For pattern existence retrieval, users are more interested in
the existence of pattern in the time series data. A few approaches [2, 25, 23]
have been proposed for finding movement patterns in time series data. The
moving direction (the slope between two values) of an user specified interval
[23], consecutive values [2], or a segment (obtained by a segmentation algo-
rithm) [25] was represented as a distinct alphabet. Thus, their approaches
converted the time series data into strings and could apply string-matching
techniques to find the patterns.

Compared to all the previous work, our multi-scale time histogram-based
similarity retrieval has the following advantages:

• Multi-scale time series histograms can be used to answer exact match
and pattern existence queries.

• The weighted Euclidean distance takes the bin similarity into consid-
eration, which reduces the boundary effect that introduced by value
space quantization.

22

• Multi-scale time histograms are invariant to local time shifting and scal-
ing, local amplitude shifting and scaling. Moreover, they can remove
the disturbance introduced by noise.

• Multi-scale time histograms offer users flexibility to query the time
series data on different accuracy level. Furthermore, lower scale his-
tograms can be used to prune the false alarms from the database before
we querying at higher scale histograms.

6 Conclusion and Future Work

In this paper, we propose a novel representation of time series data using
multi-scale time series histograms. This representation is based on the intu-
ition that the distribution of time series data can be an important cue for
comparing similarity between time series. Multi-scale time series histograms
are capable of answering both pattern existence queries and exact match
queries. Moreover, they are invariant to local time shifting and scaling, and
local amplitude shifting and scaling. Weighted Euclidean distance is used
to measure the similarity between two time series histograms taking into ac-
count data points located near the boundaries of histogram bins. We also
investigate two different types of histograms: equal bin size and equal area
size.

Our experiments indicate that multi-scale time series histograms outper-
form string representations in finding patterns and outperform DTW and
LCSS in answering exact match queries when the time series data contain
noise or time shifting and scaling. The experiments also shows that equal
area size histogram is more suitable for time series data comparison and
weighted average histogram distance can effectively prune the false alarms
from the database before computing the distance between two histograms.

In this paper, we only address the whole sequence matching problem.
In future work, we plan to extend multi-scale histograms to subsequence
matching. We also want to investigate the possibility of automatically setting
up the scale value for users and to create some hierarchy indexing structures
for fast access multi-scale time series histograms.

Acknowledgements: Thanks to Eamonn Keogh, Michalis Vlachos, Changzhou
Wang, and X. Sean Wang for providing their source codes or data sets. This
research is funded by Intelligent Robotics and Information Systems (IRIS),
a Network of Center of Excellence of the Government of Canada.

23

References

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In Proc. 4th Int. Conf. of Foundations of Data
Organization and Algorithms, pages 69–84, 1993.

[2] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zäıt. Querying shapes
of histories. In Proc. 21th Int. Conf. on Very Large Data Bases, pages
502–514, 1995.

[3] D. J. Berndt and J. Clifford. Finding patterns in time series: A dynamic
programming approach. In Advances in Knowledge Discovery and Data
Mining, pages 229–248. AAA/MIT, 1996.

[4] T. Bozkaya, N. Yazdani, and Z. M. Ozsoyoglu. Matching and indexing
sequences of different lengths. In Proc. 6th Int. Conf. on Information
and Knowledge Management, pages 128–135, 1997.

[5] G. Das, D. Guopulos, and H. Mannila. Finding similar time series. In
Proc. 1st European Symp. on Principles of Data Mining and Knowledge
Discovery, pages 88–100, 1997.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 419–429, 1994.

[7] J. Gips, M. Betke, and P. Fleming. The camera mouse: Preliminary in-
vertigation of automated visaul tracking for computer access. In In Proc.
Conf. on Rehabilitation Engineering and Assistive Technology Society of
North America, pages 98–100, 2000.

[8] D.Q. Goldin and P.C. Kanellakis. On similarity queries for time series
data: Constraint specification and implementation. In In Proc. of the
Int. Conf. on Principles and Pratice of Constraint Programming, pages
23–35, 1995.

