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Abstract

We employ the impulse approximation for description of positronium-atom scattering. Our anal-

ysis and calculations of Ps-Kr and Ps-Ar collisions provide theoretical explanation of the similarity

between the cross sections for positronium scattering and electron scattering for a range of atomic

and molecular targets observed by S. J. Brawley et al. [Science 330, 789 (2010)].
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Most of the methods employed in the theory of leptonic and atomic collisions are based

on solving the Schrödinger equation with inclusion of pair lepton-lepton and lepton-nuclear

interactions. Although the interactions are well known, for complex projectiles and targets

such an approach is computationally very involved. An alternative approach is based on

many-body equations involving scattering amplitudes, for example, Faddeev equations [1].

The advantage of this approach is in the possibility of using amplitudes representing highly

correlated motion between a part of the projectile and the target. A typical example is the

collision of a highly-excited (Rydberg) atom with a ground-state atom or a molecule. In this

problem the scattering amplitude can be expressed in terms of the amplitudes for electron

and ion-core scattering by the ground-state atom [2, 3]. This is the idea behind the impulse

approximation [4].

Another example is the positronium (Ps) scattering by neutral targets. The Ps atom

is easily ionized (i.e., broken up) above the ionization threshold (6.8 eV), and in fact the

ionization of Ps is becoming the dominant process in Ps-atom collisions at collision energies

above about 20 eV [5]. The Ps ionization energy is much smaller than the ionization energies

of the noble-gas atoms and many small molecules (such as H2, N2, O2, CO2 or SF6). This

allows us to consider the Ps atom as a losely bound system and the Ps-atom (molecule)

scattering as a coherent superposition of e−-atom and e+-atom scattering processes.

Recently observed similarities between the Ps scattering and the electron scattering from

a number of atoms and molecules [6, 7] suggest that both processes are largely controlled

by the same interactions. When plotted as a function of the projectile velocity, the electron

and Ps cross sections are very close and even show similar resonance-like features. This

seems strange at first since in the electron-atom scattering the electrostatic and polariza-

tion forces play a role, while both seem to be absent in the Ps-atom scattering. However,

at intermediate energies electron scattering by noble-gas atoms is dominated by a strong

exchange interaction. There is a range of energies above the Ramsauer minimum for the

e−-atom scattering, where the polarization is less significant, but the energy is still not too

high, so that e− or e+ Rutherford scattering is not dominant. In this energy range electron

scattering by atoms and molecules is strongly affected by the exchange interaction whereas

the positron scattering is relatively weak because of the mutual cancellation of the repulsive

static and attractive polarization forces. As a result, in the intermediate energy range, typi-

cally between about 5 and 50 eV, positron scattering cross sections are significantly smaller
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than their electron counterparts [8, 9].

Close-coupling calculations of Blackwood et al. [10] produced total cross sections for Ps

scattering by noble-gas atoms that are substantially lower than the corresponding electron

scattering cross sections, and lie below the experimental values [5–7]. These calculations

allowed for the distortion and break-up of Ps, but they were performed in the frozen-target

approximation, i.e., they did not take into account virtual excitation of the target. In low-

energy electron- and positron-atom collisions such virtual excitations can be described in

terms of the polarization interaction, and are known to be important. For low-energy Ps-

atom collisions they give rise to the van der Waals interaction. In the intermediate-energy

range above the Ps excitation threshold, which we are interested in, the static van der

Waals interaction is not appropriate for the description of dynamical correlations between

the Ps and the target. The most direct way to include them for Ps-atom scattering is

by extending the close-coupling calculations to account for the virtual excitations of the

target. While such calculations have been performed for Ps collisions with the H atom

[11, 12] and would be an ultimate goal in the problem of Ps-atom collisions, in the present

paper we demonstrate that a much simpler method based on the impulse approximation

can account for dynamical correlations, at least in the intermediate energy range important

for the experiments [6, 7, 13]. This method also offers a theoretical explanations for the

similarity between electron-atom and Ps-atom scattering.

Consider the scattering process

Ps(a,pi) + A→ Ps(b,pf ) + A,

where a and pi denote the internal state and center-of-mass momentum of the incident Ps,

while b and pf are their values in the final state.

