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ABSTRACT
In the last years there has been a considerable increase
in the availability of continuous sensor measurements in a
wide range of application domains, such as Location-Based
Services (LBS), medical monitoring systems, manufacturing
plants and engineering facilities to ensure efficiency, prod-
uct quality and safety, hydrologic and geologic observing
systems, pollution management, and others.

Due to the inherent imprecision of sensor observations,
many investigations have recently turned into querying, min-
ing and storing uncertain data. Uncertainty can also be
due to data aggregation, privacy-preserving transforms, and
error-prone mining algorithms.

In this study, we survey the techniques that have been
proposed specifically for modeling and processing uncertain
time series, an important model for temporal data. We pro-
vide both an analytical evaluation of the alternatives that
have been proposed in the literature, highlighting the advan-
tages and disadvantages of each approach. We additionally
conduct an extensive experimental evaluation with 17 real
datasets, and discuss some surprising results. Based on our
evaluations, we also provide guidelines useful for practition-
ers in the field.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
In the last decade there has been a dramatic explosion

in the availability of measurements in a wide range of ap-
plication domains, including traffic flow management, me-
teorology, astronomy, remote sensing, and object tracking.
Applications in the above domains usually organize these
sequential measurements into time series, i.e., sequences of
data points ordered along the temporal dimension, making
time series a data type of particular importance.

Several studies have recently focused on the problems of
processing and mining time series with incomplete, impre-
cise and even misleading measurements [6, 12, 20, 21, 22].
Uncertainty in time series may occur for different reasons,
such as the inherent imprecision of sensor observations, or
privacy-preserving transformations. The following two ex-
amples illustrate these two cases:

• Personal information contributed by individuals and
corporations is steadily increasing, and there is a par-
allel growing interest in applications that can be devel-
oped by mining these datasets, such as location-based
services and social network applications. In these ap-
plications, privacy is a major concern, and it can be
ensured by different privacy-preserving transforms [2,
10, 16], namely, noisy perturbations, noisy aggregates,
and reduced granularity. The data can still be queried
and mined but it requires a re-design of the existing
methods in order to address the uncertainty introduced
by these transforms.

• In manufacturing plants and engineering facilities, sen-
sor networks are being deployed to ensure efficiency,
product quality and safety [12]: unexpected vibration
patterns in production machines, or changes in the
composition of chemicals in industrial processes, are
used to identify in advance possible failures, suggesting
repairs or replacements. However, sensor readings are
inherently imprecise because of the noise introduced
by the equipment itself [6]. This translates to time
series with uncertain values, and addressing this un-
certainty can provide better results in terms of quality
and efficiency.

While the problem of managing and processing uncertain
data has been studied in the traditional database literature
since the 80’s [3], the attention of researchers was only re-
cently focused on the specific case of uncertain time series.



Two main approaches have emerged for modeling uncertain
time series. In the first, a probability density function (pdf)
over the uncertain values is estimated by using some a pri-
ori knowledge [24, 23, 18]. In the second, the uncertain data
distribution is summarized by repeated measurements (i.e.,
samples) [5].

In this study, we revisit the techniques that have been
proposed under these two approaches, with the aim of de-
termining their pros and cons. This is the first study to
undertake a rigorous comparative evaluation of the tech-
niques proposed in the literature for similarity matching of
uncertain time series. The importance of such a study is
underlined by two facts: first, the widespread existence of
uncertain time series; and second, the observation that sim-
ilarity matching serves as the basis for developing various
more complex analysis and mining algorithms. Therefore,
acquiring a deep understanding of the techniques proposed
in this area is essential for the further development of the
field of uncertain time series processing.

In summary, we make the following contributions.

• We review the state of the art techniques for similar-
ity matching in uncertain time series, and analytically
evaluate them. Our analysis serves as a single-stop
comparison of the proposed techniques in terms of re-
quirements, input data assumptions, and applicability
to different situations.

• We propose a methodology for comparing these tech-
niques, based on the similarity matching task. This
methodology provides a common ground for the fair
comparison of all the techniques.

• We perform an extensive experimental evaluation, us-
ing 17 real datasets from diverse domains. In our ex-
periments, we evaluate the techniques using a multi-
tude of different conditions, and input data character-
istics. Moreover, we stress-test the techniques by eval-
uating their performance on datasets for which they
have not been designed to operate.

• Finally, we provide a discussion of the results (some of
which are surprising), and complement this discussion
with thoughts on interesting research directions, and
useful guidelines for the practitioners in the field.

The rest of this paper is structured as follows. In Sec-
tion 2 we survey the principal representations and distance
measures proposed for similarity matching of uncertain time
series. In Section 3, we analytically compare the methods
proposed for uncertain time series modeling, and in Sec-
tion 4, we present the experimental comparison. Finally,
Section 5 concludes this study.

