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Abstract 
Eficient indezing of high dimensional feature vec- 

tors is important to allow visual information systems 
and a number other applications to scale up to large 
databases. In this paper, we define this problem as 
“similarity indexing” and describe the fundamental 
types of “similarity queries” that we believe should be 

We also propose a new dynamic structure for simi- 
larity indexing called the similarity search tree or SS- 
tree. In nearly every test we performed on high di- 
mensional data, we found that this structure performed 
better than the R*-tree. Our tests also show that the 
SS-tree is much better suited for approximate queries 
than the R *-tree. 

supported. 

1 Introduction 
In many fields, there is a need for what we call 

similarity indexing. The goal of similarity indexing is 
to facilitate efficient similarity queries of a dataset of 
typically high dimensional feature vectors. Similarity 
queries are queries that are related to some measure 
of similarity between feature vectors. One common 
example is a query for the most similar feature vectors 
given a reference feature vector. 

Our primary application area for similarity index- 
ing is visual information systems [l, 21. Visual infor- 
mation systems encompass image, multimedia, inter- 
active video, medical, and 3D databases. For example, 
a similarity query on a content-based image database 
could find pictures with a similar color, texture, or 
shape [3, 4, 51. Other applications include time series 
indexing (ie. financial databases) [6], DNA databases 
[7], CAD databases [8], case-based reasoning in AI [9], 
and information retrieval [lo, 111. 

*This research was funded in part by the National Science 
Foundation under Grant #MIP 9420099 

Similarity Index 

Figure 1: Illustration of dependencies in the creation 
of a similarity index 

2 Similarity Indexing 
The primary goal of similarity indexing is the same 

as other indexing methods: to minimize average and 
worst case time required for query operations. In addi- 
tion, structures that support dynamic updates (inser- 
tions and deletions) and that have efficient disk-based 
implementations are preferred since many applications 
require these features to scale to large databases. 

There are three components of similarity indexing 
that differentiate it from other types of database in- 
dexing. The data or objects being indexed are r e p  
resented by medium or high dimensional feature vec- 
tors, usually between 5 and 100 dimensional or higher. 
Most spatial indexing structures are not designed to 
handle data of this dimensionality. Second, the fea- 
ture vectors are queried primarily in terms of one or 
more measures of similarity or dissimilarity. Typically, 
dissimilarity between feature vectors will be measured 
in terms of some metric. The metric properties (pos- 
itivity, symmetry, and triangle inequality) are usually 
basic assumptions made when designing and optimiz- 
ing similarity indexing structures. The most common 
metric is Euclidean distance or weighted Euclidean 
distance, although other metrics such as city block 
distance can also be used. Lastly, the types of queries 
that are performed are fundamentally different than 
queries performed on standard indices. 

It is important to mention that finding the appro- 
priate representation for domain objects as feature 
vectors, and defining the correct similarity measures 
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on those feature vectors is an area of research in itself. 
Usually the knowledge of a domain expert in the appli- 
cation area is required (figure 1). The role of similar- 
ity indexing, then, is to provide a low levell mechanism 
that is useful in many application domains. 

2.1 Similarity Queries 
The types of query operations that Twill be per- 

formed on a similarity indexing structure fall into 
three categories: similarity selection operations, sim- 
ilarity join operations, and similarity sample opera- 
tions. In this section, we choose to ignore the issue 
of the actual definition of similarity in hope that our 
definition will apply to similarity indexing structures 
using different similarity measures. We also speak of 
“maximum similarity” instead of “minimum dissim- 
ilarity” although implementations usually deal with 
the latter. Also, queries are not limited to one simi- 
larity measure as long as the similarity indexing struc- 
ture allows multiple similarity measures. In fact, the 
similarity measure might be another parameter used 
when specifying a query. 