Compared with noble-gas atoms, the Ps is a diffuse and weakly-bound system. Conse-

quently, we can assume that when the Ps is scattered off such targets, the Coulomb inter-

action within the Ps atom is weak in comparison with the electron-atom or positron-atom

interactions. In this case the scattering amplitude can be approximated by the sum of two

contributions shown schematically in Fig. 1.

Each of the two diagrams in Fig. 1 is in fact a perturbation-theory sum which includes

the electron-atom or positron-atom interaction to all orders. Owing to the diffuse nature of

Ps and low relative velocities inside Ps, the particle which does not interact with the target
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FIG. 1: Schematic diagrams of the approximation for the Ps-atom scattering amplitude. The

dashed lines with a cross show the interaction between the electron or positron and the atom,

which is included in all orders.

(i.e., the positron in the first diagram, and the electron in the second diagram in Fig. 1)

does not change its instantaneous momentum. We assume that the state of atom A does not

change during the collision. However, the virtual excitations of the target are accounted for

implicitly in the electron and positron scattering amplitudes if they are calculated beyond

the static (or static-exchange) approximation. As a result, the Ps-atom scattering amplitude

can be written as the sum of two terms [3, 14] (in atomic units),

fba(pf ,pi) = 2

∫
g∗b (q)f−(v−f ,v

−
i )ga(q + ∆p/2)d3q

+ 2

∫
g∗b (q)f+(v+

f ,v
+
i )ga(q−∆p/2)d3q (1)

where ∆p = pf − pi is the change in the Ps momentum, ga(q) = (2π)−3/2
∫
eiq·rϕa(r)d

3r

is the Ps internal wave function in the momentum space (r = re+ − re− being the relative

position vector), the factor 2 is due to the Ps mass, and f±(v′,v) are the positron-atom and

electron-atom scattering amplitudes for the initial and final velocities

v±i = pi/2−∆p/2± q, v±f = pi/2 + ∆p/2± q. (2)

The amplitudes f± in Eq. (1) are off the energy shell in the sense that |v±i | 6= |v±f |. Besides,

each amplitude depends on the energy argument E± = p2
i /4 + εa − |v±i |2/2 not equal to

physical energy |v±i |2/2 [2, 15]. In order to employ the physical scattering amplitude, we

perform the on-shell reduction following Starrett et al. [14] and assume that each amplitude

is a function of the effective velocity v± = max(v±i , v
±
f ) and momentum transfer s = |∆p|

linked to the scattering angle θ± by s = 2v± sin(θ±/2).

In view of what was said about the importance of the exchange interaction between the

electron and the target, let us first neglect the positron contribution to the ampitude (1).
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The total differential cross section for scattering from the state a can then be written as

dσa
dΩ

= 4
∑
b

vb
va

∫
g∗b (q̃)gb(q)

[
f−(ṽ−, s)

]∗
f−(v−, s)g∗a(q̃ + ∆p/2)ga(q + ∆p/2)d3qd3q̃,

where va and vb are the Ps velocities in the initial and final states. We will assume now that

the collision energy is well above a typical Ps excitation threshold, so that we can neglect

the dependence of vb and the momentum transfer ∆p on b. Then the sum over b yields

δ(q− q̃) and we obtain

dσa
dΩ

= 4

∫ ∣∣f−(v−, s)
∣∣2|ga(q + ∆p/2)|2d3q. (3)

If the state a is the ground state of Ps, the function |ga|2 in Eq. (3) exhibits a sharp peak

at q + ∆p/2 ≈ 0, and can be replaced by the δ function in the “peaking approximation”

[16]. Equation (2) then gives v−i ≈ pi/2 = vi and v−f ≈ vi + ∆p, where vi is the incident

Ps velocity. Thus, we can neglect the variation of f−(v−, s) when integrating over q in Eq.

(3), and obtain
dσa
dΩ

= 4|f−(v−, s)|2.

For calculation of the integral cross section we note that the Ps and electron solid angles are

related by dΩ = dΩ−/4, which gives

σa(Ps) = σa(e
−). (4)

Hence the total integral cross sections for Ps-A and e−-A collisions are equal for equal

incident velocities v− ≈ vi.

