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ABSTRACT

Understanding the relationship among different distance mea-
sures is helpful in choosing a proper one for a particular ap-
plication. In this paper, we compare two commonly used
distance measures in vector models, namely, Euclidean dis-
tance (EUD) and cosine angle distance (CAD), for nearest
neighbor (NN) queries in high dimensional data spaces. Us-
ing theoretical analysis and experimental results, we show
that the retrieval results based on EUD are similar to those
based on CAD when dimension is high. We have applied
CAD for content based image retrieval (CBIR). Retrieval re-
sults show that CAD works no worse than EUD, which is a
commonly used distance measure for CBIR, while providing
other advantages, such as naturally normalized distance.
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1. INTRODUCTION

Distance measure is an important part of a vector model.
Among all distance measures that are proposed in the litera-
ture, some have very similar behaviors in similarity queries,
while others may behave quite differently. Understanding
the relationship among distance measures can help us to
choose a proper distance measure for a particular applica-
tion.

One way of comparing distance measures is to study their
retrieval performance in terms of precision and recall in a
particular application area, such as content-based image re-
trieval (CBIR) [18] and video copy detection [6]. One con-
cern in choosing a particular distance measure is the impact
of computational overhead on system performance. When
feature vectors are large, some distance measures may con-
sume more computing resources than the others. One possi-
ble approximation of EUD is proposed in [5]. On the other
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hand, it is also important to choose a similarity measure
that is consistent with human ideas of similarity. The au-
thors of [17] have proposed a similarity measure based on
noise distribution of the image database. In [16], a mathe-
matical analysis of EUD and CAD has been done. It was
shown that CAD has a special property to favor relatively
larger component in a vector.

In this paper, we compare two commonly used distance
measures in vector models, namely, Euclidean distance (EUD)
and cosine angle distance (CAD), for nearest neighbor (NN)
queries in high dimensional data spaces. From theoretical
analysis and experimental results, we find that the retrieval
results based on EUD are similar to those based on CAD.
We use a high dimensional geometrical model to analyze
how similar these two distance measures are under the as-
sumption of uniform data distribution. We find that the
NN of EUD is also ranked high by CAD when dimension
is high. We define NN as the first nearest neighbor of the
query. Our experimental results have corroborated the cor-
rectness of our model. We have also compared these two
distance measures experimentally using normalized datasets
and clustered datasets. Our conclusions are that:

1. In high dimensional data spaces, the NN query results
by EUD and CAD are very similar.

2. For clustered data, the NN query results by EUD and
CAD are more similar.

3. When vectors are normalized by its size, the NN query
results by EUD and CAD are also more similar.

One application of the above properties is to combine fea-
tures that are semantically different (e.g. color and texture)
in CBIR as explained below. As EUD is often used as a dis-
tance measure for individual features in CBIR, inter-feature
normalization is needed to combine EUD values of differ-
ent scales into an over-all score for an image. Based on the
property that NN query results of EUD and CAD are very
similar in high dimensional spaces, we propose to use CAD
instead of EUD for individual features. As CAD values are
naturally normalized by norm, there is no need for further
inter-feature normalization. Thus, the distance value from
different features can be summed up directly as the final
score for an image in the database. Our experimental re-
sults show that our proposal works not only no worse than
other commonly used methods but also has some favorable
advantages.

There are a number of methods proposed for combining
features in CBIR. They can be divided into two categories:



rank based [8, 10] and distance value based [14, 15]. Rank
based methods are also called “voting methods” in [12]. In
rank based methods, the rank of an image for different fea-
tures are calculated first, then these ranks are summed to
derive the final rank of the image. Distance value based
methods use distance value of individual features directly.
Since distance values from different features have different
scales, inter-feature normalization is necessary for comput-
ing the final rank of an image. One simple method in this
category is to divide all distance values of a feature by the
maximum distance value [15]. Another widely used method
for combining features are based on the assumption that
distance values have a Gaussian distribution [14]. Some dis-
cussion and comparisons of methods for combining features
can be found in [3, 7, 14].

Using CAD as a normalized distance measure was men-
tioned in [4], but no analysis or experimental results were
presented in the context of vector models or CBIR. We
have done experiments to compare the CAD based method
we proposed with two widely used methods, namely, rank
based method by EUD and distance value based method
with Gaussian assumption.

