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Abstract. We present our approach to defining similarity between software artifacts and discuss
its potential exploitation in software reuse by analogy. We first establish properties of similarity
which support its role in retrieving and mapping software descriptions. Then we develop a sys-
tematic basis for comparison within a fairly general conceptual modelling framework, whereby
comparable elements of the descriptions of software objects amd corresponding similarity criteria
are identified. Finally, a general formn of distance metrics for the computation of similarity meas-

ures is defined.

1. Introduction: The Analogical Based Approach to Software Reuse

The reuse based approach to software development has been realized as a form of analog-
ical problem solving, where a reasoncr, the software engineer, familiar with a variety of
source cases(i.e development histories and systems) altempts to transfer properties, rela-
tions and solutions from them Lo a target system under development[24,26].

This realization brings reuse in a ground rich in theoretical predictions and experimental
evidence from a variety of scientific disciplines(Al, Psychology and Cognitive Science),
offering a generic process schema of analogical reasoning, with 4 stages:

1. the retrieval of a set of source cases given a target description ;

2. the mapping of knowledge from some ol the retricved sources to the target on the basis
of analogies between them, established at the same slage ;

3. the evaluation of the transferred knowledge in terms of consistency and pragmatic util-
ity ; and

4. the consolidation of the final outcome into structures of knowledge, supporting similar
forms of reasoning in the future,

Research into reuse can benefit from this conceptual framework. In fact, the solutions to
the operational problems of reusability(i.e retrieval, comprehensibility, modifiability and
composition{4]) offered so far, can be reviewed, enhanced with new ones and ideally
integrated inlo a generic and theoretically plausible methodology according to the predic-
tions of analogical reasoning,.

Adopting this approach, we focus on the problem of defining a quantitative similarity
relation between descriptions of software artifacts so as to promote their analogical reuse.
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The potential of similarity has been poinfed out in both the literature relevant (0
reusef5,7,8,9] and the literature relevant 1o anatogical reasoning[1,16,30]. Also, heuristic
realizations of the concept have been exploiled in validating and inlegrating specifications
of requirements(e.g viewpoint resolution[22]).

Similarity has a clear role in analogical reasoning. As a fine evaluator of source cases ini-
tially selected by some coarser search-method(e.g constrained spreading of activation{6])
or as a basic retrieval mechanism, it can provide effective trial hints to the stage of map-
ping that follows retrieval. However, the effectiveness of similarity depends on its very
definition and whether it estimates correctly the importance of the case [eatures.

In this paper, we present our on-going work on the concept of similarity, The final aim is
the formulation of a computational model of similarity, in a way consistent with proper-
ties inherent to relevant kinds of human processing[33,36] and dealing effectively with
analogical reuse.

2. A General Review of Similarity

Similarity is described as a relation determined by some {lexible comparison between the
distinct constituents of two entitics (i.e siluations, cases, natural or nominal-kind
objects)[25,31,33,36,38,40]. From a quantitative viewpoint, the result of this comparison
may be interpreted in two ways:

i. as a measure of closeness in some abstract spacef25,36] and

ii. as a probability that the objects under comparison, would resemble each other even if
their possibly missing constituents were considered as well[10,30].

Both the representation of objects and the nature of the comparisons are approached dif-
ferently in the literature.

We can dinstinguish between two dilferent representations.  The first assumes a
predefined set of features adequalte for describing any object within a given domain of
discourse. while the sccond assumes that objects are representable through their
classification into a set of mutually disjoint and exhaustive classes,

Object comparisons, may also take two fors:
(1) the exact-marching form, which results into three sets of object-features:
i, the common features: S1=F (1) N\ F(02)
ii.the distinctive features of the first object: S2=F(0 1) - F{02) and,
iii.the distinctive features the second object: 83=F (02)— F(o 1)
Given these three sets, the evaluation of similarity, in general has one of the following
functional forms:

i. F(S1, S2, §3) that takes into account both the common and the distinct features of the
objects. Typical instances of this form are[36]:
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wf (1)
af (§2) +bf (S3)