The Similarity Selection operation will simply 
“Find objects similar to a reference.” This query is 
analogous to a selection operation performed on rela- 
tional databases. However, as it is, the query state- 
ment does not specify how many similar objects should 
be retrieved, but it seems reasonable that a similarity 
selection could retrieve either the k most similar ob- 
jects (k-nearest neighbors) or all objects with a thresh- 
old level T of similarity. In fact, the two type of queries 
can be generalized into one type of query. 

Stated precisely, a similarity selection operation al- 
ways returns the k most similar objectri to the ref- 
erence object. Usually the objects returned will be 
sorted in order of decreasing similarity. In. cases where 
multiple objects have the same similarity to the ref- 
erence object (to machine precision), the ordering of 
returned objects and exactly which objects will be re- 
turned is undefined. Two thresholds are specified on 
the query. The first threshold k specifies the maxi- 
mum number of objects returned by the query, and a 
threshold T specifies the minimum threshold similar- 
ity required in order for an object to be returned by a 
query. 

If the threshold T is set to the smallest possible 
level of similarity, then the query becomes a standard 
k most similar query. If IC is set to its maximum value, 
then the query returns all objects with a threshold 
level of similarity. 

In many applications, especially interactive applica- 
tions, because of the nature of high dimensional data, 
it will often be possible to trade a small probability of 

an inaccurate result for a large performance improve- 
ment. We and other researchers working on the near- 
est neighbor problem have observed this [12]. There- 
fore, in many applications, it will be appropriate to 
have one additional parameter that specifies the max- 
imum error allowed in the final result. lJsually, this 
parameter will be a bound E in the range 0.0 5 e 5 0.5 
that specifies that an algorithm can ignore search- 
ing regions in feature space as long as tlhose regions 
can not contain objects within distance (1 - E)D,~,., 
where D,, represents the “spherical” region in fea- 
ture space that needs to be searched to gvarantee an 
exact result. Of course, the query is exact if E = 0. 

The Similarity Join operation will “Find all pairs 
of object that are similar.” This type of query could 
be considered a generalization of a join operation. A 
typical relational-style join operation retrieves (and 
combines) rows or objects with exactly rnatching at- 
tributes, while this operation retrieves rows or objects 
with “similar” attributes. The same issues mentioned 
above for the similarity selection apply here also, and 
there are additional issues. 

Finally, the Similarity Sample operation will “Find 
a representative sample of objects (similar to a refer- 
ence).” This query operation has no analog in rela- 
tional operations, but nonetheless may ’be the most 
important and most frequently used operation be- 
cause of its applicability in browsing the contents of a 
database. 

A similarity sample operation will retrieve samples 
of the objects in the database relative to a reference 
object, or relative to the complete contents of the 
database. In general, a query must specify the ref- 
erence object, some measure of the spread of the sam- 
pling, usually based on the measure of similarity, and 
the number of samples desired. 

There are a number of different ways to define a 
sampling of a region of the database. Samples could 
be representative of the population of tlhe database, 
so the spacing between samples in a region should be 
approximately inversely proportional to the density of 
samples in that region. Samples could be approxi- 
mately equidistant from each other withiin the regions 
spanned by the database. Samples could be centers 
of “clusters” of objects in the database., using some 
clustering criterion. In this case, the clustering might 
be performed be separately in parallel with indexing 
or perhaps the clustering within the indexing struc- 
ture could be used. Finally, samples could be even 
chosen at random from all objects within the region 
being sampled. The best sampling method(s) may be 
a tradeoff between efficiency and accuracy. 

517 



Similarity selection could be considered a special 
case of the sample operation, since a sampling of the 
database with a small enough spread should intuitively 
return the most similar objects to a reference object. 
However, most implementations will likely consider 
these types of queries different operations. 