[9] A. Guttman. R-trees: a dynamic index structure for spatial searching. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 47–57,
1984.

[10] J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Ef-
ficient color histogram indexing for quadratic form distance functions.
IEEE Trans. Pattern Analysis and Machine Intelligence, 17(7):729–739,
1995.

[11] E. Keogh. Exact indexing of dynamic time warping. In Proc. 28th Int.
Conf. on Very Large Data Bases, pages 406–417, 2002.

24

[12] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimension-
ality reduction for fast similarity search in large time series databases.
Knowledge and Information Systems, 3(3):263–286, 2000.

[13] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adap-
tive dimensionality reduction for indexing large time series databases.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 151–
162, 2001.

[14] E. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: a survey and empirical demonstration. In Proc. 8th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages
102–111, 2002.

[15] S Kim, S. Park, and W. Chu. An indexed-based approach for similarity
search supporting time warping in large sequence databases. In Proc.
17th Int. Conf. on Data Engineering, pages 607–614, 2001.

[16] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc
queries in large datasets of time sequences. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 289–300, 1997.

[17] K.P.Chan and A.W-C Fu. Efficient time series matching by wavelets.
In Proc. 15th Int. Conf. on Data Engineering, pages 126–133, 1999.

[18] K. Leung and R. T. Ng. Multistage similarity matching for sub-image
queries of arbitrary size. In Proc. of 4th Working Conf. on Visual Data-
base Systems, pages 243–264, 1998.

[19] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series.
In Proc. 2nd Int. Workshop Temporal Data Mining, pages 370–377, 2002.

[20] S. Lin, M. T. Özsu, V. Oria, and R. Ng. Multi-precision similarity
querying of image databases. In Proc. 27th Int. Conf. on Very Large
Data Bases, pages 221–230, 2001.

[21] C.-S. Perng, H. Wang, S.R. Zhang, and D.S. Parker. Landmarks: a new
model for similarity-based pattern querying in time series databases. In
Proc. 16th Int. Conf. on Data Engineering, pages 33–42, 2000.

[22] I. Popivanov and R. J. Miller. Similarity search over time series data
using wavelets. In Proc. 17th Int. Conf. on Data Engineering, pages
212–221, 2001.

[23] Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series
for movement patterns in multiple scales. In Proc. 7th Int. Conf. on
Information and Knowledge Management, pages 251–258, 1998.

25

[24] D. Rafiei and A. O. Mendelzon. Efficient retrieval of similar time se-
quences using DFT. In Proc. 9th Int. Conf. of Foundations of Data
Organization and Algorithms, 1998.

[25] H. Shatkay and S.B. Zdonik. Approximate queries and representations
for large data sequences. In Proc. 12th Int. Conf. on Data Engineering,
pages 536–545, 1996.

[26] M. J. Swain and D. H. Ballard. Color indexing. Int. Journal of Computer
Vision, 7(1):11–32, 1991.

[27] M. Vlachos, G. Kollios, and D. Gunpulos. Discovering similar multidi-
mensional trajectories. In Proc. 18th Int. Conf. on Data Engineering,
pages 673 – 684, 2002.

[28] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based any-
time algorithm for k-means clustering of time series. In Proc. Workshop
on Clustering High Dimensionality Data and Its Applications, 2003.

[29] C.Z. Wang and X. Wang. Supporting content-based searches on time
series via approximation. In Proc. 12th Int. Conf. on Scientific and
Statistical Database Management, pages 69–81, 2000.

[30] R. Weber, H.-J Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces.
In Proc. 24th Int. Conf. on Very Large Data Bases, pages 194–205, 1998.

[31] B-K Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
Lp norms. In Proc. 26th Int. Conf. on Very Large Data Bases, pages
385–394, 2000.

[32] B-K Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In Proc. 14th Int. Conf. on Data
Engineering, pages 23–27, 1998.

26

