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Abstract. We present out al~proaeh to delining sindlarily between software artifacts autl discuss 

ils potential exploilation in software reuse by analogy. We lirsl establish properfie.~ of sinhlafity 

whidl support its role in retrieving and mapping software descriptitms. Then we develop a sys- 

tematic basis for comparison within a fairly general c'tmceptual moddling framework, whereby 

comparable elements of tile descripiions of soflware objects and corresponding similarity crileria 

are ideutified. Finally, a general form of dislance melric.~ fi*r file eompulaliou of similarily meas- 

ure.,~ is deiiued. 

1. I n t r o d u c t i o n :  T h e  A n a l o g i c a l  B a s e d  A p p r o a c h  to  S o f t w a r e  R e u s e  

The reuse based approach to software deveh)pment has lyeen realized as a form of ,'malog- 
iced problem solving, where a reasoner, the soflware engineer, fiuniliar with a variety of 
source c~Lses(i.e development histories and systems) aUempls to tt'm~sli~r properties, rela- 
tions mid solutions l?om them to a target system under development[24,26]. 

This realizatitm brings reuse in a ground rich in theoretic~d predictions mid experhnental 
evidence from a wu:iety of scientilic disciplines(AI, Psychology and Cognitive Science), 
offering a generic process schema of ~m~dogical re~Lsoning, with 4 stages: 

1. the reO~eval of a set of source c~se,s given a target description ; 

2. file mapping of knowledge from some of tile retrieved sources to tile target on the b~mis 
of analogies between them, established at the s~une stage ; 

3. the evaluation of the transfelTed knowledge in terms of consistency mid pragmatic util- 
ity ; ,and 

4. tile consolMation of the final outcome into structures of knowledge, supporting similar 
forms of re,xsoning in fl~e future. 

Research into reuse can benelit fixnn Ihis conceptual fnunework. In filet, the solutions to 
tile operational problems of reusabilily(i.e retrieved, comprehensibility, modifiability and 
composition[4]) offered so htr, can be reviewed, enh~mced with new ones mid ide,'dly 
integrated inlo a generic zmd theoretically phmsible methodology according to the predic- 
tions of  amdogical re~moning. 

Adopting this approach, we focus on the problem of delining a quantitative similarity 
relation between descriptions of software artifitcls so ~Ls to promote their ~malogic~d reuse. 
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The potentiM of shnilm-ity has been lx,inled out in both tile litemtm'e relevmlt to 
reuse[5,7,8,9] and the literature relewmt to amdogical reasoning[I,16,30]. Also, heuristic 
realizations of the concept have been exploited in wdidating and inlegrating specifications 
of  requirements(e.g viewpoint resolution[22]). 

Shnilarity has a clear role in analogical m~Lsoning. As at ine ewduator of source cases ini- 
ti,'dly selected by some coarser sem'ch-methr consu'ained spreading of actiwltion[6]) 
or ,as a basic retrieval mechanism, it can provide efli~ctive la-iM hints to the stage of map- 
ping that follows retrieved. However, the effectiveness of  shnihu:ity depends oil its very 
definition m~d whether it estimates correctly the imporlmlce of tile case fealures. 

In this paper, we present our on-going work on the conccpt of similm'ity. The fired ,'din is 
the formulation of a computatiomd model of shnilm'ity, in a way consistent with proper- 
ties inherent to relewmt kinds of  hummi pix~cessing[33,36] and deMing effectively with 
mlalogic~d reuse. 

2. A General  Review o f  S i m i l a r i t y  

Shnilm-ity is described as a relation determined by some flexible compm'ison between the 
distinct constituents of  two entities (i.e situations, c~Lses, natural or nominM-kind 
object.s)[25,31,33,36,38,40]. From a quantitative viewpoint, the result of  this compm'ison 
may be interpreted in two ways: 

i. as a measure of closeness in some absmlct space[25,36] and 

ii. ,~s a probability that the objects under compm'ison, would resemble each other even if 
their possibly missing constituents were considered a,s well[10,30]. 

Bofll the representation of objecLs and file nature of  the comparisons are approached dif- 
ferently in the literature. 

We can dinstinguish between two different representations. The first ,xssumes a 
predefined set of features adequate h~r describing m~y object within a given domain of 
dkscom~e, while the second assumes that objects m'e representable through their 
cl&ssification into a set of mutmdly disjoint and exhaustive classes. 

