
Similarity Indexing with the SS-tree *

David A. White Ramesh Jain
dwhite0cs.ucsd.edu jain0ece.ucsd.edu

Visual Computing Laboratory
University of California, San Diego
9500 Gilman Drive, Mail Code 0407

La Jolla, CA 92093-0407

Abstract
Eficient indezing of high dimensional feature vec-

tors is important to allow visual information systems
and a number other applications to scale up to large
databases. In this paper, we define this problem as
“similarity indexing” and describe the fundamental
types of “similarity queries” that we believe should be

We also propose a new dynamic structure for simi-
larity indexing called the similarity search tree or SS-
tree. In nearly every test we performed on high di-
mensional data, we found that this structure performed
better than the R*-tree. Our tests also show that the
SS-tree is much better suited for approximate queries
than the R *-tree.

supported.

1 Introduction
In many fields, there is a need for what we call

similarity indexing. The goal of similarity indexing is
to facilitate efficient similarity queries of a dataset of
typically high dimensional feature vectors. Similarity
queries are queries that are related to some measure
of similarity between feature vectors. One common
example is a query for the most similar feature vectors
given a reference feature vector.

Our primary application area for similarity index-
ing is visual information systems [l, 21. Visual infor-
mation systems encompass image, multimedia, inter-
active video, medical, and 3D databases. For example,
a similarity query on a content-based image database
could find pictures with a similar color, texture, or
shape [3, 4, 51. Other applications include time series
indexing (ie. financial databases) [6], DNA databases
[7], CAD databases [8], case-based reasoning in AI [9],
and information retrieval [lo, 111.

*This research was funded in part by the National Science
Foundation under Grant #MIP 9420099

Similarity Index

Figure 1: Illustration of dependencies in the creation
of a similarity index

2 Similarity Indexing
The primary goal of similarity indexing is the same

as other indexing methods: to minimize average and
worst case time required for query operations. In addi-
tion, structures that support dynamic updates (inser-
tions and deletions) and that have efficient disk-based
implementations are preferred since many applications
require these features to scale to large databases.

There are three components of similarity indexing
that differentiate it from other types of database in-
dexing. The data or objects being indexed are r e p
resented by medium or high dimensional feature vec-
tors, usually between 5 and 100 dimensional or higher.
Most spatial indexing structures are not designed to
handle data of this dimensionality. Second, the fea-
ture vectors are queried primarily in terms of one or
more measures of similarity or dissimilarity. Typically,
dissimilarity between feature vectors will be measured
in terms of some metric. The metric properties (pos-
itivity, symmetry, and triangle inequality) are usually
basic assumptions made when designing and optimiz-
ing similarity indexing structures. The most common
metric is Euclidean distance or weighted Euclidean
distance, although other metrics such as city block
distance can also be used. Lastly, the types of queries
that are performed are fundamentally different than
queries performed on standard indices.

It is important to mention that finding the appro-
priate representation for domain objects as feature
vectors, and defining the correct similarity measures

5 16
1063-6382/96 $5.00 0 1996 IEEE

http://dwhite0cs.ucsd.edu
http://jain0ece.ucsd.edu

on those feature vectors is an area of research in itself.
Usually the knowledge of a domain expert in the appli-
cation area is required (figure 1). The role of similar-
ity indexing, then, is to provide a low levell mechanism
that is useful in many application domains.

2.1 Similarity Queries
The types of query operations that Twill be per-

formed on a similarity indexing structure fall into
three categories: similarity selection operations, sim-
ilarity join operations, and similarity sample opera-
tions. In this section, we choose to ignore the issue
of the actual definition of similarity in hope that our
definition will apply to similarity indexing structures
using different similarity measures. We also speak of
“maximum similarity” instead of “minimum dissim-
ilarity” although implementations usually deal with
the latter. Also, queries are not limited to one simi-
larity measure as long as the similarity indexing struc-
ture allows multiple similarity measures. In fact, the
similarity measure might be another parameter used
when specifying a query.

