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Abstract 
Purpose: To demonstrate selection of a small representative subset of images from a pool of 

images comprising a potential atlas pelvic CT set to be used for autosegmentation of a 

separate target image set. The aim is to balance the need for the atlas set to represent 

anatomical diversity with the need to minimise resources required to create a high quality 

atlas set (such as multi-observer delineation), whilst retaining access to additional 

information available for the potential atlas image set. 

Methods: Pre-processing was performed for image standardisation, followed by image 

registration. Clustering was used to select the subset that provided the best coverage of a 

target dataset as measured by post-registration image intensity similarities. Tests for 

clustering robustness were performed including repeated clustering runs using different 

starting seeds and clustering repeatedly using 90% of the target dataset chosen randomly. 

Comparisons of coverage of a target set (comprising 711 pelvic CT images) were made for 

atlas sets of 5 images (chosen from a potential atlas set of 39 pelvic CT and MR images) (a) 

at random (averaged over 50 random atlas selections), (b) based solely on image similarities 

within the potential atlas set (representing prospective atlas development), (c) based on 

similarities within the potential atlas set and between the potential atlas and target dataset 

(representing retrospective atlas development). Comparisons were also made to coverage 

provided by the entire potential atlas set of 39 images.  

Results: Exemplar selection was highly robust with exemplar selection results being 

unaffected by choice of starting seed with very occasional change to one of the exemplar 

choices when the target set was reduced. Coverage of the target set, as measured by best 

normalised cross correlation similarity of target images to any exemplar image, provided by 

five well-selected atlas images (mean=0.6497) was more similar to coverage provided by the 

entire potential atlas set (mean=0.6658) than randomly chosen atlas subsets (mean=0.5977). 

This was true both of the mean values and the shape of the distributions. Retrospective 

selection of atlases (mean=0.6497) provided a very small improvement over prospective atlas 

selection (mean=0.6431). All differences were significant (p<1.0E-10). 

Conclusions: Selection of a small representative image set from one dataset can be utilised to 

develop an atlas set for either retrospective or prospective autosegmentation of a different 

target dataset. The coverage provided by such a judiciously selected subset has the potential 

to facilitate propagation of numerous retrospectively defined structures, utilising additional 

information available with multi-modal imaging in the atlas set, without the need to create 

large atlas image sets.  
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A. Introduction 
Over the last couple of decades considerable effort has been invested into compiling 

radiotherapy treatment planning datasets, collected through multicentre clinical trials, for 

retrospectively identifying predictors of treatment outcome
1,2

. More recently, 

infrastructure has been developed to undertake such analyses on clinical databases in situ 

in geographically-distributed clinics
3
. One specific process being utilised in such analyses 

is autosegmentation of regions of interest (‘structures’) enabling the rapid retrospective 

segmentation of possibly complex structures, while ensuring segmentation consistency. 

Atlas-based autosegmentation is the process of propagating structures, manually 

delineated in the space of one or more atlas images, to the space of a target image via 

registration. There are many variations on atlas-based segmentation methods
4,5

. The 

success of atlas-based segmentation is dependent on, amongst other factors, features of 

the application domain
6
, and both the quality of the initial expert segmentation and the 

quality of the registration of the atlas to the target images
5,7

.  

 
For application domains such as pelvic CT low contrast borders can increase variability in 

manual segmentations between experts. This makes it desirable to have atlases segmented 

by multiple experts so that “consensus” structures can be produced for each atlas image 

and to provide a measure of inter-rater reliability
4,5

. The lack of soft tissue contrast can 

make it desirable to form an atlas from image sets where co-registered images from a 

different modality with high soft tissue contrast such as MR are available. The resources 

required to generate a multi-structure, multi-image, multi-observer atlas can make it 

necessary to compromise on the number of atlas images used.    

One approach to maximising the utility of a small number of atlas images is to select 

images that best represent the variation in the target population
4,7,8

. An advantage of 

developing an atlas set for retrospective segmentation is that the entire target population 

is available before atlas selection. Identifying a representative subset from a new target 

population to use as an atlas for that population can lead to improved segmentation over 

using an atlas chosen from a different population without reference to the target set
9
. 

However, in cases where additional information, such as multi-modal imaging is 

available only for a dataset from a separate population it can be desirable to select atlas 

images from outside the target set.  