Object compm'isons, may ~dso t ~ e  two forms: 

(1) the exact-nuttchingform, which results into three sels of  object-features: 

i. the common .#,atures: S l=F(o  1) ~ F(o2)  

ii.the distindive .features of the .first object: S2=F(o 1) - F(o 2) anti, 

iii.the distinctive features the second object: S 3=F (o 2) - F(o 1) 

Given flmse tlu'ee sets, tile evaluation of simihu'ily, in generM hiLs one of tim following 
fuuetionM forms: 

i. F(S1, $2, $3) that t~tkes into account both the common and the distinct features of the 
objects. Typical instmices of this form m'e[36]: 
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wf (s 1) a.the ratio mot&l: and, 
af  (S 2) + bf (S 3) 

b.the contrast model: w.r (s l ) - a f  (s 2)-bf (S 3) 

ii. F(S1) that t~&es into account only the colrunou features of the two objects. In tllis 
category, we c~m classify the li'equeucy model of shnihu'ity[33]: 

f ( I C I ,  IUI)  

where 

ICI 

IUI 

f 

is the cm'dimdity of the colmnon cl~Lss of two objects 

is the cardinality of the entire universe of objects and, 

is a function iucreasing in ICI and decreasiug in IUI 

(2) the disumce-based Jimn, which measures the distm~ce of features according to the 
types of their domains(e.g nominal, tot;dly ordered dom~dns). Typic~d such metrics 
include: 

i. the identity function for nomimd domains and 

ii. the absolute difference function fi)r totally ordered domains[2,10]: 

d(vl,v2) = Iorder(vl) - order(v2)l 

3. TELOS: A Representational F r a m e w o r k  f o r  S i n f i l a r i t y  Evaluation 

In this section we briefly review the structural pmt of the TELOS data model[27,37] 
which will be tile basis for representation in our l~mnework. TELOS h~Ls been chosen 
because it subsumes the structural constructs of olhcr object oriented data lm~lels, and 
h,'~s been acknowledged ~Ls hmguage fi)r describing softwm'e m'tifilcts[7]. 

It provides three basic abstractions, nmnely classification, generalization and attribution. 

Classificafion defines an infinite dimension along which objects c~m be classilied into 
built-in disjoint cl~Lsses that distinguish between the successive levels of cl~msification(i.e 
Token class, S_Class class, Ml_Class class, M2_Class class and st) on). In addition 
objects cml be classified ~Ls instances of other user-dclined cl~Lsses. 

Classes in TELOS can be generalized into other classes, Ihrough Isa-relations. These rela- 
tions have a set inclusion semantics, m'e transitive m~d hold only between classes of the 
stone cl,~silication level. Moreover, they allow a strict and multiple inherilm~ce of attri- 
butes from fl~e supercl~,~se,s to the subclasses. 

The attribution mechm~ism allows the atu~chment of attributes to objects. Attributes in 
TELOS m~e also objects. Thus they can be classilied into attribute cl~Lsses, generalized, 
~md have attributes of their own. The term attribute captm~es both classes and tokens of 
attributes. Attribute classes may be single-wdued or multi-wdued. 
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1. Entity Tokens: 

2. Attribute Tokens: 

3. Entity Cl`a,;ses: 

4. Attribute Cl`a'~ses: 

where 

Every TELOS object is associated wilh two unique identiliers. The first of them is known 
`as ,~%~tetn identi[ier(i.e a sun'ogate gcneraled imtomaticldly by the system). The sectmd 
identifier reffered to `as logical name accomplishes logicld relba'euces to objects. 
Although it may be chimged during the lilb-cycle of lu| object, a logical n,'une ought to be 
system-wide unique. The logical n~unes of atu'ibute objects m~e composed of the logical 
nlunes of their possessing objects ~uld logicld rel'erents attached directly to them, called 
ktbels. 

According to the previous overview, lbur blmic h~nns of TELOS objects can be dis- 
tinguished: 

ETi = [ Id(i), ha(i), A(i)] 

ATi = lid(i), Id(From(i)), In(i), A(i), Id(To(i))] 

ECj = [IdO), InO), IsaO), AO)] 

ACj = [Id(i), Id(From(i)), ha(i), IsaO), A(i), Id(ToO))] 

i. Id(x) is a system identilier denoting tile object Ox 

ii. In(x) is a set of system identifiers denoting the cl`asses of die object Ox 

iii. Isa(x) is a set of system identiliers denoting the direct superclasses of the class Ox 

iv. A(x) is a set of system identiliers denoting the atu'ibutes attached to the object Ox 

v. From(x) denotes rite object possessing the attribute Ox and, 

vi. To(x) denotes the object Ix~inlcd to by the attribute Ox 

Two more issues reg~u'ding Ihe topology of the Isa-graphs and the inherent ,assumptions of 
the inheriumce in TELOS matter from a simihu'ity perspective. 

In TELOS, mi Isa-gmph generally consists of M disjoint subgraphs, where M is the 
nmnber of classification levels used in the p~u'ticulm" schema(see figure 1). These graphs 
,are disjoint because the Isa relations are restricted only between chtsses of the s~une 
cl`assification level. 

The set-inclusion semlmtics of tile Isa-relation make it a plu'lild-order relation[20]. More- 
over, at each level of classification TELOS provides a most generld class, whose exten- 
sion cont~dns all the objects of the lower level (see Token, S Class lind Ml_Cl`ass ill 
figure 1). Consequently due to the set-inclusion semm~tics of the Isa-relations, fliese 
el`asses m'e regarded ,as superelasses of m~y other class at the stone cl`assification level. 
Thus two classes in ~ul Isls subgraph will ~dways hlwe a common superclass. 