The Similarity Selection operation will simply
“Find objects similar to a reference.” This query is
analogous to a selection operation performed on rela-
tional databases. However, as it is, the query state-
ment does not specify how many similar objects should
be retrieved, but it seems reasonable that a similarity
selection could retrieve either the k most similar ob-
jects (k-nearest neighbors) or all objects with a thresh-
old level T of similarity. In fact, the two type of queries
can be generalized into one type of query.

Stated precisely, a similarity selection operation al-
ways returns the k most similar objectri to the ref-
erence object. Usually the objects returned will be
sorted in order of decreasing similarity. In. cases where
multiple objects have the same similarity to the ref-
erence object (to machine precision), the ordering of
returned objects and exactly which objects will be re-
turned is undefined. Two thresholds are specified on
the query. The first threshold k specifies the maxi-
mum number of objects returned by the query, and a
threshold T specifies the minimum threshold similar-
ity required in order for an object to be returned by a
query.

If the threshold T is set to the smallest possible
level of similarity, then the query becomes a standard
k most similar query. If IC is set to its maximum value,
then the query returns all objects with a threshold
level of similarity.

In many applications, especially interactive applica-
tions, because of the nature of high dimensional data,
it will often be possible to trade a small probability of

an inaccurate result for a large performance improve-
ment. We and other researchers working on the near-
est neighbor problem have observed this [12]. There-
fore, in many applications, it will be appropriate to
have one additional parameter that specifies the max-
imum error allowed in the final result. lJsually, this
parameter will be a bound E in the range 0.0 5 e 5 0.5
that specifies that an algorithm can ignore search-
ing regions in feature space as long as tlhose regions
can not contain objects within distance (1 - E)D,~,.,
where D,, represents the “spherical” region in fea-
ture space that needs to be searched to gvarantee an
exact result. Of course, the query is exact if E = 0.

The Similarity Join operation will “Find all pairs
of object that are similar.” This type of query could
be considered a generalization of a join operation. A
typical relational-style join operation retrieves (and
combines) rows or objects with exactly rnatching at-
tributes, while this operation retrieves rows or objects
with “similar” attributes. The same issues mentioned
above for the similarity selection apply here also, and
there are additional issues.

Finally, the Similarity Sample operation will “Find
a representative sample of objects (similar to a refer-
ence).” This query operation has no analog in rela-
tional operations, but nonetheless may ’be the most
important and most frequently used operation be-
cause of its applicability in browsing the contents of a
database.

A similarity sample operation will retrieve samples
of the objects in the database relative to a reference
object, or relative to the complete contents of the
database. In general, a query must specify the ref-
erence object, some measure of the spread of the sam-
pling, usually based on the measure of similarity, and
the number of samples desired.

There are a number of different ways to define a
sampling of a region of the database. Samples could
be representative of the population of tlhe database,
so the spacing between samples in a region should be
approximately inversely proportional to the density of
samples in that region. Samples could be approxi-
mately equidistant from each other withiin the regions
spanned by the database. Samples could be centers
of “clusters” of objects in the database., using some
clustering criterion. In this case, the clustering might
be performed be separately in parallel with indexing
or perhaps the clustering within the indexing struc-
ture could be used. Finally, samples could be even
chosen at random from all objects within the region
being sampled. The best sampling method(s) may be
a tradeoff between efficiency and accuracy.

517

Similarity selection could be considered a special
case of the sample operation, since a sampling of the
database with a small enough spread should intuitively
return the most similar objects to a reference object.
However, most implementations will likely consider
these types of queries different operations.

Because queries might combine similarity related
information with standard constraints based. on al-
phanumeric information associated with an object, a
general purpose implementation of a similarity index-
ing query interface should also support the specifica-
tion of a predicate function (or functions in the case of
the similarity join). The predicate function determines
whether the query is satisfied by a similarity query re-
sult. For example, suppose we have a content-based
face database [13,14], and we have an unidentified pic-
ture of someone who is in the database, we may want
to determine who that person is. We could search
the database using only pictorial information, but if
we know other information about the person such as
his/her first name, sex, or approximate age, we can
increase the accuracy of the search by also specifying
this information. If predicates are not supported, we
can never know for sure how many people should be
requested by a similarity selection or similarity sample
operation, because we do not know a priori how many
of the returned people will satisfy our constraints.