The rest of this paper is organized as follows. Section 2
presents the theoretical analysis of NN queries by EUD and
CAD using a geometrical model in high dimensions. Section
3 and 4 present experimental results for comparing EUD and
CAD and combining multiple features, respectively. Section
5 discusses the conclusion and future work.

2. THEORETICAL ANALYSISOFEUDAND

CAD FOR NN QUERIES

The similarity between EUD and CAD for NN queries
can be measured by the average rank of the NN of EUD
(represented as NN.) in CAD. The two distance measures
are considered similar if NN, is also ranked high by CAD.
The theoretical (probability) analysis compares EUD and
CAD using a high dimensional geometrical model. A simi-
lar model has been used in [2] for the derivation of the cost
model of high dimensional NN queries. Without losing gen-
erality, our analysis is based on a d-dimensional unit hyper-
cube data space. We assume that data points are uniformly
distributed within the space and there is no dependence be-
tween dimensions.

2.1 Notations and definitions

Table 1 is a summary of notations that we have used in
this paper.

Explanation of some of the notations listed in Table 1 is
given as follows:

1. The d-dimensional unit data space can be deemed as
the Cartesian product [0, 1]%. Tt also implies that every
data point (vector) P in € has no negative element.

2. The value of angle(Py, P2) is defined as follows:
! P - P
(P - Py)(Ph- P2

angle(Py, P2) = cos™

(1)

Since angle(P1, P2) is defined based on CAD between
P and P> and has a better geometrical meaning than
CAD, we use angle(Pi, P2) in place of CAD in the
following discussion.

3. A hyper-cone cone(P,0) for a given point P and angle
0 is defined as follows:

The vertex of cone(P,0) is the origin O of the unit
space ). Let P be a point in Q that is not O. Ev-
ery point P’ of cone(P,0) satisfies angle(P’', P) < 6.
Figure 1 shows a 2-dimensional hyper-cone cone(P, 0),
which is the Quadrangle OABC.

o

Figure 1: 2-dimensional hyper-cone cone(P,0)

4. A hyper-region is a close geometrical object such as a
hyper-sphere or a hyper-cone.

2.2 Comparison of EUD and CAD

We first illustrate our approach to compare EUD and
CAD using a 2-dimensional space. Figure 2 shows a 2-
dimensional unit space (2, where @ is a query point and

0
Figure 2: NN.(Q) and the hyper-cone

NN, (Q) is the nearest neighbor (i.e., the first nearest neigh-
bor) of @ by EUD. Let AOAB be the hyper-cone
cone(Q, angle(Q, NN.(Q))) with the property that
angle(Q,A) (LQOA) equals angle(Q,B) (LQOB). Note
that ZQOA and ZQOB correspond to the CAD between
query Q and NN.(Q). It is clear that the rank of NN.(Q)
in the NN query of @ by CAD is given by the number of
data points within Hyper-cone AOAB. The same observa-
tion can be extended to high-dimensional spaces, where the
rank of NN.(Q) in the NN query of @ by CAD is deter-
mined by the number of data points within the hyper-cone
COH@(Q,&HQZ@(Q,NNE(Q)))-

Under the assumption of uniform data distribution and
based on the unit space €2, the probability of a point ex-
isting in cone(Q, angle(Q, NN¢(Q))) is equal to the volume



d Number of dimensions

Q d-dimensional unit hyper-cube data space

P/P Data point/vector in

[@] Origin of Q

N Size of the dataset

sp(C,r) d-dimensional hyper-sphere with center C and radius r
ssp(C,r)) Surface of a hyper-sphere with center C and radius r
|P1, P2e EUD between points P; and P>

angle(P1, P>) | Hyper-angle between points P; and P> with respect to O
cone(P, 0) Hyper-cone with vertex O, axis P and angle 6

NN.(Q) NN to a query point Q by EUD

vol(R) (Hyper-)Volume of a hyper-region R

Table 1: Summary of notations

vol(cone(Q, angle(Q, NNe(Q)))). Therefore, the expected
number of data points within the hyper-cone is equal to
the product of the size (N) of the dataset and the (hyper-
)volume of the hyper-cone cone(Q, angle(Q, NNe(Q))).
The volume of a hyper-cone cone(Q,6) is computed by
integrating a piecewise function defined over data space 2

as follows:
1 if angle(Q,P) <6
({ 0 otherwise dr

(2)
A good approximation of Equation 2 can be obtained by
the Monte-Carlo method [9].
To estimate the expected number of data points within the
hyper-cone cone(Q, angle(Q, NN.(Q))), we first calculate its
expected volume by the following steps:

vol(cone(Q, 0)) = /

PeQ

1. Suppose that the EUD (|Q, NN¢(Q)|e) between query
point @ and NN.(Q) is r, the expected value of
vol(cone(Q, angle(Q, NN.(Q)))) equals the average vol-
ume of all hyper-cones given by ) and points that are
on the surface (ssp(Q,r)) of the hyper-sphere sp(Q, r).
The situation is illustrated in a 2-dimensional data
space in Figure 3, where @) is the query point, P is
one of the points that are on ssp(Q, ), and AAOB is
the corresponding hyper-cone.