The key hypothesis of file TELOS inheritance mcchmfism is Ihat the identity of attribute- 
labels "along ml Isa-pafll implies the semantic identity of the relewmt attribute-objects. 
This, due to the strict inherilance, h`as the consequence flint attributes in subcl,a,~ses, hav- 
ing the siune labels with attributes in their superclasses, elm only specialize them(see 
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Fig. 1. Distinct TELOS Isa-graphs 

4. Principles of Similarity Computation 

In Ihis section we fonnulate a set of principles undedying the computation of simil~wity, 
justified by the ways in which humerus perceive simillu:ities mid by requirements of ana- 
logical reasoning. 

4.1. The Principle of  Ontological Unihwmity 

Objects may correspond to different levels of abstraction expressed through their 
classilication levels ill TELOS. Roughly speaking, objects may refer to atomic real world 
entities(i.e Tokens), to abstracted classes of atomic entities(i.e S_Classes), to models lbr 
such abstractions(i.e Ml_Classes) imd so on. In this object space, it would be senseless to 
compare entities of different ontologies. Any sud~ compm'ison would be ad hoe imd 
fllerefore not semimtic~dly interprelable. Hence, inter-object comparisons ,are restricted 
according to tile Ibllowing principle of Ontological Un(#I/Tnily" 

(P1) Similarity comparisons are vnly vaIM between objects of the same classification 
level 

Ontological uniformity seems a~ be arguable in concept formation[12] where the term 
simik'uity refers to comparisons between objects of successive levels of classification. 
However, these comparisons have a different objective. In having to cl~msit'y ~m object 
mi inst,'mce of ,another Ihey end up in it true/l~dse result combining the membership of the 
observed attribute wdues of the lower object to the predicted domains of attributes in the 
higher one. 
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Notice that according to relevant studies[34,41], when humans geuerale concepts, the 
predicted comparisons do not involve the objccls of the higher level directly. In some 
cases, are era'tied out hnplicitly, tlu'ough one or more prololypes(i.e objects having the 
greater resemblances with the rest of the instances of the concept/class) of the relevant 
concept(figure 2, case a)[34,41]. In other cases, the ctunpm-ison is perR~nned in ml aggre- 
gate f~Lshion, t~ddng into account the rcsembhmces of the object to be classified with ~dl 
the other known instances of the concepKligure 2, c~Lse b)[29,36]. Finally, there exist 
cases where the compm'ison is cstrried out flmmgh m~ exemplm'-based representation of 
the concept(i.e a representaliou consisting of file most pmtolypical inslm~ce or inst~mces 
of the concept with no abstracted properties, figure 2, case c). 

These findings about the compm'isous involved in coucepl l'onnatilm by hummls fitvour 
the principle of outologicsd uuilbmfity. 

~ CLASS ( r  (:LASS ( ~  EXEMPLAR 
I"T" cI  Ss 

,' / , . - ,  X , / . .  X / i  

class-extension ~ / / ]  class-extension 

 ase-b cuse -c  case-a 

SIMILARITY 

~ -:" CONFOI~4ATION 

Fig. 2. Comparisons between Classes and Instances 

4.2. The Princilfle of Partially Uniform Representation 

A critical issue fi)r tile ewdualion of simihu'ily is tile unifi~nnity of tile object 
represeuuttions(i.e whether objects are representable through a fixed set of features or 
not). Such a hypothesis is reasonable in mu'row, well-defined mid rather mature domains 
but questionable in the domain of soflwm'e reuse. In this m'ea, exist objects from dillbrent 
domains(e.g diverse application meas of softwm'e), described via non-st~mdard ~md possi- 
bly not well-understood properties, predicted by models reflecting diverse 
viewpoints[7,11,27,37]. Such objects are only partially uniform. An ex,'unple of pm'tial 
uniformity is presented in figure 3. 
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Fig. 3. lsa-graphs and Inheritance 

The two different vehicle types, file ~firphme and the c~u" are unifornl in sharing file ix~s - 
session of an engine(despite fl~e diflbrent engine types) m~d diverse wifl~ respect to the 
wings. 

Partial uniformity restricts object comparisons only between their conunon attributes 
under a glob~d perspective of mmlogic~d reasoning. During the early stage of retrieval, 
two b,'tsic types of emirs may occur. The lirst is the rqjcction of sources that could lf~ter 
enable sound mid useful analogical trmlsfers(errors of type A). The second captures cases 
where retrieved c~mdidate sources, do not enable any acceptable transfer(errors of type 
B). En'ors of lype B increase file ovcr~dl compulation~d cost of the process, since flley 
enlarge the set of the cases to be considered h}r transfer during file mapping stage, but 
flley are recoverable during juslilication. On fl~e conu'm'y it would be impossible to 
recover t~om errors of type A. Thereh}re these errors m'e more hnporlmlt thm~ en'ors of 
type B. 