Finally, in some applications, it will be useful to
find the most dissimilar objects. It is easy to refor-
mulate the above operations in terms of dissimilar-
ity and call them dissimilarity selection, dissimilarity
join, and dissimilarity sample operations.
2.2 Applications and Examples of Simi-

larity Queries
This section should help explain some of the ap-

plications for similarity indexing and clarify how the
queries described above will be used in applications.
First we will explain some ideas about how users might
use a database that employs similarity indexing, since
the paradigm is much different than that of the stan-
dard relational databases. The SQL query mechanism
has been very successful because in most cases the fol-
lowing assumptions hold true:

1. The users know what they are looking for when
they issue a query.

2. The users can specify a query (in SQL or via a
user interface) that will retrieve what they want.

However, in many applications that employ similar-
ity indexing, these assumptions will usually not hold
true. This is because the feature vector representation

is used primarily in applications where standard meth-
ods are ineffective or can be improved upon. Usually
this means that the objects being indexed can not be
described easily or concisely using a textual represen-
tation. Therefore, even if users are aware of what they
want, it may be difficult to precisely describe what
they are looking for. Further, the users will often only
have a foggy idea of what they want, or may just be
interested in exploring the contents of the database.
Researchers working in application areas for similar-
ity indexing are well aware of this problem [3, lo].

Therefore, we make a distinction between two
modes a user can be in when accessing a database
interactively. For completeness, we add a third mode
which is typically non-interactive.

In locator mode, users do know what they are look-
ing for, but as was mentioned above, may have dif-
ficulty expressing their query to the system, or they
may not be aware of how similarity is understood by
the system.

In browsing mode, users either are only interested
in exploring the database or have only a foggy idea
what they are looking for.

Finally, in analysis mode, the goal is to analyze the
contents of the database in some way. The similarity
indexing structure will typically be queried multiple
times under control of a program or SQL query. These
queries are typically non-interactive, although speed is
still an important issue.

Users in all three modes might use either the simi-
larity selection or similarity sample operation, but the
similarity join operation will usually be only an anal-
ysis mode operation. However, when browsing large
databases, the primary query type will probably be
the similarity sample operation, because, with the ap-
propriate interface, it can allow the user to “zoom in’’
and “zoom out” of the database with respect to a refer-
ence object, where zooming in and out would decrease
or increase the spread of the sampling. In addition, the
measure of similarity could be modified interactively
in order to change the type of sampling.

2.3 Similarity Indexing Requirements

In this section, we explain some assumptions about
requirements and tradeoffs we used when designing
our similarity indexing structure. The assumptions
are based on our experiences with visual information
systems, but we believe these assumptions will hold
in many or most applications that require similarity
indexing:

Query performance is much important than update
performance. In image and multimedia databases,

and Tradeoffs

518

(a) Representation
in 2D feature space

(b) Tree representation used
in memory or on disk

Figure 2: The R-tree structure

the database will typically rarely be updated, and of-
ten the updating will be done as an offline processing
step. In contrast, query performance must be as fast
as possible since similarity queries will typically be
performed online, interactively, and will account for
most accesses to the indexing structure.

Disk access counts alone do not adequately measure
performance. Since queries in visual information sys-
tems are interactive, databases of relatively small size
(thousands of objects) are typically memory resident
to allow fast response time. In the future, even large
databases may be memory resident. Therefore, the
performance of index structures should be measured
by total CPU time (and perhaps other measures) in
addition to the number of disk accesses (leaf and in-
ternal/directory nodes).

Dynamic updating of the database should be sup-
ported, but query performance should still approach
that of a static structure. There is no question that
a dynamic structure are preferred over a static struc-
ture because of its greater flexibility. However, static
structures or structures that are reorganized or op-
timized typically allow more efficient query process-
ing than purely dynamic structures. We suggest that
future work should look at effective “packing” algo-
rithms [15] and algorithms which optimize an existing
dynamic index [16].