o

Figure 3: sp(Q,r) and the hyper-cone

Thus for any given @@ and r, based on the uniform
distribution assumption, the expected volume satisfies
the following function:

v(Q,T) vol(cone(Q, angle(Q, P))) dP

®3)

-/PG(.SSP(Q,T)I’TQ)

2. For a given query @, the expected volume of
cone(Q, angle(Q, NN.(Q))) can be obtained by inte-
grating Equation 3 over all possible values of r as fol-
lows:

v(@) = [y v(@r)pr(Q;r)dr
0 \JPe(ssp(Q,m)NQ) vol(cone(Q,
angle(Q, P))) dP)p.(Q,r)dr

(4)

In Equation 4, the function p,(Q, r) is the density func-
tion of r for a given query point (). Note that r is
the EUD between @ and NN.(Q). Following [2], for
a given query point @, the distribution function of r,
PT(Q? T)? is:

Pr(Qr) =1~ (1=wol(sp(@,r)n )™ (5)
Note that N in Equation 5 represents the size of the
dataset. The corresponding density function p,(Q, )
can be derived as follows:

pT(Q7T) = QQPT(Q7T)

%vol(sp(Q,r) nQ)-N
(1 —vol(sp(Q,r) NN !

(6)

From Equation 4, for a given query (), we can calcu-
late the expected number of points in

cone(@, angle(Q, NN.(Q))) as N-v(Q). Thus the over-
all expected number of points in cone, i.e., the ex-
pected rank of NN, of NN query by CAD, can be com-
puted by averaging over all possible @ in 2. Based on
Equations 4 and 6, under the assumption of uniform
data distribution, we obtain the following equation for
a given N:

expected rank of NN, of NN query by CAD
N- ersz v(Q)d@Q

NQ. erQ(fOOOOEU(Q7 T))pT(Q7 T) d?") dQ

N7+ Joeallo (fPe(ssp(Q,r)rm) vol(cone(Q,

angle(Q, P)))dP) - %vol(sp(Q,r) nQ)
(1 —wol(sp(@,r) NV~ dr)dQ

(7)

From Equation 7, we have calculated the expected rank
of NN. of NN query by CAD at different dimensions using
N =50,000. As shown in Table 2, expected rank of NN, by
CAD increases drastically from dimension 2 to dimension
4, which shows that NN query results between EUD and
CAD become similar even at lower dimensions. Note that
as dimension gets even higher, EUD and CAD eventually
becomes less similar again. However, the rate of decrease



Table 2: Expected NN rank of NN. by CAD at dif-
ferent dimensions

of similarity is very slow. Within a range of high dimen-
sions , the claim of the similarity between EUD and CAD is
reasonable. Our experimental results have corroborated the
results of our theoretical analysis. In the following sections,
we will also show that when vectors are normalized by size
or clustered, the NN query results of EUD and CAD are
even more similar in high dimensional spaces.

3. EXPERIMENTAL RESULTSFORNNAND

K-NN QUERIES

This section is divided into three subsections. The first
subsection shows that the experimental results corroborate
the results of our theoretical analysis. The second subsection
shows the similarity between EUD and CAD with a different
measure, i.e., the percentage of the same results (intersec-
tion) in the result sets of k nearest neighbor (k-NN) queries
by EUD and CAD. The datasets used in this subsection in-
clude normalized as well as un-normalized data, uniformly
distributed data, clustered data, and real image data. We
summarize and discuss our experimental results in the third
subsection.

3.1 Comparison of experimental and theoret-
ical results

The experiments are conducted using a dataset of 50,000
randomly generated data points. The average rank of NN,
of NN query by CAD is computed based on 30 query points
selected randomly from the dataset. Dimensions used in the
comparison are 2, 4, 8, 16, 32, 64, and 128.