Consequently, comparisons between the uncommon altributes of two objects should not 
be attempted. Such comparisons necessilate ad hoc matchings between ordimu2r and 
artifici~d values, that can truly increase the dissimihuily of the inwflved objects, while not 
contributing in a positive way m m~y transfer. 

The previous ~m~dysis is summarized into the principle of Partially Un(fi~on Representa- 
tion, stating fl~at: 

(P2) Objects have only partially un([orm representations. Tilt, non-unifi)on pags of their 
representation must be excluded.B'ont simihtrity conll)alTson 
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4.3. The Normalization Principle 

Since distm~ce measures subsume exact matching(see the fourth axiom below) they must 
be preferred as a basis flit esthnaling similmily. We can dcline an ovendl dist~mce metric 
D &,~ ~m aggregate function over pmtial meu'ics, devised in accord~mce witi~ the semantics 
of the tilree distinct abstractions composing Ihe object descriptions. 

D is a mapping of the form: 

D" O x O ... .  > R 

where O is the set of all objects in the context of  simil~u'ily estimation, R is the set of 
Reals ,'rod D obeys the lmown metric axitnns[2 ! ]: 

(1) D(x,y) >= D(x,x) = 0 

(2) D(x,y) -- D(y,x) 

(3) D(x.z) <= D(x,y) + D(y,z) ~md. 

(4) D(x,y) = 0 ==> x = y 

Simih'u'ity has been viewed a.,~ a monotonic~dly decreasing function f of  disl'mce D [30] 
timt may be delined over absolute or relative dist.'mce measures. Certain ch~wacteristics of 
tile abstractions over which the absolute dist~mces must eventmdly be delined, strongly 
favor relative measures. Genendly spe~Lking, Ihe elemenl~u'y absolute dist~mce metrics 
must be defined over Isa-graphs or domains of  attributes timt may be nominal, p,'u'ti~dly 
ordered or tot~dly ordered(i.e line~u'). In all but the case of tim aomimd domains, which 
suggests an identity distance function, the relewmt domains ~u'e not expected to have 
eqmd widths[30] ~md the Isa-graphs ~ue expected to have diverse co~usenesses. There- 
tbre, normalizations of absolute meu'ics m'c necessary lor liltering out differences ~u'ising 
due to coarser and liner rcpresentalions. 

This requirement is sutmmu'ized in tile fi~llowing principle of Nonnalization: 

(P3) Similarity(S) is a nwnotonically t&creasing .[imaion of a nontuflized Distance 
measure(Dr) 

4.4. The hnportance of Features in Similarity Ewduation 

The distinct features of  objects have a different impact(known ~t.,~ salience) in both the 
evaluation of  shnil~u'ily mid the success of amdogic~d tnmsl'er. This impact v,'u'ies accord- 
ing to the dom~dn domimmce, the pragmatic utility ~md Ihe classilicatory signilic~mce of  a 
feature. Since its overestimation or undereslhnalion may prevent amdogieal tr~mst'er or 
enable erroneous amdogies[19,28,32], s~dience must be carefully qmmtified in similarity 
estimates. 

The domain don~nance of features 

Tile domain domimmce reflects tile caus~dity of a feature within some domain. Causality 
is determined by ti~e dependence of wdues or even the presence of other features on a 
pm'ticular feature and has a direct effect on tile mapping stage of  ~m~dogical 
reasoning(dominance contributes to mmsfer of entire constellations of  knowledge pieces). 
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There exist two different viewpoints to the ewduatioa of the dom~dn domin~mce. Tfie first 
one[16,30,39] re~dizes it as presence in the antecedent p:u'ts of implications or ill integrity 
consu'aints expressing inter-feature dependencies for a p~u'ticular domaiu. The second 
approach relies on syntactic aspects of object representations. It distinguishes between 
dominant relations and other not dominant representational elements(i.e proper- 
ties)J13,14]. 

Certain observations about the encoding of objecl knowledge bases make plausible the 
evaluation of .,dominmice on the basis of syntactic elements. Studies of the 
surface/structure p~u'adox of ~m~th~gio'd reasoning[15], indicate that the encoding of some 
domain around dominant featta'es instead of superlicial ones is subject to the training and 
the expertise of the eucoder ill it. In our case both file training and the expertise conditions 
of encoding ~u'e satislied. Sol'tw~u'e relx~sitories are nonn~dly developed by experts mid 
undergo constant impnwements(e.g reverse engineering) during their life-cycle(see [8] 
for a simihu" viewlxfint). Consequently domain dominant features will be prev~dent ill 
them. 

Hence the principle of the Dmnain Domimmt Schenut: 

(P4) The donufin dominance of it fenttoe can be detennOted from the schenut of the 
relevant object knowledge base. 