Db.the contrast model: wf (S D—af (S2)-bf ($3)

a.the ratio model : and,

ii. F(S1) that takes into account only the common features of the two objects. In this
category, we can classify the frequency model of similarity[33]:

FicH, )

where
ICl is the cardinality of the common class of two objects
[Ul s the cardinality of the entire universe of objects and,

f is a function increasing in {Cl and decreasing in {UI

(2) the distance-based form, which measures the distance of features according to the
types of their domains(e.g nominal, totally ordered domains). Typical such metrics
include:

i. the identity function for nominal domains and

ii. the absolute difference function for totally ordercd domains[2,10]:
d(v1,v2) = lorder(v1) - order(v2)l

3. TELOS: A Representational Framework for Similarity Evaluation

In this section we briefly review the structural part of the TELOS data model[27,37]
which will be the basis for representation in our [ramework. TELOS has been chosen
because it subsumes the structural constructs of other object oriented data models, and
has been acknowledged as language for describing software artifacts{7].

1t provides three basic abstractions, namely classification, generalization and attribution.

Classification defines an infinite dimension along which objects can be classified into
built-in disjoint classes that distinguish between the successive levels of classification(i.e
Token class, S_Class class, M1_Class class, M2_Class class and so on). In addition
objects can be classified as instances of other uscr-defined classes.

Classes in TELOS can be generalized into other classes, through Isa-relations. These rela-
tions have a set inclusion semantics, are transitive and hold only between classes of the
same classification level. Moreover, they allow a strict and multiple inheritance of attri-
butes from the superclasses to the subclasses.

The attribution mechanisin allows the attachment of attributes to objects. Attributes in
TELQOS are also objects. Thus they can be classified into attribute classes, generalized,
and have attributes of their own. The term altribute captures both classes and tokens of
attributes. Attribute classes may be single-valued or multi-valued.
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Every TELOS object is associated with two unique identifiers. The first of them is known
as system identifier(i.e a surrogate generated avtomatically by the system). The second
identifier reffered 0 as logical name accomplishes logical relerences 1o objects.
Although it may be changed during the life-cycle of an object, a logical name ought to be
system-wide unique. The logical names of aturibute objects are composed of the logical
names of their possessing objects and logical referents attached directly to them, called
labels.

According to the previous overview, four basic forms of TELOS objects can be dis-
tinguished:

1. Entity Tokens: ETi = [ Id(i), In(i), A(i)]
2. Altribute Tokens:  ATi = [Id(i), Id(Erom(i)), In(i), AGi), Id(To(i))]
3. Entity Classes: ECj = [1d(j), In(), Isa(), A({)]

4. Auribute Classes:  ACj = [1d(j), Id(From(j)), In(j), Isa(j), AQ), Id(To(§))]

where

i, Id(x) is a system identifier denoting the object Ox

ii. In(x) is a set of system identifiers denoting the classes of the object Ox

iii. Isa(x) is a set of system identifiers denoting the direct superclasses of the class Ox

iv. A(x) is a sel of system identifiers denoling the attributes attached to the object Ox

v. From(x) denotes the object posscssing the attribute Ox and,

vi. To(x) denotes the object pointed to by the attribute Ox

Two more issues regarding the topalogy of the Isa-graphs and the inherent assumptions of
the inheritance in TELOS matter from a similarity perspective.

In TELOS, an Isa-graph generally consists of M disjoint subgraphs, where M is the
number of classification levels used in the particular schema(see figure 1). These graphs
are disjoint because the Isa relations are restricted only between classes of the same
classification level.

The set-inclusion semantics of the Isa-relation make it a partiad-order relation[20]. More-
over, at each level of classification TELOS provides a most general class, whose exten-
sion contains all the objects of the lower level (see Token, S_Class and M1_Class in
figure 1). Consequently due to the set-inclusion semantics of the Isa-relations, these
classes are regarded as superclasses of any other class at the same classification level.
Thus (wo classes in an Isa subgraph will always have a common superclass.