Figure 4 shows the comparison of experimental results
with the theoretical results. Allowing for some statistical
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-©- experimental results
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Figure 4: Theoretical and experimental results

precision error, Figure 4 shows that the results of theoretical
analysis matches very well with those of the experiments.
When dimension is low, the difference between EUD and
CAD are very large. But when dimension gets higher, they
become very similar. EUD and CAD become less similar
again as dimension increases further. However, the rate of
decrease of similarity is very slow.

3.2 Experimental resultsof KNN queries

k-NN queries are often used in real world applications.
Thus, for different datasets, such as real world data, we

have done experiments to measure the similarity between
EUD and CAD using the percentage of the same results
(intersection) in the EUD answer set and CAD answer set
(k-NN). Results of 10, 20, 100, 500, and 1000 NN queries
are presented. If not specifically mentioned, experimental
results presented in the following tables are obtained using
datasets of 50,000 data points and 30 query points picked
randomly from their corresponding datasets.

Table 3 shows experimental results based on random data.

E-NN [ 10 | 20 | 100 | 500 ] 1000

Table 3: Experimental results based on random data

As dimension gets higher than 8, more than 50 percent of
the 10 NN query results of EUD and CAD are the same. The
percentage of the intersection are even greater for larger k-
NN queries from 20 NN to 1000 NN. Note that EUD and
CAD eventually becomes less similar as dimension gets even
higher (> 128). However, the rate of decrease of similarity
is very slow.

Table 4 shows experimental results based on normalized

E-NN [ 10 [ 20 [ 100 | 500 ] 1000
0

2 | 100 | 100 | 100 | 99.9 | 99.7
4] 957 | 955 | 96.3 | 96.1 | 96.1
8 1963|952 | 95952 95.1
16 | 91.3 | 94.8 | 94.4 | 93.6 | 93.6
32 [ 90.3 | 92.8 | 91 | 914 | oL7
64 | 89.7 | 88.2 | 89.7 | 90.2 | 90.7
128 | 87.3 | 88| 86.9 | 89.4 | 89.9

Table 4: Experimental results based on normalized
random data

random data. Normalization is an important process when
vector model is applied for similarity queries. Its purpose is
to normalize each element in a vector to be in the same range
so that individual element gets the same weight when dis-
tance measures are applied. Depending on application, there
are different methods for vector normalization such as those
described in [1, 14]. In our experiment, vectors are normal-
ized by their size, i.e., for each vector v =< ei,ez,...,eq4 >,
its corresponding normalized vector is v/ =< e}, e5,..., el >
where:

=)

d
Z]’:l €j

where 1 < i < d. Table 4 shows that, after normalization,
the EUD and CAD becomes very similar even for lower di-
mensions.

Table 5 shows experimental results based on clustered
data with 50 clusters. Even for dimension as low as 4,
the k-NN query results by EUD and CAD are very sim-
ilar. We have also done experiments using datasets with
different number of clusters. The results are similar to that
of Table 5.

Table 6 shows experimental results based on real image
data. The image dataset is generated from an image database

/
€, =

(8)



E-NN | 10 | 20 ] 100 | 500 | 1000
%

2 157 | 15162 21| 277
4| 93| 85|69.2| 806 | 844
8| 86| 87| 793|894 92.7
16| 91| 91891974 | 99.1
32| 931|972 899|984 100
64 | 92.3 | 90.8 | 93.9 | 99.2 | 100
128 | 91 | 90.7 | 98.2 | 99.7 | 100

Table 5: Experimental results based on clustered
data (50 clusters)

of more than 30,000 color images. It contains 64-dimensional
QBIC [13] color feature vectors. We can see from Table 6
that, for real data, the EUD and CAD are also very similar.

E-NN | 10 | 20 ] 100 | 500 [ 1000

(9

d=04 | 787 | 76.7 | 78.0 | 78.1 | 78.1

Table 6: Experimental results based on real image
data (QBIC)

3.3 Discussion

The vector model is used for an approximate generaliza-
tion of the real world objects. The definition of “similar” is
subjective and depend on the way feature vectors are gen-
erated. Based on the above theoretical analysis and ex-
perimental results, we consider EUD and CAD very simi-
lar when applied to NN queries in high dimensional data
spaces. We explain this phenomena based on the norm of
the vectors. When all vectors have the same norm, the NN
query results by EUD and CAD will be exactly the same.
Based on the assumption of uniform distribution, as dimen-
sion gets higher, the variance of the norms of the vectors in
the dataset becomes smaller. As the norms become similar,
EUD and CAD also become similar. For clustered data and
normalized data in high dimensional spaces, the norms of
the vectors are even more similar which causes EUD and
CAD to behave more similarly.