2. SIMILARITY MATCHING FOR UNCER-
TAIN TIME SERIES

Time series are sequences of points, typically real valued
numbers, ordered along the temporal dimension. We assume
constant sampling rates and discrete timestamps. Formally,
a time series S is defined as S =< s1, s2, ..., sn > where n

is the length of S, and si is the real valued number of S

at timestamp i. Where not specified otherwise, we assume
normalized time series with zero mean and unit variance.
Notice that normalization is a preprocessing step that re-
quires particular care to address specific situations [13].

In this study, we focus on uncertain time series where un-
certainty is localized and limited to the points. Formally,
an uncertain time series T is defined as a sequence or inde-
pendent random variables < t1, t2, ..., tn > where ti is the
random variable modeling the real valued number at times-
tamp i. All the three models we review and compare fit
under this general definition.

The problem of similarity matching has been extensively
studied in the past [4, 9, 17, 11, 7, 15, 14, 13] : given a
user-supplied query sequence, a similarity search returns the
most similar time series according to some distance func-
tion. More formally, given a collection of time series C =
{S1, ..., SN}, where N is the number of time series, we are in-
terested in evaluating the range query function RQ(Q,C, ǫ):

RQ(Q,C, ǫ) = {S|S ∈ C ∧ distance(Q,S) ≤ ǫ} (1)

In the above equation, ǫ is a user-supplied distance thresh-
old. A survey of representation and distance measures for
time series can be found in [8].

A similar problem arises also in the case of uncertain time
series, and the problem of probabilistic similarity matching
has been introduced in the last years. Formally, given a
collection of uncertain time series C = {T1, ..., TN}, we are
interested in evaluation the probabilistic range query func-
tion PRQ(Q,C, ǫ, τ ):

PRQ(Q,C, ǫ, τ ) = {T |T ∈ C|Pr(distance(Q,S) ≤ ǫ) ≥ τ}
(2)

In the above equation, ǫ and τ are the user-supplied dis-
tance threshold and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed
to evaluate PRQ queries, namely MUNICH1 [5], PROUD
[23], and DUST [18]. In the following sections, we discuss
each one of these three techniques.

2.1 MUNICH
In [5], uncertainty is modeled by means of repeated ob-

servations at each timestamp, as depicted in Figure 1(a).
Assuming two uncertain time series, X and Y , MUNICH

proceeds as follows. First, the two uncertain sequences X, Y

are materialized to all possible certain sequences: TSX =
{< v11, ..., vn1 >, ..., < v1s, ..., vns >} (where vij is the j-
th observation in timestamp i), and similarly for Y with
TSY . Thus, we have now defined TSX , TSY . The set of
all possible distances between X and Y is then defined as
follows:

dists(X,Y ) = {Lp(x, y)|x ∈ TSX , y ∈ TSY } (3)

The uncertain Lp distance is formulated by means of count-
ing the feasible distances:

Pr(distance(X,Y ) ≤ ǫ) =
|{d ∈ dists(X,Y )|d ≤ ǫ}|

|dists(X, Y )|
(4)

Once we compute this probability, we can determine the
result set of PRQs similarity queries by filtering all uncertain
sequences using Equation 4.

1We will refer to this method as MUNICH (it was not ex-
plicitly named in the original paper), since all the authors
were affiliated with the University of Munich.
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Figure 1: Example of an uncertain time series X = {x1, ..., xn} modeled by means of repeated observations (a), and pdf

estimation (b).
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Figure 2: The probabilistic distance model.

Note that the naive computation of the result set is infea-
sible, because of the exponential computational cost:
|dists(X, Y )| = sn

Xsn
X where sX , sY are the number of sam-

ples at each timestamp of X, Y , respectively, and n is the
length of the sequences. Efficiency can be ensured by upper
and lower bounding the distances, and summarizing the re-
peated samples using minimal bounding intervals [5]. This
framework has been applied to Euclidean and DTW dis-
tances and guarantees no false dismissals in the original
space.

2.2 PROUD
In [23], an approach for processing queries over PROba-

bilistic Uncertain Data streams (PROUD) is presented. In-
spired by the Euclidean distance, the PROUD distance is
modeled as the sum of the differences of the streaming time
series random variables, where each random variable rep-
resents the uncertainty of the value in the corresponding
timestamp. This model is illustrated in Figure 1(b).

Given two uncertain time series X, Y , their distance is
defined as:

distance(X, Y ) =
X

i

Di
2 (5)

where Di = (xi − yi) are random variables, as shown in
Figure 2.