Because queries might combine similarity related 
information with standard constraints based. on al- 
phanumeric information associated with an object, a 
general purpose implementation of a similarity index- 
ing query interface should also support the specifica- 
tion of a predicate function (or functions in the case of 
the similarity join). The predicate function determines 
whether the query is satisfied by a similarity query re- 
sult. For example, suppose we have a content-based 
face database [13,14], and we have an unidentified pic- 
ture of someone who is in the database, we may want 
to determine who that person is. We could search 
the database using only pictorial information, but if 
we know other information about the person such as 
his/her first name, sex, or approximate age, we can 
increase the accuracy of the search by also specifying 
this information. If predicates are not supported, we 
can never know for sure how many people should be 
requested by a similarity selection or similarity sample 
operation, because we do not know a priori how many 
of the returned people will satisfy our constraints. 

Finally, in some applications, it will be useful to 
find the most dissimilar objects. It is easy to refor- 
mulate the above operations in terms of dissimilar- 
ity and call them dissimilarity selection, dissimilarity 
join, and dissimilarity sample operations. 
2.2 Applications and Examples of Simi- 

larity Queries 
This section should help explain some of the ap- 

plications for similarity indexing and clarify how the 
queries described above will be used in applications. 
First we will explain some ideas about how users might 
use a database that employs similarity indexing, since 
the paradigm is much different than that of the stan- 
dard relational databases. The SQL query mechanism 
has been very successful because in most cases the fol- 
lowing assumptions hold true: 

1. The users know what they are looking for when 
they issue a query. 

2. The users can specify a query (in SQL or via a 
user interface) that will retrieve what they want. 

However, in many applications that employ similar- 
ity indexing, these assumptions will usually not hold 
true. This is because the feature vector representation 

is used primarily in applications where standard meth- 
ods are ineffective or can be improved upon. Usually 
this means that the objects being indexed can not be 
described easily or concisely using a textual represen- 
tation. Therefore, even if users are aware of what they 
want, it may be difficult to precisely describe what 
they are looking for. Further, the users will often only 
have a foggy idea of what they want, or may just be 
interested in exploring the contents of the database. 
Researchers working in application areas for similar- 
ity indexing are well aware of this problem [3, lo]. 

Therefore, we make a distinction between two 
modes a user can be in when accessing a database 
interactively. For completeness, we add a third mode 
which is typically non-interactive. 

In locator mode, users do know what they are look- 
ing for, but as was mentioned above, may have dif- 
ficulty expressing their query to the system, or they 
may not be aware of how similarity is understood by 
the system. 

In browsing mode, users either are only interested 
in exploring the database or have only a foggy idea 
what they are looking for. 

Finally, in analysis mode, the goal is to analyze the 
contents of the database in some way. The similarity 
indexing structure will typically be queried multiple 
times under control of a program or SQL query. These 
queries are typically non-interactive, although speed is 
still an important issue. 

Users in all three modes might use either the simi- 
larity selection or similarity sample operation, but the 
similarity join operation will usually be only an anal- 
ysis mode operation. However, when browsing large 
databases, the primary query type will probably be 
the similarity sample operation, because, with the ap- 
propriate interface, it can allow the user to “zoom in’’ 
and “zoom out” of the database with respect to a refer- 
ence object, where zooming in and out would decrease 
or increase the spread of the sampling. In addition, the 
measure of similarity could be modified interactively 
in order to change the type of sampling. 

2.3 Similarity Indexing Requirements 

In this section, we explain some assumptions about 
requirements and tradeoffs we used when designing 
our similarity indexing structure. The assumptions 
are based on our experiences with visual information 
systems, but we believe these assumptions will hold 
in many or most applications that require similarity 
indexing: 

Query performance is much important than update 
performance. In image and multimedia databases, 

and Tradeoffs 
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(a) Representation 
in 2D feature space 

(b) Tree representation used 
in memory or on disk 

Figure 2: The R-tree structure 

the database will typically rarely be updated, and of- 
ten the updating will be done as an offline processing 
step. In contrast, query performance must be as fast 
as possible since similarity queries will typically be 
performed online, interactively, and will account for 
most accesses to the indexing structure. 