4. EXPERIMENTAL RESULTS FOR COM-
BINING FEATURES

We have shown that when dimension is high, which is
usually the case for a CBIR application, EUD and CAD
are similar. EUD is widely used in CBIR. However, CAD
has the unique property that the distance value is inher-
ently normalized for a given feature. This makes combin-
ing semantically different features as easy as summing up
the CAD values from different features. As an application
for our analysis, we propose to use CAD measure instead
of EUD for CBIR where multiple features are combined to
create a single distance value. Experimental results for this
analysis are presented in this section.

We use an image database of 6344 color images of an-
imals and natural scenes. Two image features, color and
texture, are used for image retrieval. The color feature is a
64-dimensional vector generated by QBIC [13]. The texture
feature is a 24-dimensional vector generated using the algo-
rithms proposed in [11]. 18 images of animals are chosen
from the database as the query images due to their clear
semantic meaning. The answer set of each query image is

decided solely by its semantic content, e.g., if the query im-
age is a tiger, the answer image should also contain a tiger.
Note that the purpose of this experiment is not to capture
all possible semantics of the query image (e.g. tigers), but to
show the effectiveness of the CAD-based method. The size
of the answer set (relevant set) of each query image ranges
from 4 to 40. We use recall and precision to measure the per-
formance of each combining method. Figure 5 and Figure 6
show the average recalls and precisions of 10, 20, 50 and 100
NN query results. In Figures 5 and 6, “Rank Euclidean”

—&— Rank Euclidean
—©— Gaussian
-x- Angle

20 40 60 80 100
number of NN

Figure 5: Recalls of different feature combining
methods at various k-NN

—&— Rank Euclidean
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Precision
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number of NN
Figure 6: Precisions of different feature combining
methods at various k-NN

is the rank based method using ranks of individual features
by EUD. “Gaussian” is the distance value based method us-
ing Gaussian assumption [14]. For “Gaussian”, EUD values
computed for individual features are normalized using the
following equation:

d—m 1

60 + 2 ©)
In Equation 9, d and d’' are the original and normalized
distance value, respectively. m and o are the mean and
standard deviation of pair-wise distances over all images in
the database. Any value greater than 1 is considered as 1 in
the experiments as described in [14]. “Angle” is the distance
value based method we proposed, which uses CAD directly
for inter-feature normalization.

Based on precision and recall, the performance of com-
bining methods are similar, though “Rank Euclidean” is a
little behind. As mentioned in [7], rank-based method may
not be very effective since it does not directly use the dis-
tance value between the query and the retrieved image. The
rank of retrieved images may give a false sense of similar-
ity when actually the distance value may be very large. On
the other hand, distance value based method using Gaussian
assumption may not be effective if the distance distribution
pattern among images in the database is not Gaussian. An-
other problem of this scheme is that it requires the mean and

d =



Angle

Rank Euclidean

Figure 7: CAD favors (retrieves) vectors with dominant component

variance of pair-wise distance values of the whole database.
If the database is large and changes dynamically, the cost
to maintain such value may be expensive. Thus we believe
our simple CAD value based method for combining features
is better compared to the two methods mentioned above.
Moreover, it will not affect the results much to replace EUD
by CAD as we have shown in the previous sections. Be-
sides the benefit of simplicity, the CAD based method also
has another special property, i.e., the CAD favors (retrieves)
vectors with relatively larger component values [16]. This
effect is illustrated in Figure 7, which shows the results of
a 20 NN query. The first image at the upper-left corner is
the query image. Since the query image has dominant color
components blue and brown, nearly all 20 images returned
by the CAD based method (“Angle”) has blue and brown
as their dominant color components. On the other hand,
the rank based method by EUD (“Rank Euclidean”) only
returns about 10 such images out of 20 images.

5. CONCLUSION

Through our theoretical analysis and experimental results,
we conclude that EUD and CAD are similar when applied
to high dimensional NN queries. For normalized data and
clustered data, EUD and CAD becomes even more simi-
lar. As an application of this inference, we use a simple
CAD based method for combining features in CBIR. We
have shown that the method we have proposed works no
worse than some commonly used methods while possessing
some favorable advantages.

In future work, we plan to extend our geometrical model
to analyze other distance measures, such as the Manhattan
distance.
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