In deriving this result we made several approximations, assuming that the collision energy

is high compared to the typical Ps excitation energy and that the e−-A interaction dominates

Ps-A collisions. The latter assumption is supported by experiments and calculations showing

that for scattering from noble-gas atoms in the intermediate energy range (v = 0.5–2 a.u.)

the e+-A collision cross sections are much smaller than the e−-A cross sections (see, e.g.,

[17, 18] and [8] for molecules). In contrast, at low energies (< 1 eV) the e+-A cross sections

are larger due to the effect of virtual Ps formation [9, 19], leading to larger absolute values

of the scattering lengths.

We will present now the results for the partial and total cross sections of Ps-Kr and

Ps-Ar scattering obtained by full three-dimensional integration in Eq. (1). The scattering
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phase shifts necessary for the calculation of the electron and positron scattering amplitudes

are taken from polarized-orbital calculations of McEachran et al. [20–23]. Note that many

calculations of e+ collisions with Ar and Kr have been published after the work of McEachran

et al. (see, e.g., [24] and references therein), some at a more advanced level. However, our

goal in the present work is to demonstrate the correspondence between e−-A and Ps-A

scattering, and Refs. [20–23] are most convenient for this purpose since they present the

scattering phase shifts calculated consistently for all four cases (e−-Ar, e+-Ar, e−-Kr, and

e+-Kr).

In the present work we have calculated the amplitudes and cross sections for Ps elastic

scattering and excitation of n = 2 states of Ps. To obtain the total cross section, the Ps ion-

ization (i.e., break-up) contribution should be added. This was taken from the calculations

of Starrett et al. [14] for the velocity range between ionization threshold (v = 0.5 a.u.) and

v = 1.7 a.u. For higher velocities we use a smooth extrapolation.
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FIG. 2: (Color online) e−-Kr, e+-Kr and Ps-Kr scattering cross sections. Dotted black line is the

sum of elastic and ionization [14] cross section, and the line “Ps-Kr total” also contains contribution

from excitation of the n = 2 levels of Ps. Solid red line “SE” is elastic cross section from static-

exchange calculations of Blackwood et al [10]. Experimental data with error bars are from Ref. [6],

and the data for e−-Kr and e+-Kr scattering are from [21, 23].
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Fig. 2 shows the cross sections for Kr, plotted as functions of the velocity of the projectile

(e−, e+ and Ps). Cross sections for e+ at v > 1.3 a.u. were obtained by extrapolation of the

scattering phase shifts of McEachran et al. [21]. By using different extrapolation schemes,

we have estimated the uncertainty of the cross sections at v > 1.3 a.u. to be less than

5%. The Ps-Kr elastic cross section dominates the total below the ionization threshold at

v = 0.5 a.u., but above this velocity the ionization contribution is substantial and becomes

comparable to the elastic cross section above v = 0.7 a.u. As a result of the rise in the

ionization contribution, the total cross section exhibits a weak maximum at v = 0.8 a.u.,

much flatter than that in the e−-Kr cross section, mainly because the Ps elastic cross section

grows rapidly towards lower energies. This growth is mostly due to the e+ contribution to

the amplitude (1). In contrast, for velocities above 0.5 a.u., e−-Kr scattering dominates,

and the total Ps-Kr cross section approaches that of e−-Kr scattering.

Comparison with the elastic cross section from the static-exchange calculations of Black-

wood et al. [10] shows agreement with our Ps-Kr elastic cross section for v = 0.5–1 a.u. The

impulse approximation is not expected to work at low collision energies below the Ps ioniza-

tion threshold which suggests that the sharp upturn of the cross section below v = 0.5 a.u.

is an artifact. Instead the cross section should approach the zero-energy limit of Mitroy and

Bromley [25] σ = (6–24)× 10−16 cm2 calculated by the stochastic variational method. (The

numbers indicate the bounds due to uncertainty in the input parameters of their model). It

is somewhat surprising that our results remain in good agreement with the static-exchange

calculations [10] down to the velocity 0.3 a.u. We should note, though, that because of

the frozen-target approximation, the van der Waals interaction is not effectively included

in calculations [10], and in the case of Ps-H scattering it was shown by the same group

[11, 12] that inclusion of virtual excitations of Ps and the target leads to much smaller cross

sections in the low-energy region. Note also that the Ps excitation cross section is very small

compared to elastic and ionization, in agreement with Blackwood et al. [10].