Disk access counts alone do not adequately measure 
performance. Since queries in visual information sys- 
tems are interactive, databases of relatively small size 
(thousands of objects) are typically memory resident 
to allow fast response time. In the future, even large 
databases may be memory resident. Therefore, the 
performance of index structures should be measured 
by total CPU time (and perhaps other measures) in 
addition to the number of disk accesses (leaf and in- 
ternal/directory nodes). 

Dynamic updating of the database should be sup- 
ported, but query performance should still approach 
that of a static structure. There is no question that 
a dynamic structure are preferred over a static struc- 
ture because of its greater flexibility. However, static 
structures or structures that are reorganized or op- 
timized typically allow more efficient query process- 
ing than purely dynamic structures. We suggest that 
future work should look at effective “packing” algo- 
rithms [15] and algorithms which optimize an existing 
dynamic index [16]. 

3 Related Work 
Most previous work in the database literature has 

focused on indexing lower dimensional data and on 
other types of queries besides similarity queries. The 
lc-d tree was one of the first structures proposed for 
indexing multidimensional data for nearest neighbor 
queries [17]. Recently, this structure has been used in 
geographic information systems for queries like simi- 
larity queries [18], and might be useful for similarity 
indexing. Other methods such as space fjllling curves, 
linear quadtrees [19], and gridfiles [20], do not scale 
well to high dimensions, but may be useful for medium 
dimensional data. 

The R-tree [21] (figure 2) and its mast successful 
variant, the R*-tree [22], have been used most often 
for indexing high dimensional data in the database 
literature. However, since ranges are stored on each 
dimension, the index requires more space and time 
to search in higher dimensionality. For this reason, 
higher dvmensional data typically is mapped to a lower 
dimensional space before indexing in R-trees [4, 231. 

The TV-tree [24] is the only method in the database 
literature thus far that has been proposed specifi- 
cally for indexing high-dimensional data. Performance 
comparisons clearly show that the TV-tree can be 
much more efficient than the R*-tree. However, the 
improved performance depends on two assumptions. 
The first assumption is that dimensions ad the feature 
vectors are ordered by “importance.” Thie second as- 
sumption is that sets of feature vectors in the dataset 
will tend to exactly match on dimensions, especially 
on the first few “important” dimensions. 

The first assumption is reasonable (if not desirable) 
since an appropriate transform may be used. The sec- 
ond assumption was not explicitly stated ,Ln the paper, 
but a careful analysis of their algorithms reveals that 
their performance improvement depends upon it. In 
some applications, the original feature vectors contain 
a small set of discrete quantities, so the second as- 
sumption does hold. 

Unfortunately, this second assumption will nor- 
mally not be true in visual information systems, and 
in many other applications. Features in these appli- 
cations are typically real-valued, so that chances of 
exactly matching on dimensions is negligible. In this 
case, the TV-tree reduces to an index on only first few 
dimensions. Small changes in the proposed algorithms 
should allow the TV-tree to be a modest improvement 
over the R*-tree in these applications. However, in 
this paper, we will refer to the R-tree (and variants) 
as the best previously known structure for similarity 
indexing because it has proven itself in more similarity 
indexing applications. 

There is also related work outside of the database 
literature. In the information retriev<al literature 
[lo, 111, work has been done on cluster fides [25] that 
proposes structures similar to the SS-tree. In the im- 
age database community, a static indexing structure 
based on Kohonen nets was suggested [26]. There is 
also related work in the computational geometry and 
vector quantization literature [12]. 

4 A Similarity Indexing Structure: 
The SS-tree 

In thns section, we first explain the definition of 
similarity used by the SS-tree and then describe the 
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SS-tree structure and a few implementation issues. 
4.1 Similarity 

When defining similarity indexing, we did not pre- 
cisely define similarity since we were not dealing di- 
rectly with implementation issues, but in this section 
we define similarity in the context of the SS-tree. How- 
ever, we believe this definition of similarity will most 
commonly be used. Here we usually speak of dissimi- 
larity or distance between feature vectors rather than 
similarity. The distance measure is a weighted Eu- 
clidean distance metric. (Of course, squared weighted 
Euclidean distance is used when possible to avoid 
costly square roots.) This similarity measure was cho- 
sen primarily for efficiency reason, as will be explained 
below. It is defined mathematically as follows: 

D(x, Y) = & - Y)Tdiag(w>(x - Y> (1) 

where x and y are the feature vectors being compared, 
and w is a vector representing the relative weight of 
each dimension for distance. Every element of w must 
be nonnegative. 