3 Related Work
Most previous work in the database literature has

focused on indexing lower dimensional data and on
other types of queries besides similarity queries. The
lc-d tree was one of the first structures proposed for
indexing multidimensional data for nearest neighbor
queries [17]. Recently, this structure has been used in
geographic information systems for queries like simi-
larity queries [18], and might be useful for similarity
indexing. Other methods such as space fjllling curves,
linear quadtrees [19], and gridfiles [20], do not scale
well to high dimensions, but may be useful for medium
dimensional data.

The R-tree [21] (figure 2) and its mast successful
variant, the R*-tree [22], have been used most often
for indexing high dimensional data in the database
literature. However, since ranges are stored on each
dimension, the index requires more space and time
to search in higher dimensionality. For this reason,
higher dvmensional data typically is mapped to a lower
dimensional space before indexing in R-trees [4, 231.

The TV-tree [24] is the only method in the database
literature thus far that has been proposed specifi-
cally for indexing high-dimensional data. Performance
comparisons clearly show that the TV-tree can be
much more efficient than the R*-tree. However, the
improved performance depends on two assumptions.
The first assumption is that dimensions ad the feature
vectors are ordered by “importance.” Thie second as-
sumption is that sets of feature vectors in the dataset
will tend to exactly match on dimensions, especially
on the first few “important” dimensions.

The first assumption is reasonable (if not desirable)
since an appropriate transform may be used. The sec-
ond assumption was not explicitly stated ,Ln the paper,
but a careful analysis of their algorithms reveals that
their performance improvement depends upon it. In
some applications, the original feature vectors contain
a small set of discrete quantities, so the second as-
sumption does hold.

Unfortunately, this second assumption will nor-
mally not be true in visual information systems, and
in many other applications. Features in these appli-
cations are typically real-valued, so that chances of
exactly matching on dimensions is negligible. In this
case, the TV-tree reduces to an index on only first few
dimensions. Small changes in the proposed algorithms
should allow the TV-tree to be a modest improvement
over the R*-tree in these applications. However, in
this paper, we will refer to the R-tree (and variants)
as the best previously known structure for similarity
indexing because it has proven itself in more similarity
indexing applications.

There is also related work outside of the database
literature. In the information retriev<al literature
[lo, 111, work has been done on cluster fides [25] that
proposes structures similar to the SS-tree. In the im-
age database community, a static indexing structure
based on Kohonen nets was suggested [26]. There is
also related work in the computational geometry and
vector quantization literature [12].

4 A Similarity Indexing Structure:
The SS-tree

In thns section, we first explain the definition of
similarity used by the SS-tree and then describe the

5 19

SS-tree structure and a few implementation issues.
4.1 Similarity

When defining similarity indexing, we did not pre-
cisely define similarity since we were not dealing di-
rectly with implementation issues, but in this section
we define similarity in the context of the SS-tree. How-
ever, we believe this definition of similarity will most
commonly be used. Here we usually speak of dissimi-
larity or distance between feature vectors rather than
similarity. The distance measure is a weighted Eu-
clidean distance metric. (Of course, squared weighted
Euclidean distance is used when possible to avoid
costly square roots.) This similarity measure was cho-
sen primarily for efficiency reason, as will be explained
below. It is defined mathematically as follows:

D(x, Y) = & - Y)Tdiag(w>(x - Y> (1)

where x and y are the feature vectors being compared,
and w is a vector representing the relative weight of
each dimension for distance. Every element of w must
be nonnegative.

This distance metric was chosen because it has a
property that the distance metric can still be calcu-
lated after any invertible linear transform of the fea-
ture vectors. This property is true of Euclidean-based
metrics (based on the L2 norm), but does not hold
for other metrics based on the city block distance (L1
norm) or maximum value metric (L, norm).

In order to use the SS-tree, we rely on a domain ex-
pert to help in the indexing process, as was mentioned
before (figure 1).

Feature vectors must be provided in a format
such that a weighted Euclidean distance metric on
those features can approximate the desired mea-
sure of dissimilarity.

Knowledge of the domain should be used to con-
strain the types of similarity measures between
feature vectors that will normally be used in
queries. This knowledge can then be used to tune
the performance of the SS-tree (or multiple SS-
trees).