The key hypothesis of the TELOS inheritance mechanisi is (hat the identity of attribute-
labels along an Isa-path implies the semantic identity of the relevant atiribule-objects.
This, due to the strict inheritance, has the consequence that attributes in subclasses, hav-
ing the same labels with atwwibutes in their superclasses, can only specialize them(see
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Fig. 1. Distinct TELOS Isa-graphs

figure 3).

4. Principles of Similarity Computation

In this section we formulate a set of principles underlying the computation of similarity,
justified by the ways in which humans perceive similarities and by requirements of ana-
logical reasoning.

4.1. The Principle of Ontological Uniformity

Objects may correspond to different levels of abstraction expressed through their
classification levels in TELOS. Roughly speaking, objects may refer to atomic real world
entitics(i.e Tokens), to absiracted classes of atomic entities(i.c S_Classes), to models for
such abstractions(i.e M1_Classes) and so on. In this object space, it would be senseless to
compare entitics of different ontologies. Any such comparison would be ad hoc and
therefore not semantically interpretable. Hence, inter-object comparisons are restricted
according to the following principle of Ontological Uniformity:

(P1) Similarity comparisons are only valid between oljects of the same clussification
level

Ontological uniformity seems to be arguable in concept formation[12] where the term
similarity refers to comparisons between objects of successive levels of classification.
However, these comparisons have a different objective. In having w classify an object as
an instance of another they end up in a truc/false result combining the membership of the
observed attribute values of the lower object to the predicled domains of attributes in the
higher one.
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Notice that according to relevant studies{34,41], when humans generate concepts, the
predicted comparisons do not involve the objects of the higher Ievel directly. In some
cases, are carried out implicitly, through one or more prototypes(i.e objects having the
greater resemblances with the rest of the instances of the concept/class) of the relevant
concept(figure 2, case a)[34,41]. In other cases, the comparison is perforined in an aggre-
gate fashion, taking into account the resemblances of the object to be classified with all
the other known instances of the concept(figure 2, case b)[29,36]. Finally, there exist
cases where the comparison is carried out through an exemplar-based representation of
the concept(i.c a represcntation consisting of the most prototypical inslance or instances
of the concept with no abstracted propertics, figure 2, case ¢).

These findings about the comparisons involved in concept formation by humans favour
the principle of ontological uniformity.

rototypes

CLASS CLASS O EXEMPLAR
CLASS
/ A
1
t
i
O

class-extension class-extension
case-b case-c
<> SIMILARITY
=->  CONFORMATION

Fig. 2. Comparisons between Classes und Instances

4.2. The Principle of Partially Uniform Representation

A critical issue for the evalvation of similarity is the uniformity of the object
representations(i.c whether objects are representable through a fixed set of features or
not). Such a hypothesis is reasonable in narow, well-defined and rather mature domains
but questionable in the domain of software reuse. In this area, exist objects from different
domains(e.g diverse application areas of software), described via non-standard and possi-
bly mnot well-understood propertics, predicted by models reflecting  diverse
viewpoints[7,11,27,37]. Such objects are only partially uniform. An example of partial
uniformity is presented in figure 3.
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VEHICLE
CAR hasEngine AIRPLANE
ENGINE
hasEngine hasWing
\ hasEngine
CAR-ENGINE WING
AIRPLANE-ENGINE

Fig. 3. Isu-graphs and Inheritance

The two different vehicle types, the airplane and the car are uniform in sharing the pos-
session of an engine(despite the different engine types) and diverse with respect to the
wings.

Partial uniformity restricts object comparisons only between their common atiributes
under a global perspective of analogical reasoning. During the early stage of retrieval,
two basic types of errors may occur. The first is the rejection of sources that could liter
enable sound and useful analogical transfers(errors of type A). The second captures cases
where retrieved candidate sources, do not enable any acceptable transter(errors of type
B). Errors of type B increase the overall computational cost of the process, since they
enlarge the sct of the cases to be considered for transfer during the mapping stage, but
they are recoverable during justification. On the contrary it would be impossible to
recover from errors of type A. Thercfore these errors are more important than errors of
type B.