The pragmatic utility of features 

The causal relations of featta'es to go~d attainment in analogical re~moning designate their 
pragmatic utility. Features may predict tile applicability of some method h~r achieving a 
goal, explain the success or hlilure of a cert~fin solution, describe unusual outcomes of 
solutions or be totally irrelevant to go~ds and solutions. In ~dl but the h~rth of these cases, 
they have a high pragmatic utility. 

However, it is re~dly difficult to distinguish between pragmatic utility ~md domain domi- 
nmlce in file absence of explicit inh~nnation about file h~nner(e.g Goal Dependency 
Graphs ill [35]). In practice, dom~fin domin~mce correlates with pragmatic utility since 
general caus~dity is likely to ianply to go~d relevancy. Therefore, without ~my hnlx~rt~mt 
loss of inl'onnalion, we c~m rely on dom~fin dominance in esthnatiug pragmatic utility. 

Thus, the principle of the Pragtntttic Utility Sttbsuml~tion suggests: 

(P5) The pragmatic utility of a feature can be approximated by its domain dominance 

Prolx~sed conceptual schemas for softw~u'e repositories, which capture pragmatically 
hnportmLt features(e.g cotTespoudeuce links in file SIB[7], absu-act domain cl&sses in 
[24]) justify this principle. 

The classificatory significance of features 

Tfie ability of fe~ltures to pnxluce classilication schem&% optimal with respect to certain 
criteria(e.g predictability in concept lbnnation, precision in iulbnnatitm retrieved) consti- 
tutes their classificatory signilicance. 
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In this fnunework, the sensilivity to errors of type A suggests a reasonable optimality cri- 
terion fi}r a cl~kssilicalion schema: the minimization of the probabilily of emws of type A. 
Consequently we cml deline the classilicalory signilic~mce of :t feature through the fi}l- 
lowing principle of Classi[ication Opthtuflity: 

(P6) The class~/icatvty signi/icance of a feature depends on its ability to produce 
classilication schemas minimizing the probability of errotw of type A in the analogical 
reasoning proces& 

5. Establishing A Basis for C o m p a r i s o n  

The classification, the genendization, the attribution and the distinct identiliers ,'ire re~dly 
expressive in describing objects but impose the problem of deciding how to compare 
them. 

The different nature of the wu'ious object elements suggests c{unparis~ms only between 
elements of tile s~une type if we want to have a cle~u" sem~mtic basis fi~r defining dislm~ce 
metrics. Therefi~re, we adopt the fidlowing top-level pairs of complu'ison, on the basis of 
our represenlatiomd model: 

1. Comparisons between Cl~tssilications: 

hi(x) <---> In(y) {h~r any p~dr of ol2jects (x,y)} 

2. Comparisons between Generalizations: 

Isa(x) <---> Isa(y) {filr any pair of classes (cl,c2)} 

3. Comp,'u'isons between Attributes: 

A(x) <---> A(y) {for ~my pair of objects (x,y)} 

4. Comp,'u'isons between System ldentilicrs: 

Id(x) <---> Id(y) {for auy pair of objects (x,y)] 

Id(From(x)) <---> Id(From(y)) [fi}r ~my pah" of attributes (x,y)] 

Id(To(x)) <---> Id(To(y)) [for any pair of atU'ibules (x,y)} 

These top-level ctnnp~u'isons must be further elabontted in the case of the attributes, 
which can be utilized in representing properties and/or relations with different semantics 
(e.g Car.pro'tOt, Citr.mileage). A distinction is made between attribute cl,Lsses ~md attri- 
bute tokens, due to their difli~rent izd~erit~mce pn}pcrties ~md the roles of their labels. 

5.1. Comparisons Between Attribute Classes 

Rec~dl that attribute cbL~scs with the s~une labels along ~m Isa-path m'c perceived ~t.~ being 
semantic~dly identical ~md consequently only specializalions of filch" specilications ~u'e 
permitted. Note also, that in file c~Lsc of uuordercd classes(with respect to Isa relations) 
label equzdity has no implications. 
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This property of labels can be ~dso employed in detennining the wdid comparisons 
between attribute chtsses. In lact, the attributes of  a class c~m be distinguished into fllree 
main categories: 

1 file attributes origin~dly delined in this class ; 

2. the inherited yet relined attributes ; and 

3. f ie  inherited but not relined attributes. 

Assuming the tifllowing one to one mappings: 

i. o1: I - - > O  

ii. 02: L - - > O  

iii. idl: L - ->  I 

where O is the univers~d set of  objects, I is the set of the system identiliers m~d L is the set 
(if tile logic~d n~unes, we cmi deline these attribute categories as follows: 

De:[inition 1: The Modi/ie.r of a class C, M[C] is defined as Ihe set of the htbels of  all the 
attributes included in its delinition: 

M[C]--{ x I idl(C.x) e o2(C).@ 

where o.A is the set of the system identiliers for the attributes of the object o 

The term modifier has been introduced in[39]. 