Each SS-tree structure uses one base distance met-
ric (dissimilarity) defined by a vector Wb of size Nb
(the feature vector size). In order to save space and
avoid exhaustive searches of the SS-tree, we require
that every element of Wb be positive (zero weights are
not permitted). In other words, we require that all
elements in the feature vector be used for indexing.

At the time of SS-tree creation, we also require that
the domain expert specify groups of elements of the

-. _..._......_ " .. __... . - - _ _ - --_

(a) Representation of (b) Tree representation
high dimensional fea- used in memory or on
ture space in 2D disk

Figure 3: The SS-tree structure

struct SSElem C
SSElemPtr child-array-ptr; // Child pointer
int immed-children;
int total-children;
int height ;
int update-count;
float radius ;
float variance :
float centroidCDIM1;
char dataCDATA-SIZE] ;// Data repr. alem

// Children in array
// Children in subtree
// Height above leaf
// u/out refresh values
// of enclosing sphere
// Sum squared dist.
// FVect or Mean value

1;

Figure 4: The SSElem structure (// denote comments)

feature vectors that will always have a weight in the
same proportion to each other. This is done by spec-
ifying an integer vector g of size Nb containing group
labels of each vector where group labels can vary from
1.. . N,, where N, is the number of groups. Queries
can then be specified conveniently in terms of a query
weight vector wq of size N,. The actual weight of any
feature vector element in a query is then the weight
of its group times its base weight. The use of groups
does not make the SS-tree less general purpose be-
cause each element of the feature vector could be in
its own group (ie. Nb = N q) . However, when there are
groups, the SS-tree can better optimize itself because
it has more information about how weights can vary.

In some cases, when queries using different weights
are common, one SS-tree may not be effective on its
own, since a single SS-tree can only be optimized for
one base distance metric. In this situation, provided
that enough disk space and/or memory is available,
multiple SS-trees with different base distance metrics
could be used.
4.2 SS-tree Data Structure

The overall SS-tree data structure is shown in figure
3. Every disk node in the structure consists simply of
an array of the SSElem structure in figure 4.

In our current implementation, both internal nodes

520

and leaf nodes use the above structure. If the
SSElem is a leaf element, data holds the data for
that leaf, and centroid holds the object’s feature vec-
tors, and radius bounds the object’s extent in fea-
ture space (this was zero in our tests on point data).
If SSElem is an internal node, then its information
is defined by its children. At all times, t8he values of
child-array-ptr, immed-children, total-children,
height and centroid contains the pointer to the child
node (array), the size of that array, the total num-
ber of children, the node height above the leaves, and
the centroid (mean value) of the child vectors. The
radius is always greater than or equal to the distance
to the furthest feature vector from the centroid, and
is recalculated based on its children. The variance
could be useful for approximate queries, but was not
used in the tests presented here. The data holds the
information for the closest immediate child to the cen-
troid. This is obviously convenient for the similarity
sample operation, because a sampling of the database
can be achieved without accessing the the leaf nodes
of the tree. The update-count is used to allow the
values used by internal nodes to be periodically re-
calculated using its immediate children. This allows
floating point errors to be avoided in higher level nodes
due to loss of significance, and allows Zuq recalcula-
tion of the radius and variance during the insertion
process. Currently, each node’s values are recalculated
once every five times a node is changed.
4.3 Query Algorithm

Both our SS-tree and R*-tree search algorithms
simply search regions in order of minimum distance
from the query point until the query resulits are guar-
anteed correct (to the required accuracy). Our algo-
rithms use two priority queues: a search queue and
result queue. We do not provide details since search
algorithms exist for the k-nearest neighbor framework
for the R-tree [27] and for the k-d tree [18, 121. We also
do not describe an algorithm for the similarity sample
operation, but a random sampling algorithm for the
R-tree has already been suggested [28]. The same al-
gorithm will work with the SS-tree. In addition, the
SS-tree can provide a fast sampling using only internal
nodes.
4.4 SS-tree Insertion Algorithm

Due to space consideration, we provide only a high-
level description of the insertion algorithm. The inser-
tion algorithm is similar to the R*-tree [22] in that it
uses the concept of a forced reinsert ancl each node
can have a minimum of m and maximum of M chil-
dren (except the root node). Therefore, the first step
of insertion is to add the inserted node to the rein-

sert list (linked list of SSElem), and enter a loop that
inserts nodes from the reinsert list until it is empty.
Hereafter, we will describe the insertion atlgorithm for
a single node N from the reinsert list.