According to the central limit theorem, we have that the

cumulative distribution of the distances approaches a normal
distribution:

distance(X, Y )norm =
distance(X,Y ) −

P

i
E[d2

i ]
p

P

i
V ar[D2

i ]
(6)

The normalized distance follows a standard normal distri-
bution, thus we can obtain the normal distribution of the
original distance as follows:

distance(X, Y ) ∝ N(
X

i

E[D2

i ],
X

i

V ar[D2

i ]) (7)

The interesting result here is that, regardless of the data
distribution of the random variables composing the uncer-
tain time series, the cumulative distribution of their dis-
tances (1) is defined similarly to their euclidean distance and
(2) approaches a normal distribution. Recall that we want
to answer PRQs similarity queries. First, given a probability
threshold τ and the cumulative distribution function (cdf)
of the normal distribution, we compute ǫlimit such that:

Pr(distance(X,Y )norm ≤ ǫlimit) ≥ τ (8)

The cdf of the normal distribution can be formulated in
terms of the well known error-function, and ǫlimit can be
determined by looking up the statistics tables. Once we
have ǫlimit, we proceed by computing also the normalized ǫ:

ǫnorm(X, Y ) =
ǫ2 − E[distance(X, Y )]
p

V ar[distance(X,Y )]
(9)

Then, we have that if a candidate uncertain series Y sat-
isfies the inequality:

ǫnorm(X, Y ) ≥ ǫlimit (10)

then the following equation holds:

Pr(distance(X,Y )norm ≤ ǫnorm(X, Y )) ≥ τ (11)

Therefore, Y can be added to the result set. Otherwise,
it is pruned away. This distance formulation is statistically
sound and only requires knowledge of the general character-
istics of the data distribution, namely, its mean and variance.



2.3 DUST
In [18], the authors propose a new distance measure, DUST,

that compared to MUNICH, does not depend on the exis-
tence of multiple observations and is computationally more
efficient. Similarly to [23], DUST is inspired by the Eu-
clidean distance, but works under the assumption that all
the time series values follow some specific distribution. Given
two uncertain time series X, Y , the distance between two un-
certain values xi, yi is defined as the distance between their
true (unknown) values r(xi), r(yi): dist(xi, yi) = L1(r(xi), r(yi)).
This distance can then be used to define a function φ that
measures the similarity of two uncertain values:

φ(|xi − yi|) = Pr(dist(0, |r(xi) − r(yi)|) = 0) (12)

This basic similarity function is then used inside the dust

dissimilarity function:

dust(x, y) =
p

− log(φ(|x − y|)) − k

with

k = − log(φ(0))

The constant k has been introduced to support reflexivity.
Once we have defined the dust distance between uncertain
values, we are ready to extend it to the entire sequences:

DUST (X, Y ) =

s

X

i

dust(xi, yi)2 (13)

The handling of uncertainty has been isolated inside the
φ function, and its evaluation requires to know exactly the
data distribution. In contrast to the techniques we reviewed
earlier, the DUST distance is a real number that measures
the dissimilarity between uncertain time series. Thus, it can
be used in all mining techniques for certain time series, by
simply substituting the existing distance function.

Finally, we note that DUST is equivalent to the Euclidean
distance, in the case where the error of the time series values
follows the normal distribution.

3. ANALYTICAL COMPARISON
In this section, we compare the three models of similar-

ity matching for uncertain time series, namely, MUNICH,
PROUD and DUST, along the following dimensions: un-
certainty models used and assumptions made by the algo-
rithms; type of distance measures; and type of similarity
queries.

3.1 Uncertainty Models and Assumptions
All three techniques we have reviewed are based on the

assumption that the values of the time series are indepen-
dent from one another. That is, the value at each timestamp
is assumed to be independently drawn from a given distri-
bution. Evidently, this is a simplifying assumption, since
neighboring values in time series usually have a strong tem-
poral correlation.

The main difference between MUNICH and the other two
techniques is that MUNICH represents the uncertainty of
the time series values by recording multiple observations for
each timestamp. This can be thought of as sampling from
the distribution of the value errors. In contrast, PROUD and

DUST consider each value of time series to be a continuous
random variable following a certain probability distribution.

The amount of preliminary information, i.e. a priori knowl-
edge of the characteristics of the time series values and their
errors, varies greatly among the techniques. MUNICH does
not need to know the distribution of the time series values,
or the distribution of the value errors. It simply operates on
the observations available at each timestamp.

On the other hand, PROUD and DUST, need to know the
distribution of the error at each value of the data stream.
In particular, PROUD requires to know the standard devi-
ation of the uncertainty error, and a single observed value
for each timestamp. PROUD assumes that the standard de-
viation of the uncertainty error remains constant across all
timestamps.