 

Successfully identifying representative images requires a good metric for how suitable 

one image is to act as an atlas for another. Several features of the pelvic CT domain 

contribute to making this challenging. High quality registrations between these images are 

difficult to find. Aside from the low contrast borders between organs such as the bladder, 

prostate and rectum, high levels of variation often exist in bladder and rectal filling 

leading to large differences and deformations of structures between patient images
4
. 

Features such as air pockets, calcifications and seeds implanted to aid localisation of the 

prostate during treatment will often not have direct correspondences in the images of 

different patients. Consequently local measures of image similarity are generally better 

for the selection of appropriate atlas images for the segmentation of each individual 

structure than more global ones
4,5,10

, as would be required when selecting representative 

images for segmentation of multiple structures covering a large area. In addition the 

intensity similarity metric that best predicts post segmentation structure overlap is not 

always the same between structures
4
. Finally when selecting atlas images from a different 

population to the target dataset differences in image quality and acquisition protocols 
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must be considered and may reduce the ability of the atlas set to represent the variation in 

the target set. 

 

The aim of this paper is to present a method developed for judicious atlas image selection 

in the context of pelvic CT segmentation to improve the ability of a small number of atlas 

images, selected from one population, to be used to autosegment multiple structures in a 

different large heterogeneous target population. More specifically, procedures are 

presented to (a) standardise the image sets and minimise heterogeneity before calculating 

image similarity and (b) perform clustering based selection of exemplars from a pool of 

potential atlas images that are representative of variation in a target population. To the 

best of our knowledge this is the first paper exploring the use of clustering methods to 

select representative exemplars for atlas based segmentation of CT images or to explore 

clustering based selection of exemplars from one image population to generate an atlas 

for segmenting another. 

  

B. Materials and Methods 

A. Datasets 
The potential atlas (PA) set consisted of pre-registered pelvic MR and CT datasets for 39 

prostate cancer patients attending the Calvary Mater Newcastle Hospital, New South 

Wales, Australia
11

. Prostate, bladder and rectum segmentations, manually delineated by 3 

observers and combined into gold standard segmentations were also available for this 

dataset. The target (T) set consisted of CT for 711 prostate cancer patients treated across 

23 centres during the TROG 03.04 RADAR trial
12

.  

B. Constraints 
The need to undertake analysis on the RADAR trial dataset meant specific constraints 

applied to the selection of exemplar images: 

•  Atlas images could only be selected from the PA set due to the availability of 

corresponding MR images, required for the segmentation of some soft tissue 

structures.  

•  Image registrations and atlas selection could only be performed on CT images as 

MR images were not available for the T set. 

•  In order to avoid any dependence on inconsistently defined
12

 structures already 

present in the T set, structure-guided registration and similarity-assessment were 

excluded from consideration. 

•  The need to propagate multiple extensive structures meant accurate registration and 

intensity similarity calculation was required over the entire pelvic region.  

C. Pre-processing 
There are many potential sources of image heterogeneity in multi-centre trial CT data. 

These can include: variations in CT intensities due to variable image-acquisition, post-

processing and scaling information
13

; variations in fields of view; variations in slice 

thickness, consistency of slice thicknesses and the superior-inferior extent of image slices; 

the presence of image artefacts and inconsistencies, such as inclusion of support systems 

and immobilisation devices. Image heterogeneity can negatively impact image 
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registration and consequently atlas based segmentation by effectively adding noise to the 

intensity similarity metric.  

 

Figure 1. Image pre-processing steps aimed at reducing irrelevant image similarities. (a) Estimate raw pixel 

value to Hounsfield Unit conversion parameters from known image regions of air and water when these 

parameters are missing from exported image headers. (b) Ensure matching orientation by checking 

comparative location of organ centroids and applying a rotation if necessary. (c) Create and apply body 

region masks to remove external artefacts.  (d)  Improve field-of-view match by cropping to organs and/or 

identified bone regions of interest. Field-of-view 1 (FOV1) defines the cropping region by the bladder only 

in the superior direction, whereas field-of-view 2 (FOV2) uses a bone surrogate as well. Further details of 

methods and evaluation are available in the supplementary material sections a-d. 