If only the root node exists (an empty structure
contains only a root node), a new node array is created
and N is inserted there (updating the root node appro-
priately). Otherwise, the first step is to descend the
tree until the new parent of the node N is found. Ev-
ery node traversed (including the parent) is updated
by incrementing both the update-count (doing recal-
culation if needed) and total-children, and updat-
ing the centroid and radius appropriately (includ-
ing adding the distance moved by the centroid to the
radius). The subtree for insertion (witlhin each ar-
ray of SSElem) is simply the node whose centroid is
closest to the centroid of N .

Once the parent is found, and it is checked to see
if it is full (immed-children = M) . If there is space,
then immed-children is incremented and N is added
to the parent’s child array. If the parent it; full, then if
the parent’s children have not already been reinserted,
they are reinserted. Otherwise, the parent must be
split. In order to be able to determine whether a
node’s children have been reinserted, a list of rein-
serted nodes’ childarray-ptrs are maintained, since
the child-array-ptr of a given node is unique and is
never modified by an insert operation (unless the node
is split).

The reinsert operation is similar to the R*-tree al-
gorithm. The SS-tree uses the same reinsert frac-
tion parameter (our tests used a value of .3, or 30%
reinserted). Before the nodes are added to the rein-
sert list, they are deleted from all parents. This is
done by simply calculating their combined centroid
and totall children, and deleting all from the parents
with a single update to each parent’s centroid and
total-children. Of course, the distance moved by
each parent’s centroid must be added to the radius,
and the direct parent’s immed-children rnust also be
updated.

The split algorithm simply finds the dimension with
the highest variance, and then chooses the split loca-
tion (only two choices when M = 2m) to minimize the
sum of the variances on each side of the split. Then,
two new parent nodes are created and initialized with
the split elements. When the root is split., a new root
array is allocated and the two parents arle written to
it, updating all the SSElem information appropriately.
Otherwise, the node closest to its parent replaces the
original parent. The other new parent node is rein-
serted (deleted from the tree and added to the reinsert

52 1

I SQ-troo I I I I SS-tree I R.*-tree I

1 3 I 62 18.105 13.689 14.364 15.94 I 10.60 I 6.16

Table 1: Uniform Distribution (size 100,000)

Table 2: Gaussian Distribution (size 100,000)

list).

4.5 SS-tree vs. R*-tree Performance
Since query performance is our main goal, we are

only presenting query performance results. However,
in most cases, the SS-tree required significantly less
CPU time (5-lox less) to insert the same number of
elements because its choose subtree algorithm is linear
rather than quadratic [22], although the SS-tree prob-
ably requires more disk accesses. The storage utiliza-
tion of the SS-tree was 85% f 1%, while the R*-tree
utilization was 70-75%.

The results of our test are shown in tables 1, 2,
and 3. The Uniform dataset in table 1 is in the range
[O, 1) on each dimension. The Normal dataset in table
2 has a mean of 0 and variance of 1 on each dimension.
Both synthetic datasets consisted of 100,000 vectors.
The EigenFace dataset in table 3 was computed from a
database of 7000 faces [13]. The different values of d on
the EigenFace dataset were obtained by truncating the
original lOOD vectors. We would normally recommend
performing dimensionality reduction on real datasets
before indexing, but doing so would be redundant on
the EigenFace dataset.