Consequently, comparisons between the uncommon attributes of two objects should not
be attempted. Such comparisons necessitate ad hoc matchings between ordinary and
artificial values, that can only increase the dissimilarity of the involved objects, while not
contributing in a positive way to any traasfer.

The previous analysis is summarized into the principle of Partially Uniform Representa-
tion, stating that:

(P2) Objects have only partially uniform representations. The non-uniform parts of their
representation must be excluded from similarity comparison
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4.3. The Normalization Principle

Since distance measures subsume cxact matching(sce the fourth axiom below) they must
be preferred as a basis Lor estimating similarity. We can define an overall distance metric
D as an aggregate {unction over partial metrics, devised in accordance with the semantics
of the three distinct abstractions composing the object descriptions.

D is a mapping of the form:
D:0x0--->R

where O is the sct of all objects in the conlext of similarity estimation, R is the set of
Reals and D obeys the known metric axioms[21]:

(D DE,y) >=D(x,x) =0

(2) D(x,y) = D(y.x)

(3) D(x.z) <= D(x,y) + D(y,z) and.
@Dxy)=0==>x=y

Similarity has been viewed as a monotonically decreasing function f of distance D [30]
that may be defined over absolute or relative distance measures. Certain characteristics of
the abstractions over which the absolute distances must eventually be defined, strongly
favor relative measures. Generally speaking, the clementary absolute distance meltrics
must be defined over Isa-graphs or domains of attibutes that may be nominal, partially
ordered or totally ordered(i.c linear). In all but the case of the nominal domains, which
suggests an identity distance function, the relevant domains are not expected to have
equal widths[30] and the Isa-graphs are expected (o have diverse coarsenesses. There-
fore, normalizations of absolute metrics are necessary for filtering out differences arising
due to coarser and finer represcatations.

This requirement is summarized in the following principle of Normalization:

(P3) Similarity(S) is a monotonically decreasing function of a normalized Distance
measure(Dr)

4.4. The Importance of Features in Similarity Evaluation

The distinct features of objects have a different impact(known as salience) in both the
evaluation of similarity and the success of analogical transfer. This impact varies accord-
ing to the domain dominance, the pragmatic utility and the classiflicatory significance of a
feature. Since ils overestimation or underestimation may prevent analogical transfer or
enable erroneous analogics[19,28,32], sulicnce must be carefully quantificd in similarity
estimates.

The domain dominance of features

The domain dominance reflects the causality of a feature within some domain, Causality
is determined by the dependence of values or even the presence of other features on a
particular feature and has a dircet effect on the mapping stage of analogical
reasoning(dominance contributes to ransler of entire constellations of knowledge pieces).
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There exist two different viewpoints (o the evaluation of the domain dominance. The first
onef16,30,39] realizes it as presence in the antecedent parts of implications or in integrity
constraints expressing inter-feature dependencies for a particular domain, The second
approach relies on syntactic aspects of object representations. It distinguishes between
dominant relations and other not dominant represcntational  elements(i.e  propes-
ties)[13,14].

Certain observations about the encoding of object knowledge bases make plausible the
evaluation of .dominance on the basis of symtactic elements. Studies of the
surface/structure paradox of analogical reasoning[15], indicate that the encoding of some
domain around dominant features instead of superficial ones is subject to the training and
the expertise of the encoder in it. In our case both the training and the expertise conditions
of encoding are satisficd. Software repositorics are normally developed by experts and
undergo constant improvements(e.g reverse enginecring) during their life-cycle(see [8]
for a similar viewpoint). Consequently domain dominant features will be prevalent in
them.,

Hence the principle of the Domain Dominant Scliema:

(P4) The domain dominance of a feature can be determined from the schema of the
relevant object knowledge base.