Delinition 2: The set of the unordered superclasses of a class C, US[C]is defined ~ts: 

US[C]= 

x e o 2(c).isa*) (,u,t C,,a'istv y: (i, l lCy) ~ ,, 2(c).i.~',,*)and (idl(x) c ,, 2(y).isa*)) t I (id l (x ) illll| 

where o.isa* is the trm~sitive closure of the superclasses of the object o. 

Delinition 3: The lntension of a class C, 1NT[C] is delined as: 

a. INT[C]=M[C] if US[C] is empty 
r 

[C]~--~ X' <xI~M I f  ])Or (.)l: ~ t~) /NT[j ],~ otherl, l.li.tl'e b. INT 
L 7 c us lCl J 

Definition 4: The Horizontal Extension of a Class C, with respect to a subset 
S={S 1 ..... Sin} of its superclasses, I-IE[C,S] is delined as: 

HE [C,S ]= 

{ , , c,,~.,~rrtc),,,,,,, co,,,,(,, ~.~,,,,(,],~,,,~c~,,,~,,, ~ ,, s:c,, ,,,~t,],.-*c,,,,, o,,,~,.,,,,;,,2cc.,,,,.,,,.,~,,} 
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Thus, the horizontal extension of a ckLss C with respect to some of its superclasses 
S1 ..... Sm includes the labels of the attribute classes of  C, which m'e not ass(x:ialed with 
,'my attribute classes of S 1 ..... Sin, if they are supcrclasses of  the funner(see a somehow 
different definition in [37]). 

Definition 5: The Vertical Replacement of a class C, with ~espect to rely of its superc- 
lasses S, VR[C,S] is delined as: 

VR [C,S]-~ x l (x E INT[C] and (x E INT[S]) mM (M l(S.x)~ o 2(C.x).isa*)} 

In words, the vertical replacement of a class with respect U) one of its superclasses, 
includes the labels of its attributes which ,dso specialize attributes with the siune label 
inherited from this superclass. 

Definition 6: The Comparison Basis for Attribute Classes of two classes C1 and C2, 
CBAC[C 1,C2] is defined its: 

CBAC [C 1, C2]= 

I x  (M l(x) s o 2[C 1].isa*) mid (id l(x) s o 2[C2].isa*) and ( not (exists y: I 

l(y) s o 2[C 1].isa*) and (id l(y) e o 2[C2].isa*) alid (M l(x) s o 20,).isa*)) t (id 

Since the Isa-relation is only a plu'lial ordering lind It class may have lnole than ()no 
superclasses, two classes C1 and C2 in general may have more thm~ one pldrwise unor- 
dered minhmd common superclases. These will be the elemems of their Compm'ison 
Basis for attribute classes(CBAC set). The CBAC set is gum'anteed Io be non-empty, 
since the most genend TELOS built-in class Ill each level of classification is a superclass 
of all the classes at that level(me ligure 1). 

Given the previous delinitions, we can distinguish betwecn two categories of attribules 
that can be compared, with respect It) Iwo cllmses and flieh" Compm'ison Basis: 

1. The Common Vertical Replacenzent, which is a set of atlribule p~drs (el.x, c2.y) defined 
&S: 

CVR [c l,c 2,S ]= L.) 
.~i t: CBAC[c l , e2]  

where 

[c 1, c 2, Si ]--~ (c 1.x, c 2.y) I (x CVR 
t 

CVR [c 1,c2,Si ] 

E VR[c I,Si]) mid O' ~ VR[c2,Si]) mid (x = y ~  

The coJmnon vertical replacement includes tile eoimnonly inherited attributes, which 
have also been refilled within file classes of cousidenltinn. 
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2. The Unique Vertical Replacements UVR[cl,c2,Si] and UVR[c2,cl,Si],are defined with 
respect to each of tile supercl~Lsses Si in the compm'ison basis of the classes cl,c2 accord- 
ing to the following delinifion: 

UVRlx l,x2,Si]-~ (x l.x, Si.y)l(x e VR[x I,Si])and (m,t (x ~ VR [x2,Si])) and (x =Yt  

The~ sets p~tir attributes cotmnonly inhcrited by superch~sses, having identic~d htbels but 
which ,are speckdiz/~d in exactly one of tile classes in hand. 

The union of the Colmnon and the Unique Vertical Replacements, delined ~Ls: 

AT[C 1,C2]= 

$ i t  ~?//A{7|r162 [. J S i  t C//AlrIC I,C2][ " J 

includes the p~firs of attribute chtsses thai must be taken into account in the estimation of 
the dist,'mce of two objects with respect to the aggregation abstraction. Note that attribute 
cl~Lsses that belong to the horizontal extensions of tile itwolved chtsses are not further 
compare,  since they m'e not applicable Io both of them(see the principle of the partially 
unil'orm representation). 