All results are the average performance (over 1000
random trials) of a 21-nearest neighbor query rela-
tive to a point in the dataset, which we hope will ap-
proximate the expected performance of a 20-nearest

Table 3: EigenFace Dataset (size 7000)

neighbor query relative to a new point in the distri-
bution. The results were all for exact queries e = 0,
although we also show information that should help
predict approximate performance. The ‘‘8’ column
shows the dimension of the dataset. The “FO” col-
umn is the fanout of leaf nodes. For the SS-tree, this
is also the fanout of internal nodes, and for the R*-tree
it is about double the fanout of internal nodes. The
“Lvs” column shows the number of leaf nodes accessed
during an exact query. The next two columns provide
information that should indicate the usefulness of ap-
proximate queries. The “ULvs” column shows the av-
erage number of used leaf nodes (leaves accessed that
changed the state of the results). The “LLf” column
shows the average last useful leaf accessed. All ad-
ditional leaf accesses (on average LLf - Lvs) do not
change the results but are required to guarantee the
correctness of the query. Intuitively, the “LLP count
should be a good indicator of approximate query per-
formance. The “Nds” column shows the number of
internal nodes accessed. CPU time results were not
shown here due to time and space constraints.

The results show that on higher dimensional data
(> 5D), the SS-tree provides faster query performance
than the R*-tree in almost every test. The results also
show the performance degradation with dimension of
both structures. One possible way to overcome this
problem is to use approximate queries instead of ex-
act queries. Although we do not provide performance
results on approximate queries, the tests indicate that
for approximate queries, the SS-tree should provide
much better performance and more accurate results.

5 Conclusion
In this paper, we propose a definition for a new type

of indexing we call “similarity indexing,” and provide
a solution in the form of a new indexing structure
called the SS-tree. Included in the definition are im-
portant concepts such as the similarity sample oper-
ation. We suggested a dynamic similarity indexing
structure, the SS-tree, and compared it with the R*-
tree. The results of our tests suggest that the SS-tree
is superior for similarity indexing applications. In fu-
ture work, we plan to look at using a priori knowledge
of the dataset to further improve performance of sim-

522

ilarity indexing structures, because, as w<as previously
mentioned, using such knowledge is practical in most
similarity indexing applications.
Acknowledgments

We thank Shankar Chatterjee for his many helpful
comments and suggestions while revising this paper,
and Amarnath Gupta for his helpful comments and for
suggesting the idea of the locator and browsing modes.
We also thank Bradley Horowitz and Sandy Pentland
for providing the EigenFace dataset, and Stefan Berch-
told for providing R*-tree code.

References
[l] R. Jain, “InfoScopes: Multimedia Information Systems,”

in Multimedia Systems and Techniques (B. Furht, ed.),
ch. 7, pp. 217-254, Kluwer Academic Publishers, Norwell,
MA, 1996. To be published. Also available as Visual Com-
puting Lab Technical Report VCL-95-107.

[2] A. GuDta, T. Wevmouth, and R. Jain. “Semantic aueries
with pictures: the- VIMSYS model,” in Proc. 17th Inierna-
tional Conference on Very Large Data Bases, pp. 69-79,
Sept. 1991.

V. N. Gudivada and V. V. Raghavan, “Content-based im-
age retrieval systems,” IEEE Computer, vol. 28, pp. 18-22,
Sept. 1995.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, et al., “Ef-
ficient and effective querying by image content,” Journal
of Intelligent Information Systems: Integrating Artificial
Intelligence and Database Technologies, vol. 3, pp. 231-62,
July 1994.

A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Tools
for Content-Based Manipulation of Image Databases,” in
Proceedings of the SPIE: Stomge and Retrieval for Image
and Video Databases II, San Jose, CA, vol. 2185, pp. 34-
47, Feb. 1994.

C. Faloutsos, M. Ranganathan, and Y. lManolopoulos,
“Fast Subsequence Matching in Time-Series Databases,”
in Proceedings of the ACM SIGMOD Intemational Con-
ference on the Management of Data, pp. 419-429, June
1994.

S. F. Altschul, W. Gish, W. Miller, E. Myers, and D. J.
Lipman, UBasic local alignment search tool,” Joumal of
Molecular Biology, vol. 215, pp. 403-410, Oct. 1990.

S. Berchtold, D. A. Keim, and H.-P. Kriegel,, “Fast search-
ing for partial similarity in polygon databases.” Submitted
for publication at SIGMOD ’96.