The pragmatic utility of features

The causal relations of features to goal altainment in analogical reasoning designate their
pragmatic utility. Features may predict the applicability of some method for achieving a
goal, explain the success or failure of a certain solution, describe unusual outcomes of
solutions or be totally irrelevant to goals and solutions. In all but the forth of these cases,
they have a high pragmatic utility.

However, it is really difficult to distinguish between pragmatic utility and domain domi-
nance in the absence of explicit information about the former(c.g Goal Dependency
Graphs in [35]). In practice, domain dominance correlates with pragmatic utility since
general causality is likely to imply to goal relevancy. Therelore, without any important
loss of information, we can rely on domain dominance in estimating pragmatic utility.

Thus, the principle of the Pragmatic Utility Subsumption suggests:
{(P5) The pragmatic utility of a feature can be approximated by its domain dominance

Proposed conceptual schemas for software repositories, which capture pragmatically
important features(e.g correspondence links in the SIB[7], abstract domain classes in
[24]) justify this principle.

The classificatory significance of features

The ability of features lo produce classification schemas, optimal with respect to certain
criteria(e.g predictability in concept formation, precision in information retrieval) consti-
tutes their classificatory signiflicance.
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In this framework, the sensitivity 1o crrors of type A suggests a reasonable optimality cri-
terion for a classification schema: the minimization of the probability of errors of type A.
Consequently we can define the classificatory significance ol a feature through the fol-
lowing principle ol Classification Optimality:

(P6) The classificatory significance of a feature depends on its ability to produce
classification schemas minimizing the probability of errors of type A in the analogical
reasoning process.

5. Establishing A Basis for Comparison
The classification, the generalization, the attribution and the distinct identifiers are really
expressive in describing objects but impose the problem of deciding how (o compare
them.
The different nature of the various object elements suggests comparisons only between
elements of the same type if we want to have a clear semantic basis for defining distance
metrics. Therefore, we adopt the following top-level pairs of comparison, on the basis of
our representational model:
1. Comparisons between Classifications:

In(x) <---> In(y) {for any pair of objects (x,y))
2. Comparisons between Generalizations:

Isa(x) <---> Isa(y) {for any pair of classes (c1,c2)}
3. Comparisons between Altributes:

A(X) <---> A(y) {for any pair of objects (x,y))
4. Comparisons between System Identiliers:

Id(x) <---> 1d(y) {for any pair of objects (x,y))

Id(From(x)) <---> Id(From(y)) {for any pair of attributes (x,y)}

1d(To(x)) <---> Id(Toy)) (for any pair of atiributes (x,y))
These top-level comparisons must be further claborated in the case of the attribules,
which can be utilized in representing propertics and/or relations with different semantics
(e.g Car.partOf, Car.mileage). A distinction is made between altribute classes and attri-
bute tokens, due to their different inheritance properties and the roles of their labels,

5.1. Comparisons Between Attribute Classes

Recall that attribute classes with the sume labels along an Isa-path are perceived as being
semantically identical and consequently only specializations of their specifications are
permitted. Note also, that in the case of unordered classes(with respect (o Isa relations)
label equality has no implications.
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This property of labels can be also employed in detesmining the valid comparisons
between attribute classes. In fact, the altributes of a class can be distinguished into three
main calegories:

1 the attributes originally defined in this class ;

2. the inherited yet refined attributes ; and

3. the inherited but not refined attributes.
Assuming the following one to one mappings:

i ol: I->0
ii. 02 L->0
iii, idl: L-->1

where O is the universal set of objects, Lis the set of the system identifiers and L is the set
of the logical names, we can define these attribute categories as follows:

Definition 1: The Modifier of a class C, M[C] is defined as the sct of the labels of all the
attributes included in its definition:

M[C]{ xlidI(Cx)eo 2(C).A}

where ().A is the set of the syslem identifiers for the attributes of the object o

The term modifier has been introduced in[39].