This distance metric was chosen because it has a 
property that the distance metric can still be calcu- 
lated after any invertible linear transform of the fea- 
ture vectors. This property is true of Euclidean-based 
metrics (based on the L2 norm), but does not hold 
for other metrics based on the city block distance (L1 
norm) or maximum value metric (L, norm). 

In order to use the SS-tree, we rely on a domain ex- 
pert to help in the indexing process, as was mentioned 
before (figure 1). 

Feature vectors must be provided in a format 
such that a weighted Euclidean distance metric on 
those features can approximate the desired mea- 
sure of dissimilarity. 

Knowledge of the domain should be used to con- 
strain the types of similarity measures between 
feature vectors that will normally be used in 
queries. This knowledge can then be used to tune 
the performance of the SS-tree (or multiple SS- 
trees). 

Each SS-tree structure uses one base distance met- 
ric (dissimilarity) defined by a vector Wb of size Nb 
(the feature vector size). In order to save space and 
avoid exhaustive searches of the SS-tree, we require 
that every element of Wb be positive (zero weights are 
not permitted). In other words, we require that all 
elements in the feature vector be used for indexing. 

At the time of SS-tree creation, we also require that 
the domain expert specify groups of elements of the 

-. _..._......_ " .. __... . - - _ _ -  --_ 

(a) Representation of (b) Tree representation 
high dimensional fea- used in memory or on 
ture space in 2D disk 

Figure 3: The SS-tree structure 

struct SSElem C 
SSElemPtr child-array-ptr; // Child pointer 
int immed-children; 
int total-children; 
int height ; 
int update-count; 
float radius ; 
float variance : 
float centroidCDIM1; 
char dataCDATA-SIZE] ;// Data repr. alem 

// Children in array 
// Children in subtree 
// Height above leaf 
// u/out refresh values 
// of enclosing sphere 
// Sum squared dist. 
// FVect or Mean value 

1;  

Figure 4: The SSElem structure (// denote comments) 

feature vectors that will always have a weight in the 
same proportion to each other. This is done by spec- 
ifying an integer vector g of size Nb containing group 
labels of each vector where group labels can vary from 
1.. . N,, where N, is the number of groups. Queries 
can then be specified conveniently in terms of a query 
weight vector wq of size N,. The actual weight of any 
feature vector element in a query is then the weight 
of its group times its base weight. The use of groups 
does not make the SS-tree less general purpose be- 
cause each element of the feature vector could be in 
its own group (ie. Nb = N q ) .  However, when there are 
groups, the SS-tree can better optimize itself because 
it has more information about how weights can vary. 

In some cases, when queries using different weights 
are common, one SS-tree may not be effective on its 
own, since a single SS-tree can only be optimized for 
one base distance metric. In this situation, provided 
that enough disk space and/or memory is available, 
multiple SS-trees with different base distance metrics 
could be used. 
4.2 SS-tree Data Structure 

The overall SS-tree data structure is shown in figure 
3. Every disk node in the structure consists simply of 
an array of the SSElem structure in figure 4. 