5.2. Comparisotts Between Attrilmte Tokens 

Since Isa relations are not defined fi~r attribute tokens and their labels serve only as refer- 
ences within the relevant object-scopes but ~ue meaningless outside them(e.g "mike_car" 
label in figure 4). the comp~wison pairs of atlribule tokens c~m not be fi)nned ~ts in the c~Lse 
of the attribute classes. 

m m n m ~ m  
l   _SON 

CAR �9 �9 % �9 

G�9 �9 ' , 
! 

~- mike car 
label 12 3 - 

mike carl  car2 george 

Fig. 4. Entity objects and attribute tokens 

Actu,'dly, the semantics of attribute tokens are expressed by their audbule chlsses. There- 
fore, their semantic identity can be detected from tile htbels of these chtsses. For instance, 
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in the 4th figure we Gm comp~we the allribule token mike.mike_car wilh the attribute 
token george.label123 due to their common classilication under the attribute class 
Person.hasCar and despite filch" different labels. 

In conclusion, attribule tokens yield compzu'ison-pah's &s follows: 

Initially, Ihe compm'ison basis for attribute tokens(CBAT) of two objects Oi, Oj is defined 
as: 

CBAT[Oi, Oj ]=OLin r Oj.in if this intersection is not erupt), otherwise, 

CBAT[Oi, Oj]= 

x (idl(x) e (Oi, Oj)) Ou,t (exist.v y: l(y) ~: O j ) ) e  o 20').#a*))t 

,% 

I CC a l l d  (ul CC (Oi, a[l l l  (MI(x) 

where CC(Oi,Qi) is the set of Ihe conunou classes of Oi, O j, delined &s: 

CC(Oi, Oj)= OLin* 0 Oj.in* 

where: 

Ok. in* = k.) Lisa* 
i ~:t Ok, in 

Then fl~e set of the attribute classes which are applicable to both Oi ~md Qj(CAC) is 
delined as: 

CAC[Oi, Oj]= k.,) INT[i] 
i t~ CBAT[Oi ,O j  ] 

Finally, we define the comparison-pai~;s consisting of sets of attfibule tokens ~s: 

CAT[Ok, Or ]= 

{({X1 ..... Xn} ,( g l ..... Yn} ) l (forall i,j : (id l(Xi) ~ Ok.a ) ~md (id l(Yj) e Or.a) and 

" 1  

(exists Z :(Z E CAC[Ok, Or ]) and (id l(z) e o 2(Ok.Xi).in*) and (id t(z) g o 2(Or Yj).in*)))t(2) 

This definition reflects the possibility of objects inslantiating relev~ml attribute classes by 
more th,'m one attribute tokens. 

5.3. An E x a m p l e  of  Attribute Comparisons 

According to file schema of the ligure 5 we can form the fifllowing sets with respect to the 
cl&sses UniversityDoctor(ud) ;rod Professor(p): 

CBAC[ud,p] = { AcademicStaff } 
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( ~ "~ 5.. 1 0 ~ ~ "  Organization ' 

~ ~ - ~  ~ p l o y e d A I  

: ~  ~ ' ~ A c a d e m i c S l a f f  
associaledWith ~ ! I 

/ 7  ~ J N , ~  rience 
Profia,ssor.,-~/ ~ X 

19 ~" '" e DepL 

Employee 

�9 2.. 1 O0 

associatedWith 

8.. 10()  D / ~ _  epartlnent 

~. t ~ k  J ~ Isa 

~ attribute 

Fig. 5. A schema for comparison of attribute classes 

HE[p,AcademicSmff] = { directs } 

HE[ud,AeademicStaft] = [ employedAt FROM doctor } 

VR[ud,AcademicStaf/] = { associatedWith, experience } 

VR[p,AcademicSmft] = [ experience } 

CVR[p,ud,{AcademicSlaff}] = [(p.experience, ud.experience)} 

UVR[ud,p,AcademicStaft] = {(ud.~ssociatedWith,AcademicSl~fff.~LssociatedWith)} 

UVR[p,ud,AcademicStall] = [ } 

Note that when two attributes that have file s~une label m'e ixdmrited from two distinct 
superclasses, riley must be dismnbigualed with a FROM clause within file scope of the 
inheriting class, as in the case of the class Professor and the ala'ibute employedAt. 
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Also, in file schema of tim ligure 6 the compm'ison p:drs of tile attribute tokens re'e: 

CBAT[george, kate]={employee} 

CAC[george,kale]= [employee.sah~ry, employee.experience} 

CAT[george,kate]= { ( { george.salm'y I }, { kale.sMm'y 123,kate.s~dary9 } ), 
({ george.label I 1 }, [ kale.experience } ) } 

~,l~,.~,, Ca'~ , laves _ J ' - ' X  c= ( salary ( ) 

e , , 0e~ i e , c~ '~ ' - ,  II ', tO) A : 
] "~, ~ I I  I ~ l I 

~, "14. . . . . . . . . . . .  t 

: : ' - . . .  , 
r . ~  ; ".,,. ,, - \ ', 

I ~. l  -. I ' I!...~Ol ,, ,, ,-,... - . . : ' ~  . 
,, , ,~  " - .  ~eo,~,?( } ; i 
, ,, - . .  ~ ', , 

I " " I  t # ~ . 4 "  ! i 

I 31 '~ - . . .~  ~ ~t ,. / lal~l  I 1 ', , 

experience ~ t �9 I t z ~ l  l i 

[ '~  ~ 3  ~ label77 x , ~ J  
kale 

alldbute 
- -  ~ classification 

Fig. 6. A schema lbr comparisons of attribute tokens 

Thus, george m~d kate are not comparable in Icnns of cm" ownership since the relevant 
attributes ,are not applicable to bolh of fl~em. 