Definition 2: The set of the unordered superclasses of a class C, US[Clis defined as:
US[Cl=

{ x| id 1(x) € 02(C)dsa*) andd (ot (exists y: (i 1(y) £ 0 2(C)isa®) and (id 1(x) £ » 2(y).i.m*))}

where o.isa* is the transitive closure of the superclasses of (he object o.
Definition 3: The Intension of a class C, INT[C] is defined as:

a INT[C)l=MI[C] it USI{C] is empty

b. INT[C ]:{ xlxeM[Chorxe INT[j])}otherwise

jeUS[C)

Definition 4: The Horizontal Extension of a Class C, with respect to a subset
S$=(S1,...,.Sm) of its superclasses, HE[C,S] is defined as:

HE[CS]=

{ X | (x e INT{C]) and ((not(x €\ Int [i )))or(Forall i in 8 :(x & INT[i D-s(not (id 1(i.x) €0 ‘2((7.x)i.w*))))}

ies
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Thus, the horizontal extension of a class C wilh respect to some of ils superclasses
S1,....Sm includes the labels of the attribute classes of C, which are not associated with
any attribute classes of S1,...,Sm, if they arc superclasses ol the fonmer(see a somehow
different definition in [37]).

Definition 5: The Vertical Replacement of a class C, with respect to any of its superc-
lasses S, VR[C,S] is defined as:
VRI[C,S]= x | (x e INT[C]and (x £ INT[S]) and (id 1(S.x) & 0 2(C.x).isa*)

In words, the vertical replacement of a class with respect to one of its superclasses,
includes the labels of its attributes which also specialize altributes with the same label
inhurited from this superclass.

Definition 6: The Comparison Basis for Attribute Classes of two classes C1 and C2,
CBACI[C1,C2] is defined as:

CBAC[C1,C2]=

x | (id 1(x) e 0 2[C 1].isa*) and (id 1(x) € 0 2[C2].isa*) and ( not (exists y:

(id 1(y) € 02[C 1L.isa*) and (id 1(y) € 0 2[C2).isa*) and (id 1(x) € 0 2(y).isa*)))

Since the Isa-relation is only a partial ordering and a class may have more than one
superclasses, two classes C1 and C2 in general may have more than one pairwise unor-
dered minimal common superclases. These will be the elements of their Comparison
Basis for attribute classes(CBAC set). The CBAC set is guaranteed o be non-empty,
since the most general TELOS built-in class at each level of classification is a superclass
of all the classes at that level(see figure 1).

Given the previous definitions, we can distinguish between (wo categorics of attribules
that can be compared, with respect (o (wo classes and their Comparison Basis:

1. The Common Vertical Replacement, which is a set of attribule pairs (c1.x, ¢2.y) defined
as:

CVR[c1,¢2,5)= U CVR[c1,¢2,8i]

s € CBAC[c 1,¢2)
where

CVR[c1,c2,5i ]-{(c Lx, c2y)l{x e VR[c1,5)) and (y € VR [¢2,5i]) and (x =y%

The common vertical replacement includes the commonly inherited attributes, which
have also been refined within the classes of consideration,
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2. The Unique Vertical Replacements UVR[c1,¢2,5i] and UVR[c2,¢1,Si},arc defined with
respect to each of the superclasses Si in the comparison basis of the classes cl,¢2 accord-
ing to the following definition:

UVR[x l,xZ,Si]—{(x 1.x, Siy)lx € VRx L,Si]) and (not (v € VR[x2,5i])) and (x =y}

These sets pair attributes commonly inherited by superclasses, having identical labels but
which are specializéd in exactly onc of the clusses in hand.

The union of the Common and the Unique Vertical Replacements, delined as:

ATI[CL1,C2)=

CVR[CI,C2,CBACICL,C2]] {UVR[CI,CZ,Si} U {UVR[CZ,C[,S:'} ()]

Si e CBACICL.CY Si e CRAC[CY, € 2)]

includes the pairs of atiribute classes that must be taken into account in the estimation of
the distance of two objects with respect to the aggregation abstraction. Note that attribute
classes that belong to the borizontal extensions of the involved classes are not further
compared, since they are not applicable to both of them(see the principle of the partiaily
uniform representation).