In our current implementation, both internal nodes 
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and leaf nodes use the above structure. If the 
SSElem is a leaf element, data holds the data for 
that leaf, and centroid holds the object’s feature vec- 
tors, and radius bounds the object’s extent in fea- 
ture space (this was zero in our tests on point data). 
If SSElem is an internal node, then its information 
is defined by its children. At all times, t8he values of 
child-array-ptr, immed-children, total-children, 
height and centroid contains the pointer to the child 
node (array), the size of that array, the total num- 
ber of children, the node height above the leaves, and 
the centroid (mean value) of the child vectors. The 
radius is always greater than or equal to the distance 
to the furthest feature vector from the centroid, and 
is recalculated based on its children. The variance 
could be useful for approximate queries, but was not 
used in the tests presented here. The data holds the 
information for the closest immediate child to the cen- 
troid. This is obviously convenient for the similarity 
sample operation, because a sampling of the database 
can be achieved without accessing the the leaf nodes 
of the tree. The update-count is used to allow the 
values used by internal nodes to be periodically re- 
calculated using its immediate children. This allows 
floating point errors to be avoided in higher level nodes 
due to loss of significance, and allows Zuq recalcula- 
tion of the radius and variance during the insertion 
process. Currently, each node’s values are recalculated 
once every five times a node is changed. 
4.3 Query Algorithm 

Both our SS-tree and R*-tree search algorithms 
simply search regions in order of minimum distance 
from the query point until the query resulits are guar- 
anteed correct (to the required accuracy). Our algo- 
rithms use two priority queues: a search queue and 
result queue. We do not provide details since search 
algorithms exist for the k-nearest neighbor framework 
for the R-tree [27] and for the k-d tree [18, 121. We also 
do not describe an algorithm for the similarity sample 
operation, but a random sampling algorithm for the 
R-tree has already been suggested [28]. The same al- 
gorithm will work with the SS-tree. In addition, the 
SS-tree can provide a fast sampling using only internal 
nodes. 
4.4 SS-tree Insertion Algorithm 

Due to space consideration, we provide only a high- 
level description of the insertion algorithm. The inser- 
tion algorithm is similar to the R*-tree [22] in that it 
uses the concept of a forced reinsert ancl each node 
can have a minimum of m and maximum of M chil- 
dren (except the root node). Therefore, the first step 
of insertion is to add the inserted node to the rein- 

sert list (linked list of SSElem), and enter a loop that 
inserts nodes from the reinsert list until it is empty. 
Hereafter, we will describe the insertion atlgorithm for 
a single node N from the reinsert list. 

If only the root node exists (an empty structure 
contains only a root node), a new node array is created 
and N is inserted there (updating the root node appro- 
priately). Otherwise, the first step is to descend the 
tree until the new parent of the node N is found. Ev- 
ery node traversed (including the parent) is updated 
by incrementing both the update-count (doing recal- 
culation if needed) and total-children, and updat- 
ing the centroid and radius appropriately (includ- 
ing adding the distance moved by the centroid to the 
radius). The subtree for insertion (witlhin each ar- 
ray of SSElem) is simply the node whose centroid is 
closest to the centroid of N .  

Once the parent is found, and it is checked to see 
if it is full (immed-children = M ) .  If there is space, 
then immed-children is incremented and N is added 
to the parent’s child array. If the parent it; full, then if 
the parent’s children have not already been reinserted, 
they are reinserted. Otherwise, the parent must be 
split. In order to be able to determine whether a 
node’s children have been reinserted, a list of rein- 
serted nodes’ childarray-ptrs are maintained, since 
the child-array-ptr of a given node is unique and is 
never modified by an insert operation (unless the node 
is split). 

The reinsert operation is similar to the R*-tree al- 
gorithm. The SS-tree uses the same reinsert frac- 
tion parameter (our tests used a value of .3, or 30% 
reinserted). Before the nodes are added to the rein- 
sert list, they are deleted from all parents. This is 
done by simply calculating their combined centroid 
and totall children, and deleting all from the parents 
with a single update to each parent’s centroid and 
total-children. Of course, the distance moved by 
each parent’s centroid must be added to the radius, 
and the direct parent’s immed-children rnust also be 
updated. 