C. K. Riesbeck and R. C. Shrank, Inside case-based rea-
soning. Hillsdale, NJ: Lawrence Eribaum Associates, 1989.

G. Salton and M. McGill, Introduction to Modem Infor-
mation Retrieval. McGraw Hill International Company,
New York, 1989.

C. Faloutsos, “A Survey of Information Retrieval and Fil-
tering Methods,” Tech. Rep. CS-TR-3514, Dept. of Com-
puter Science, Univ. of Maryland, Aug. 1995.

S. Arya and D. M. Mount, “Algorithms for fast vector
quantization,” in Proc. of DCC ’93: Data Compression
Conference (J. A. Storer and M. Cohn, eds.), pp. 381-390,
IEEE Press, 1993.

M. Turk and A. Pentland, “Eigenfaces fair recognition,”
Journal of Cognitive Neuroscience, vol. 3, no. 1, 1990.
J. R. Bach, S. Paul, and R. C. Jain, “A visual information
management system for the interactive retrieval of faces,”
IEElF Ransactions on Knowledge and Data Engineering,

I. Ka.me1 and C. Faloutsos, “On packing R-trees,” in Proc.
2nd Intemational Conference on Information and Knowl-
edge Management (CIKM-93), (Arlington, VA), pp. 490-
499, Nov. 1993.
D. M. Gavrila, “R-tree index optimization,” in Advances in
GIS Research (T. Waugh and R. Healey, eds.), Taylor and
Francis, 1994. Also, CS-TR-3292, University of Maryland,
College Park, 1994.

J. H. Friedman, J. H. Bentley, and R. A. Finkel, “An
algorithm for finding best matches in logarithmic ex-
pected time,” ACM ” a c t i o n s on Mathematical Soft-
ware. vol. 3, pp. 209-226, Sept. 1977.

A. Henrich, “A distance-scan algorithm for spatial access
structures,” in 2nd ACM workshop on Advances in Gw-
graphic Information Systems, (Gaithersburg, Maryland),
pp. 136-143, Dec. 1994.

H. Samet, The Design and Analysis of Spatial Data Struc-
tures Addison-Wesley, 1989.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The
grid file: an adaptable, symmetric multikey file structure,”
Proceedings of the ACM TODS, vol. 9, pp. 38-71, Mar.
1984.

A. Guttman, “R-trees: a dynamic index striucture for spa-
tial searching,” in Proceedings of the ACM SlGMOD Inter-
national Conference on the Management of Data, pp. 47-
57, June 1984.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger,
“The R*-tree: an efficient and robust access method for
points and rectangles,” in Proceedings of the ACM SIG-
MOD International Conference on the Management of
Data, pp. 322-331, May 1990.

J. Haifner, H. Sawhney, W. Equitz, M. Flickner, et al.,
“Efficient color histogram indexing for quadratic form dis-
tance functions,” IEEE Z’bansactions on Pattem Analysis
and Machine Intelligence, vol. 17, pp. 729-736, July 1995.
K.-I. Lin, H. Jagadish, and C. Faloutsos, “The TV-tree
- an index structure for high-dimensional data,” VLDB
Journal, vol. 3, pp. 517-542, Oct. 1994.
G. Sa,lton and A. Wong, “Generation and search of clus-
tered files,” ACM Zhnsactions on Database Systems,
vol. 3, pp. 331-346, Dec. 1978.

H. Zhang and D. Zhong, “A scheme for visual feature based
image indexing,” in Proceedings of the SPIIS: Stomge and
Retrieval for Image and Video Databases lII, San Jose,
CA, vol. 2420, pp. 36-46, Feb. 1995.
N. R~oussopoulos, S. Kelley, and F. Vincent, “Nearest
neighlbor queries,” in Proceedings of the ACM SIGMOD
Intemational Conference on the Management of Data,
(San Jose, CA), pp. 71-79, June 1995.
M. Ester, H.-P. Kriegel, and X. Xu, “A Databbase Interface
For Clustering in Large Spatial Databases,” in Proceedings
of the 1st Intemational Conference on Knowledge Diswv-
ery and Data Mining (KDD-95), Aug. 1995.

vol. 5, pp. 619-628, Aug. 1993.

523