Note that in order to obtain a peak in the total Ps cross section, adding the inelastic

contribution, mainly ionization cross section for Ps, is crucial. As a result, our total Ps-Kr

scattering cross sections agree well with the measurements of Brawley et al. [6], although, in

contrast to observations, the calculated peak is very weak, and looks more like an inflection

point due to failure of the impulse approximation at low energies.

In Fig. 3 we present the results for Ar. Since the Ps excitation cross sections are very
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FIG. 3: (Color online) e−-Ar, e+-Ar and Ps-Ar scattering cross sections. The line “Ps-Ar to-

tal” contains contribution of the elastic scattering calculated from Eq. (1) and ionization (from

Ref. [14]). Solid red line “cc”: elastic cross sections from close-coupling calculations [10]. Circles

with error bars: experiment [13]. Squares with error bars: experiment [6]. The data for e+-Ar

and e−-Ar scattering are from [20, 22]. Cross sections for e+ at v > 1.3 a.u. were obtained by

extrapolation of the scattering phase shifts of McEachran et al. [20].

small compared to elastic scattering, we include only elastic and ionization contributions in

the total. The major features in the elastic and total cross sections are the same as for Kr,

and the peak at v = 0.9 a.u. in the total cross section is more pronounced. The elastic

cross section is close to the results of the frozen-target close-coupling calculations [10] for

v = 0.5–0.8 a.u. (where the latter is dominated by elastic scattering), and the total agrees

well with the experiment [6, 13]. However, as in the case of Kr, the upturn below v = 0.5 a.u.

is an artifact of the impulse approximation. Most likely, the cross section below this velocity

should approach the zero-energy limit of Mitroy and Ivanov [26], σ = (7–16) × 10−16 cm2.

The sharp upturn in the Ps scattering cross section at low velocities is due to the contribution

of the e+-Ar scattering amplitude. When this contribution is neglected, the low-energy Ps

scattering cross section becomes substantially lower and falls within the the Mitroy-Ivanov
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boundaries. The same is true for the Ps-Kr scattering. It is not clear whether this result is

fortuitous or physically significant.

In conclusion our work offers a clear physical and quantitative theoretical explanation

for the unexpected similarity between the Ps and electron scattering for equal projectile

velocities uncovered recently by experiment [6, 7]. Physically, this phenomenon occurs due

to the relatively weak binding and diffuse nature of Ps, and the fact that electrons scatter

more strongly than positrons off atomic targets for incident velocities v ∼ 1 a.u. Such

similarity appears to be a generic phenomenon, and it is natural that an explanation is

offered by using an approximation (in this case, impulse approximation) which emphasizes

the physics of the problem. By contrast, large-scale numerical calculations for specific targets

may be capable of reproducing experimental data but often lack the transparency required

for providing physical insight. Note that the present impulse-approximation approach can

also be improved by extension of the e−-A and e+-A scattering amplitudes off the energy

shell and by considering higher-order approximations of the Faddeev theory [15, 27].

The authors are grateful to G. Laricchia for stimulating discussions and for providing

experimental data in numerical form.
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[2] E. de Prunelé, Phys. Rev. A 27, 1831 (1983).

[3] M. Matsuzawa, J. Phys. B 17, 795 (1984).

[4] G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952).

[5] G. Laricchia and H. R. J. Walters, Riv. Nuovo Cimento Soc. Ital. Fis. 35, 305 (2012).

[6] S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science

330, 789 (2010).

[7] S. J. Brawley, A. I. Williams, M. Shipman, and G. Laricchia, Phys. Rev. Lett. 105, 263401

(2010).

[8] M. Kimura, O. Sueoka, A. Hamada, and Y. Itikawa, Adv. Chem. Phys. 111, 537 (2000).

[9] C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38, R57 (2005).

[10] J. E. Blackwood, M. T. McAlinden, and H. R. J. Walters, J. Phys. B 35, 2661 (2002); 36,

9



797 (2003).

[11] C. P. Campbell, M. T. McAlinden, F. G. R. S. MacDonald. and H. R. J. Walters, Phys. Rev.

Lett. 80, 5097 (1998).

[12] J. E. Blackwood, M. T. McAlinden, and H. R. J. Walters, Phys. Rev. A 65, 032517 (2002).
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