5.2. Comparisons Between Attribute Tokens

Since Isa relations are not defined for attribute tokens and their labels serve only as refer-
ences within the relevant object-scopes but are meaningless outside them(e.g "mike_car"
label in figure 4). the comparison pairs of attribute tokens can not be formed as in the case
of the attribute classes.

PERSON
_____________________ .
ac(s e ———- \
hasCar _. N .
\ \ \ N
!
A ; CAR N
[} [} N A
1 [} % N . AN .
' '
[ 1 / > ~ A \ b
] . \
! N
—_—— mike_car
labell123
mike carl car2 george

Fig. 4. Entity objects and altribute tokens

Actually, the semantics of attribute tokens are expressed by their attribute classes. There-
fore, their semantic identity can be detected from the labels of these classes. For instance,
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in the 4th figure we can compare the alwibute token miike.mike_car with the attribute
token george.labell23 duc 1o their common classification under the atiribute class
Person.hasCar and despite their different labels,

In conclusion, attribute tokens yield comparison-pairs as folows:

Initially, the comparison basis for attribute tokens(CBAT) of two objects Oi, Oj is defined
as:

CBAT[0i,0)1=0i.in ( Oj.in if this intersection is not empty  otherwise,
CBAT[0i,0j1=

{x | (@d 1(x) € CC(04,05)) and (ot (exists y: (id 1(y) € CC(O4,05)) and (id 1(x) € 0 2(y)‘i<\'a*))}

where CC(0i,0j) is the set of the conunon classes of Oi, Qj, delined as;
CC(0i,0j)= Oiin* ™ Oj.in*
where:

Ok.in*= Lisa¥
O

i€ Okin

Then the set of the attribute classes which are applicable to both Oi and Oj(CAC) is
defined as:

CAClOi,0j1= INTL

i ¢ CRATI0i,0f]
Finally, we define the comparison-pairs consisting of sets of attribute tokens as:

CAT[Ok,Or )=

{({Xl,.“,Xn},{Yl,...,Yr}) | (forall i,j: (id 1{Xi) € Ok.A) and (id 1(Yj) € Or.A) and
(exists 2:(2 € CAC[Ok,0r]) and (id 1(2) € 0 2(Ok.Xi).in*) and (id 1(2) € 0 2(Or. Yj).in*)))} @)

This definition reflects the possibility of objects instantiating relevant attribute classes by
more than one attribute tokens,

5.3. An Example of Attribute Comparisons

According to the schema of the figure 5 we can form the following sets with respect 10 the
classes UniversityDoctor(ud) and Prolessor(p):

CBAC[ud,p] = { AcademicStaft }
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Doctor

cmployedAt

O Hospital
UDn:)\étl;(r)s;lly \ employedAt
Wcricncc
5..100 Organization
O University
employed At

AcademicStatf

experience

O

Employee

associatedWith

..100

associatedWith
Laboratory

Y experience %100 Department
> = In
Medicine Dept. —> attribute

Fig. 5. A schema for comparison of attribute classes

HE[p,AcademicStalt] = { directs }

HE[ud,AcademicStaft] = [ employed At FROM doctor )

VR[ud,AcademicStaft] = { associatedWith, experience )

VR[p,AcademicStaft] = { experience }

CVRIp,ud,{ AcademicStaft}] = {(p.cxperience, nd.cxperience))
UVR[ud,p,AcademicStaft] = {(ud.associatcdWith,AcademicStaff.associatedWith))
UVR[p,ud,AcademicStaff] = {}

Note that when two atiributes that have the same label are inherited from two distinct

superclasses, they must be disambiguated with a FROM clause within the scope of the
inheriting class, as in the case of the class Professor and the atribute employedAt.
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Also, in the schema of the figure 6 the comparison pairs of the attribute tokens are:
CBAT[george, katc]={cmployec)
CAC[george,kate]=(employce.salary, employce.cxpericnee)