Figure 1 provides an illustration of the pre-processing steps undertaken to reduce image 

heterogeneity. Some of these steps were required due to loss or inaccuracy of image 

metadata from archived data
13

. The pre-processing steps shown in Figure 1 were: 

a. Estimation and application of raw CT to Hounsfield unit (HU) conversion 

parameters (for further detail see 
14

). An evaluation of the impact of estimation 

inaccuracies is provided in supplementary material section A. 

b. Patient imaging orientation was automatically assessed and images rotated if not 

supine. Supplementary material section B provides further detail. 
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c. Image artefacts external to the patient body were removed by creating and 

applying a body region mask. Details of the algorithm used are presented in 

supplementary material section C. 

d. Image sets were cropped to a common field of view to reduce the size of the 

region to be registered and to improve consistency between image sets. Two 

definitions for the cropping region were evaluated, with FOV2 used in pre-

processing for the clustering presented here. Further information on the methods 

used to automate the process is presented in supplementary material section D. 

An evaluation of the impact of different methods of field-of-view cropping on 

post-registration image similarity is presented in supplementary material section 

E. 

Patients with large artefacts caused by hip prostheses in the central pelvic region were 

excluded due to extreme degradation of the soft tissue regions of interest. 

  

D. Registration and Similarity Calculation 
Pairwise rigid and deformable registrations of the 39 potential atlas CT images were 

performed along with rigid and deformable registrations of each potential atlas CT image 

to each of the 711 target CT images. The Normalised Cross Correlation (NCC) similarity 

was then calculated for each registered pair. 

A robust, inverse consistent, block matching rigid registration algorithm called Mirorr
15

 

was used to provide the initial mapping of the potential atlas images to target images. 

This was followed by an Insight Segmentation and Registration Toolkit
16

 (ITK) based 

implementation of the non-parametric diffeomorphic demons deformable registration 

algorithm
17

. Diffeomorphic demons was selected due to the need to use a non-parametric 

registration algorithm and the previously demonstrated superiority of the algorithm for 

deformable registration of the pelvic regions for atlas propagation
4
. Previous atlas pre-

selection methods have employed rigid registration without deformable registration to 

reduce computation time
5,9

 but given that in this case the primary limiting factor was the 

time required to manually generate high quality atlases it was important to optimise the 

quality of the image similarity calculation. A brief description is provided below of a 

comparison of rigid only versus rigid and deformable registration on the relationship 

between intensity and structure overlap similarity metrics.  

We chose the normalised version of cross-correlation (NCC) to calculate post-registration 

image similarity because: normalisation provides a linearly-independent metric that is 

insensitive to errors in exported image pixel value to HU conversion parameter 

estimation; cross-correlation has previously compared favourably against normalised 

mutual information (NMI) and the sum-of-squared differences (SSD) for the selection of 

pelvic CT atlas images when calculated locally to each structure
4
. It was not, however, 

found to be the best intensity similarity metric for all structures examined.   

A comparison of intensity similarity metrics (NCC, NMI, SSD, and the L2 norm), 

calculated globally, in terms of their Pearson product-moment correlation coefficient 

(correlation coefficient) to the Dice Similarity Coefficient (DSC) measure of structure 

similarity was performed. This was done for the three soft tissue segmentations that were 

available for the PA set after either rigid only or rigid and deformable registration. The 

highest correlation coefficient between any global intensity similarity metric and average 

DSC for the three structures after rigid registration only was 0.0534 indicating a need for 

the better registration afforded by deformable registration for this application. The highest 
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correlation coefficient overall was between NCC after deformable registration and DSCs 

after deformable registration though this was still low at 0.27. Further details of both 

methods and results are presented in supplementary material section F. 

The overall suitability of NCC as a similarity metric for determining how well one image 

can act as an atlas for another is likely to depend on many factors including: the structures 

to be segmented
4
; the quality of the images; the region of the image that similarity is 

calculated over; the quality of the image pre-processing and registration; the atlas 

propagation algorithm used. The comparison of intensity metrics in terms of their 

correlation coefficient to structure overlap presented in supplementary material section F 

provides only an approximation of the suitability of the metric for this application as most 

of the intended structures were not available for evaluation and the atlas propagation 

algorithm has not been selected. An additional qualitative evaluation of the suitability of 

NCC for our application, based on visual inspection and relating image features to post 

registration NCC, was therefore performed and is presented in supplementary material 

section F.   