6. General Forms of Distance M e t r i c s  

According to tile previous miMysis, we cml propose fore" gener~d functional forms lor dis- 
tance metrics. These forms correspond to entity classes, attribute classes, entity tokens 
and aUribute tokens. 

i. Entity cl,xsses, 

F2d(C1,C2)=f(dl(Id(cl),Id(c2)),d2(In(cl),In(c2)),d3(Isa(c 1),Isa(c2)),d4(AC'),d5(AT')) 

ii. Attribute classes, 

D(ac1~ac2)=G(d1(~d(ac1)~d(ac2))~d1(hl(Frmn(ac~))~d(Fr~m(ac2)))~d2(~n(ac1)~n(ac2))~ 
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d3(lsa(acl ),lsa(ac2)),d4(AC'),d5(A T'),D(o 1 (hl('fo(acl ))),ol(hl(To(ac2))))) 

iii. Entity token s, 

D(tl,t2)=F'(dl(Id(tl ),M(t2)), d2(In(tl ),ln(t2)), d5(AT')) 

iv. Attribute Tokens, 

D(atl,at2)=G'(dl(ld(atl ),hi(at2)),dl(ld(From(atl )),hl(From(at2))), 

d2 ( ln( atl ),ln(at2 ) ),d 5( A T' ),D(o l ( hi( To(at l ) ) ),o l ( hl( To(at2 ) ) ) ) ) 

where 

* F,F' 

* G,G 

*d l  

*d2 

*d3 

* d4,d5 

*AC' 

m'e aggregate functions measuring tile ovendl disl~uices of entities 

me aggregate l'unctions measuring the ovendl distmzces of attributes 

is the identity function over tile system identifiers 

denotes a dislance metric over tile classilicalion abstraction 

denotes a dislance metric over tile genendizatitm abstraction 

,are aggregate functions rellecting distmices over Ihe attribution abstraction 

is the set of the corresponding attribute classes fiw the objects in 

h~md delined according to fi~rmula (1) 

* AT' is the set of tile colTesponding attribute tokens lor the objects in hand 

delined according to h~rmula (2) 

These general t'unctiomd forms can be viewed as abstractions of wu'ious comparison 
met i l~s  proposed fi~r ~malogical reasoniug and specialized in at least tile following ways 
or combinations of them: 

i. file contribution of tile parli~d dist~mces to tile overall me~Lsure ; 

ii. the degree of recursiveness of tile pro'tied dist~mces d2, d3, d4 and d5 ; mid 

iii. the salience associated witii Ihe elementary featurc-disl~mces of the aggregation 
dhnension. 

We believe that such a speci~dization must take inlo account a pragmatic consideration 
suggesting a trade off between the qmdity of tile tired estimale ~md tile computational cost 
for obtaining it. 

7. Conclusions and Issues For Further Research 

In tiffs paper we presented a qualitative l~unework fi~r compuling simil~u'ity, wifllin the 
context of ,'m~dogic~d software reuse. We ~u'gued Ihat simil~u'ity me~t~ures must be devised 
according to a set of  principles, distilled from requirements of file analogical reasoning 
process. 



500 

We ,also developed a systematic fl|eorelic;d comp~u'ison basis and a general distmlce 
model for shnilarity computation over a p~u'licular representational notati~m lor objects. 

Further research aims at: 

* the precise definition of partied distance meu'ics according to fl~e sem~mtics of the 
relevant absu'actions, 

* the contribution of these metrics to the ovendl simil~u'ity estimate, 

* the quantilication of the salience of the various object allribules, 

* file extension of the comp~u'ison basis of the aUribute chtsses in a way de~ding with the 
synonym~mmonyms problem[3], by exploiting the classilication of altribule cktsses into 
colmnon metackLsses, mid, 

* issues of ctunputatiotud efliciency. 

A prerequisite h~r the integration of an adcqualely inslantiated distance model into tools 
suplx)rting an~dogical soI'lware reuse, will be its experhnent~d v~didatiou in a relevant c(nl- 
text. Such ~m experimental wdidalion is Io be attempted against existing repositories of 
descriptions of softw~u'e ~u'til~|cls including Ihe Sol'tw~u'e Inl'onnaliou B~t,;e developed in 
the ITHACA project [7]. 
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