The split algorithm simply finds the dimension with 
the highest variance, and then chooses the split loca- 
tion (only two choices when M = 2m) to minimize the 
sum of the variances on each side of the split. Then, 
two new parent nodes are created and initialized with 
the split elements. When the root is split., a new root 
array is allocated and the two parents arle written to 
it, updating all the SSElem information appropriately. 
Otherwise, the node closest to its parent replaces the 
original parent. The other new parent node is rein- 
serted (deleted from the tree and added to the reinsert 
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I SQ-troo I I I I SS-tree I R.*-tree I 

1 3 I 62 18.105 13.689 14.364 15.94 I 10.60 I 6.16 

Table 1: Uniform Distribution (size 100,000) 

Table 2: Gaussian Distribution (size 100,000) 

list). 

4.5 SS-tree vs. R*-tree Performance 
Since query performance is our main goal, we are 

only presenting query performance results. However, 
in most cases, the SS-tree required significantly less 
CPU time (5-lox less) to insert the same number of 
elements because its choose subtree algorithm is linear 
rather than quadratic [22], although the SS-tree prob- 
ably requires more disk accesses. The storage utiliza- 
tion of the SS-tree was 85% f 1%, while the R*-tree 
utilization was 70-75%. 

The results of our test are shown in tables 1, 2, 
and 3. The Uniform dataset in table 1 is in the range 
[O, 1) on each dimension. The Normal dataset in table 
2 has a mean of 0 and variance of 1 on each dimension. 
Both synthetic datasets consisted of 100,000 vectors. 
The EigenFace dataset in table 3 was computed from a 
database of 7000 faces [13]. The different values of d on 
the EigenFace dataset were obtained by truncating the 
original lOOD vectors. We would normally recommend 
performing dimensionality reduction on real datasets 
before indexing, but doing so would be redundant on 
the EigenFace dataset. 

All results are the average performance (over 1000 
random trials) of a 21-nearest neighbor query rela- 
tive to a point in the dataset, which we hope will ap- 
proximate the expected performance of a 20-nearest 

Table 3: EigenFace Dataset (size 7000) 

neighbor query relative to a new point in the distri- 
bution. The results were all for exact queries e = 0, 
although we also show information that should help 
predict approximate performance. The ‘‘8’ column 
shows the dimension of the dataset. The “FO” col- 
umn is the fanout of leaf nodes. For the SS-tree, this 
is also the fanout of internal nodes, and for the R*-tree 
it is about double the fanout of internal nodes. The 
“Lvs” column shows the number of leaf nodes accessed 
during an exact query. The next two columns provide 
information that should indicate the usefulness of ap- 
proximate queries. The “ULvs” column shows the av- 
erage number of used leaf nodes (leaves accessed that 
changed the state of the results). The “LLf” column 
shows the average last useful leaf accessed. All ad- 
ditional leaf accesses (on average LLf - Lvs) do not 
change the results but are required to guarantee the 
correctness of the query. Intuitively, the “LLP count 
should be a good indicator of approximate query per- 
formance. The “Nds” column shows the number of 
internal nodes accessed. CPU time results were not 
shown here due to time and space constraints. 

The results show that on higher dimensional data 
(> 5D), the SS-tree provides faster query performance 
than the R*-tree in almost every test. The results also 
show the performance degradation with dimension of 
both structures. One possible way to overcome this 
problem is to use approximate queries instead of ex- 
act queries. Although we do not provide performance 
results on approximate queries, the tests indicate that 
for approximate queries, the SS-tree should provide 
much better performance and more accurate results. 

5 Conclusion 
In this paper, we propose a definition for a new type 

of indexing we call “similarity indexing,” and provide 
a solution in the form of a new indexing structure 
called the SS-tree. Included in the definition are im- 
portant concepts such as the similarity sample oper- 
ation. We suggested a dynamic similarity indexing 
structure, the SS-tree, and compared it with the R*- 
tree. The results of our tests suggest that the SS-tree 
is superior for similarity indexing applications. In fu- 
ture work, we plan to look at using a priori  knowledge 
of the dataset to further improve performance of sim- 
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ilarity indexing structures, because, as w<as previously 
mentioned, using such knowledge is practical in most 
similarity indexing applications. 
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