E. Clustering 
The aim of clustering was to approximate the diversity in the T set using only a small 

number of representative members (“exemplars”) of the PA set. The selection of the 

exemplars can be achieved using an algorithm that can cluster the combined T and PA 

sets, based on the pre-determined similarities for all combinations of image pairs, whilst 

ensuring that PA images will be selected as exemplars. The affinity propagation 

algorithm was used as implemented in the apcluster Cran R package
18,19

. Affinity 

propagation is able to accommodate sparse similarity matrices so only relevant 

similarities are considered and has been demonstrated to be a low-error efficient 

clustering method
19

. As a result of its message passing algorithm used to determine, at 

each iteration, the suitability of any one dataset to be an exemplar for any other dataset, 

affinity propagation returns the dataset selected to be the best exemplar for each cluster 

along with the clusters themselves. Consequently no further steps were required to select 

cluster exemplars to comprise the atlas set.  

Affinity propagation is initialised with similarity weights connecting pairs of data-points 

and with an initial preference value for each data-point to be chosen as an exemplar. The 

weights and initial preference values ultimately determine both the number of clusters and 

the choice of exemplars. The similarity matrix was constructed using asymmetric 

similarities s of all potential atlas images pa to each other (spai_paj) as well as all potential 

atlas images to all target images t (spai_tj). Initial preference values pr for the target images 

were set to a very low value (prt=-100) compared to potential atlas (prpa=min(s)) images 

to ensure that they would not be chosen as exemplars.  

 

Selection of five clusters was enforced by iteratively adjusting starting preferences for the 

potential exemplars by ±α, depending on whether too few or too many clusters were 

chosen, until the algorithm achieved the desired number of clusters. Initially α was set to 

2*(median(s)-min(s)) and was then halved each time the direction of change reversed 

(e.g. if the previous run resulted in too many clusters and the current run had too few). 

Five clusters were selected as an achievable number (given available resources for the 

creation of high quality, multi-observer, atlases) for use in a subsequent multi-structure 

inter-observer delineation exercise. The impact of changing the number of clusters 

selected was explored with results presented in the Supplementary material section H. 
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Random selection of five exemplars was performed 50 times. Aggregated similarities of 

randomly selected exemplars to target images from the 50 runs were used as a base-line 

for comparison with exemplars selected by clustering.  

C. Results 

A. Clustering Robustness 
Repeated runs of affinity propagation on the same similarity set using different random 

starting seeds resulted in the same cluster assignment and exemplar selection indicating 

robustness. To test robustness with small changes to the target dataset, clustering was 

performed after removing similarities to 10% of the target images, chosen randomly. 

Four of the five exemplars were chosen every time. The fifth was chosen 97 out of 100 

times.  

B. Coverage of the Target Dataset 
Figure 2 presents a comparison of frequency distributions of NCC calculated between 

registered target images (T) and different atlases. Distributions are shown for similarities 

(S) of the single most similar atlas image (max; representing the case where only the most 

similar atlas image is used to segment a target image) and each target image. These 

atlases comprise: the entire potential atlas (PA) set of 39 images (representing the best 

possible coverage achievable if the entire PA set was used); 5 randomly selected 

exemplars, with results aggregated over 50 runs (RE); 5 exemplar images chosen when 

clustering only within the PA set (“PAE”, replicating prospective use of the PA set, 

blinded to similarities with the T set) and; 5 exemplar images clustered on the basis of 

similarities within the PA set as well as between the PA and T sets (“PATE”, representing 

retrospective use of similarities from the PA set to the T set). 

When the 5 exemplars are chosen based on clustering (series 3; mean=0.6431, sd=0.0876, 

and series 4, mean=0.6497, sd=0.0857) coverage of the target data set more closely 

approximates that of the best possible coverage when the entire dataset is used (series 1; 

mean=0.6658, sd=0.0785) than the coverage provided by random selection of exemplars 

(series 2; mean=0.5977, sd=0.0963). This is true of the shape of the distributions (as 

shown in figure 2) as well as the overall mean. The decrease in average best similarity of 

T images to any exemplar when only 5 exemplars selected based on the T set in 

comparison to using all 39 potential atlas images is small but significant (p=1.17E-35)  

Taking into consideration similarities to target images as opposed to only potential atlas 

images during clustering resulted in a small significant improvement for the best 

similarity (p=1.8E-8 based on a paired, one-tailed, Student’s t-test) of target images to any 

atlas image.  
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Figure 2: Normalised frequency distributions of NCC similarity (“S”) of all target images to (1) the most 

similar of the entire PA image set, (2) the most similar of a randomly selected image set R aggregated over 

50 runs, (3) the most similar of the PAE image set, (4) the most similar of the PATE image set. 