CAT[george kate]={({ george.salary 1], {kate.salary 123 kate.salaryY }),
({george.labell1}, [kate.expericnce}))

drives car

Jubel L

]

]

]

1 Ay -
-

s -

e - - -

A

-

g g g g g S g Sy

O

alaryd o
*—‘E.TJ%?T—’ label 77

Kale

carl

= altribute
== classification

Fig. 6. A schema for comparisons of atlribute tokens

Thus, george and kate are not comparable in terms of car ownership since the relevant
attributes are not applicable to both ol them.

6. General Forms of Distance Metrics

According to the previous analysis, we can propose four general functional forms for dis-
tance metrics. These forms correspond to entity classes, attribute classes, entity tokens
and attribute tokens.

i. Entity classes,
F24(C1,C2)=t(a1(1d(c1),1d(c2)),d2(In(c1),In(c2)),d3(Isa(c1),Isa(c2)),d4(AC’),d5(AT"))

ii. Attribute classes,
D(acl,ac2)=G(di(ld(acl),ld(ac2)),d1(Id(From{acl)),Ild(From(ac2))),d2(In(acl),In(ac2)),
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d3(Isa(acl ), Isa(ac2)),d4(AC’),dS(AT" ),D(o 1 (ld(To(acl))),0l(Id(To(ac2)))))
iii. Entity tokens, »
D(11,02)=F"(d1{Id(11),1d(t2)}, d2(In(11),In(12)), d5(AT’))

iv. Attribute Tokens,

D(atl,at2)=G'(d1(Id(at]),ld(at2)),d1{Id(From(atl ), ld(From(at2))),
d2(In(atl),In(ae2)),dS(AT’ ), D(o1(ld(To(at1))) 01 (Id(To(at2)))))

where

*EF are aggregate functions measuring the overall distances of entitics
*G,G are aggregate functions measuring Lthe overall distances of altributes
*dl is the identity function over the system identificrs

*d2 denotes a distance metric over the classification abstraction

*d3 denotes a dislance metric over the generalization abstraction

* dd,dS are aggregate functions reflecting distances over the attribution abstraction
*AC is the set of the corresponding attribute classes for the objects in
hand defined according to formula (1)
* AT is the set of the corresponding attribute tokens tor the objects in hand
defined according to formula (2)

These general functional forms can be viewed as abstractions of various comparison
methads proposed for analogical reasoning and specialized in at least the [ollowing ways
or combinations of them: '

i. the contribution of the partial distances to the overall measure ;
ii. the degree of recursiveness of the partial distances d2, d3, d4 and d5 ; and

iii. the salience associated with the clementary leaturc-distances of the aggregation
dimension.

We believe that such a specialization must take into account a pragmatic consideration
suggesting a trade off between the quality of the final estimate and the computational cost
for obtaining it.

7. Conclusions and Issues For Further Research

In this paper we presented a qualitative (ramework for computing similarity, within the
context of analogical software reuse. We argued that similarity measures must be devised
according to a set of principles, distilled {rom requirements of the analogical reasoning
process.
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We also developed a systematic theoretical comparison basis and a general distance
model for similarity computation over a particular representational notation for objects.
Further research aims a(:

* the precise definition of partial distance metrics according o the semantics of the
relevant abstractions,

* the contribution of these metrics 1o the overall similarity estimate,

* the quantification of the salience of the various object attribules,

* the extension of the comparison basis of the attribute classes in a way dealing with the
synonyms/homonyms problem[3], by exploiting the classification of attribute classes into
coinmon metaclasses, and,

* issues of computational elficiency.

A prerequisite for the integration of an adequately instantiated distance model into tools
supporting analogical software reuse, will be its experimental validation in a relevant con-
text. Such an experimental validation is to be attempled against existing repositories of
descriptions of software artifacts including the Software Information Base developed in
the ITHACA project [7].
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