A similar pattern of results was found when similarities from all exemplars to all target 

images were considered (representing the case where multiple atlas images are used to 

segment a single target image). The mean of similarities for all exemplars to all target 

images when exemplars were selected randomly was 0.5143 (sd=0.1096) compared to 

0.5416 (sd=0.1188) for exemplars selected based on the PA set alone vs 0.5589 

(sd=0.1132) for exemplars based on the PA and T sets. All differences were significant (p 

< 1.0E-10). 

D. Discussion 
Retrospective segmentation of large older multi-trial image sets has the potential to result 

in improved quality datasets that can be useful in multiple applications such as 

retrospective identification of relationships between planning and treatment outcome or 

preparation of a training set for a machine learning model. Retrospective segmentation is 

a challenging task when faced with limited resources, made more difficult due to issues of 

image quality and image diversity. These difficulties are compounded in the case of 

pelvic CT images by high levels of deformability and low contrast boundaries of several 

of the structures of interest
4
. The higher soft tissue contrast and detail visible on MR can 

enable segmentation of regions that are not clearly visible on CT making it desirable to 

select atlas CT images for which corresponding MR images are available. By performing 

clustering we were able to select a small subset of potential atlas images (those with 

corresponding MR images) that provides coverage, as measured by global NCC, of the 

target set (without available MR images) that is almost as good as the coverage available 

from using the entire potential atlas set and that is far superior to a random selection of 

the atlas subset. When considering NCC frequency distributions in Figure 2 it is seen that 

the NCC distribution based on using the entire PA (series 1) set is very similar to that 

based on five judiciously selected exemplars (series 3 and series 4). As such, selecting the 

five most representative PA images minimises the impact of reducing the number of 

available atlas images as measured by NCC. Figure 2 shows that using clustering based 

exemplar selection results in a noticeable improvement in the NCC similarity distribution 

when compared to a random selection of five atlas images. 

 

 



10 
 

A small but significant improvement in coverage of the Target set was seen when 

exemplar selection was based on similarities to the T set as well as the PA set 

(retrospective clustering) as opposed to the PA set only (prospective clustering). This was 

true when either similarities to all exemplars were considered or only the best similarity 

for each target image to any exemplar. This improvement demonstrates some advantage 

of retrospective clustering with an available target set (as available when using clinical 

trial or collated clinical data) as opposed to prospective target sets (as might be obtained 

during a treatment planning process for new patients). The fact that prospective clustering 

came close to providing the coverage achieved using retrospective clustering suggests 

that an atlas selected using this method has potential to be used for organ segmentation in 

a clinical setting or for segmenting other trial datasets. The time and processing required 

for segmentation in these settings would depend on the exact methods selected for atlas 

propagation and the hardware and software utilised.  

One factor likely to influence the amount of improvement that can be achieved by 

considering the T set during clustering is the relative distributions of variations in features 

important to registration in the PA vs the T set. Differences in imaging characteristics 

between datasets, for example, motivated Doshi et al’s strategy of creating a new atlas set 

selected from members of the target dataset when segmenting new datasets
9
. If, for a 

particular feature, the distributions are different between the datasets but there is enough 

variation of the feature in the PA set then it should be possible to select exemplars that 

better represent the distribution of variations of that feature in the T set. If on the other 

hand the distributions are similar or there is little to no variation in the PA set for that 

feature then the inclusion of similarities between the PA and T sets during selection of 

exemplars has limited potential to improve the extent to which the selected exemplars 

represent the variation of that feature within the T set. 

Visual inspection of registrations with different levels of NCC similarity (supplementary 

material F) led to the identification of several features including image slice-widths, 

patient BMI and bladder volume that appeared to have an impact on registration success. 

Examination of means and standard deviations showed that distributions of bladder 

volume and BMI between the datasets were very similar but that there was a much higher 

variation in slice gaps in the T set (mean=3.21mm, sd=1.07mm) than in the PA set 

(mean=2.41mm, sd=0.19mm). Moderate correlation coefficients to post registration 

similarities existed for differences between registered images in BMI and bladder volume 

but not slice gaps within the PA set. For post registration similarities between the PA and 

T sets the strongest correlation coefficient is for differences in slice gaps. The correlation 

coefficient with BMI is reduced and the correlation coefficient with bladder volume 

disappears (see supplementary material sections F and G for further detail). Differences in 

variation in slice gaps may have reduced the effectiveness of taking similarities to the T 

images into consideration during exemplar selection both because the PA set cannot 

match the variation in the T set and because the impact on registration success can 

obscure relationships with other features.    

Another factor that can influence the impact of retrospective as opposed to prospective 

clustering is the number of clusters being selected. An investigation into the way 

coverage changed as the number of clusters increased from one to ten (see supplementary 

material H) showed that for cluster numbers less than four the coverage offered by 

prospective clustering compared to the retrospective clustering was unstable. For cluster 

numbers four or higher the more clusters used the more similar the coverage created by 

prospective and retrospective clustering (retrospective is guaranteed to be at least as good 

as prospective). This suggests that if only a small number of exemplars are used in 
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comparison to the size of the PA set retrospective selection of exemplars can be more 

advantageous. Interestingly, with one exception, increasing the number of clusters 

resulted in an exemplar being added but none being replaced.   

A limitation of this work is the low correlations found within the PA set between global 

measures of intensity similarity calculated over the entire pelvic region and local structure 

overlap, despite the use of deformable registration and the pre-processing performed to 

reduce irrelevant image differences (see supplementary material section F). The 

difficulties involved in performing registration of large image regions containing multiple 

highly deformable organs can mean that an atlas image that is suitable for segmenting one 

structure within an image is not necessarily suitable for segmenting another. Future work 

could examine the possible benefit of splitting images up into smaller regions and 

calculating intensity similarity separately for each region. Clustering would then need to 

account for how well exemplars covered the variation in target images for each separate 

region. 

The impact of the size of an atlas set on the accuracy of subsequent contour propagation 

has previously been investigated. Isgum et al presented a method for automatically 

identifying a subset of atlases expected to yield maximal performance on new data
20

. This 

method required that the potential atlas set and the target set used for atlas selection 

already have ground truth segmentations, which is not the case for the application 

presented here. Awate and Whitaker presented a method for quantifying the number of 

atlas images required to achieve a particular level of accuracy given the target dataset and 

atlas propagation methodology
6
. Their method also relied on having a number of pre-

existing segmented images. An inability to determine or provide the optimal number of 

atlases may mean that a suboptimal number is created and used.  Awate and Whitaker 

used ten atlases as a minimum in all their tests of their model and Isgum et al found that 

eight was the optimal number for their application.  Given this and the difficulty of pelvic 

CT registration and segmentation it is unlikely that a set of five atlas images is optimal for 

this application. However, this may be compensated for to an extent by judicious 

selection of atlas propagation strategies such as those described below.     

Analysis of the relationship of image similarity and image characteristics may provide us 

with information that is useful in the selection of atlas propagation strategies or pipelines. 

For example, if slice-gap differences are impacting registration quality it may be possible 

to compensate for this to an extent by matching image resolutions using down-sampling 

of higher resolution images
21

 or improved slice gap interpolation methods when up-

sampling lower resolution images
22

 prior to registration of atlas images to target images. 

In cases where there are significant differences between populations for particular 

features it may be helpful to employ algorithms that make use of learned information 

about structure shape and intensity profiles such as active shape models
23

 or algorithms 

such as LEAP
7
, which are designed to overcome population differences by employing 

image similarity information and intensity refinement to iteratively expand the set of atlas 

images, using images already segmented by the atlas. The combination of such tools with 

the judicious selection of an initial set of images with high quality segmentations should 

enable sufficiently accurate retrospective segmentation with limited resources. 

E. Conclusions 
Clustering of image similarities can be used to select an image subset that is 

representative of population variation within a target dataset. The extent to which this 

representativeness will translate into successful atlas contour propagation depends on 

several factors including: how well the similarity measure reflects the registration success 
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of the images within the region of the contours to be propagated; how closely the 

variation in the potential atlas set matches that of the target set; and the methods used to 

propagate atlas contours. The image pre-processing and registration pipe-line presented 

here removes some of the irrelevant image differences in an attempt to improve the 

quality of image intensity similarity as a measure of how well one image can act as an 

atlas for another. In the context examined here, where a small atlas is being selected for 

segmentation of large, highly variable, and often low contrast regions, improvements in 

atlas selection are most likely to come from refinements in the methods of image 

registration and similarity calculation.    
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