DUST uses the largest amount of information among the
three techniques. It takes as input a single observed value
of the time series for each timestamp, just like PROUD. In
addition, DUST needs to know the distribution of the uncer-
tainty error at each time stamp, as well as the distribution of
the values of the time series. This means that, in contrast to
PROUD, DUST can take into account mixed distributions
for the uncertainty errors (albeit, they have to be explicitly
provided in the input).

Overall, we observe that the three techniques make dif-
ferent initial assumptions about the amount of information
available for the uncertain time series, and have different in-
put requirements. Consequently, when deciding which tech-
nique to use, users should take into account the information
available on the uncertainty of the time series to be pro-
cessed.

3.2 Type of Distance Measures
All the considered techniques use some variation of the

Euclidean distance. MUNICH and PROUD use this dis-
tance in a pretty straightforward manner. Moreover, MU-
NICH and DUST can be employed to compute the Dynamic
Time Warping distance [19], which is a more flexible distance
measure.

DUST is a new type of distance, specifically designed for
uncertain time series. In other words, DUST is not a simi-
larity matching technique per se, but rather a new distance
measure. It has been shown that DUST is proportional to
the Euclidean distance in the cases where the value errors
are normally distributed [18]. Moreover, the authors of [18]
note that if all the value errors follow the same distribution,
then it is better to use the Euclidean distance. DUST be-
comes useful when the value errors are modeled by multiple
error distributions.

3.3 Type of Similarity Queries
MUNICH and PROUD are designed for answering prob-

abilistic range queries (defined in Section 2). DUST being
a distance measure, it can be used to answer top-k nearest
neighbor queries, or perform top-k motif search.

MUNICH and PROUD solve the similarity matching prob-
lem that is described by Equation 8, resulting to a set of time
series that belong to the answer with a certain probability,
τ . On the other hand, DUST produces a single value that
is an exact (i.e., not probabilistic) distance between two un-
certain time series.

In Section 4, we describe the methodology we used in order
to compare all three techniques using the same task, that of



similarity matching.

4. EXPERIMENTAL COMPARISON
In this section, we present the experimental evaluation

of the three techniques. We first describe the methodology
and datasets used, and then discuss the results of the exper-
iments.

All techniques were implemented in C++, and the exper-
iments were run on a PC with a 2.13GHz CPU and 4GB of
RAM.

4.1 Experimental Setup

4.1.1 Datasets
Similarly to [5, 23, 18], we used existing time series datasets

with exact values as the ground truth, and subsequently in-
troduced uncertainty through perturbation. Perturbation
models errors in measurements, and in our experiments we
consider uniform, normal and exponential error distributions
with zero mean and varying standard deviation within in-
terval [0.2, 2.0].

We considered 17 real datasets from the UCR classifica-
tion datasets collection [1], representing a wide range of
application domains: 50words, Adiac, Beef, CBF, Coffee,
ECG200, FISH, FaceAll, FaceFour, Gun Point, Lighting2,
Lighting7, OSULeaf, OliveOil, SwedishLeaf, Trace, and syn-
thetic control. The training and testing sets were joined to-
gether, and we obtained on average 502 time series of length
290 per dataset. We stress the fact that each dataset con-
tains several time series instances.

Since DUST requires to know the distribution of values of
the time series, and additionally makes the assumption that
this distribution is uniform [18], we tested the datasets to
check if this assumption holds. According to the Chi-square
test, the hypothesis that the datasets follow the uniform
distribution was rejected (for all datasets) with confidence
level α = 0.01. Similarly, the Kolmogorov-Smirnov test for
normality showed that the hypothesis that the time series
values follow the normal distribution is rejected with the
same confidence level.

4.1.2 Comparison Methodology
In our evaluation, we consider all three techniques, namely,

MUNICH, PROUD, and DUST, and we additionally com-
pare to Euclidean distance. When using Euclidean distance,
we do not take into account the distributions of the values
and their errors: we just use a single value for every times-
tamp, and compute the traditional Euclidean distance based
on these values.

The goal of our evaluation is to compare the performance
of the different techniques on the same task. Observe that
we can not use the top-k search task for this comparison.
The reason is that the MUNICH and PROUD techniques
have a notion of probability (Equation 2). This means that
these techniques can produce different rankings when the
threshold ε changes. For example, assume that we increase
ε (maintaining τ fixed). Then the ordering of the time series
in a top-k ranking may change, since the probability that the
time series are similar within distance ε1 ≥ ε may increase.
Thus, in the case of uncertain time series, MUNICH and
PROUD might produce very different top-k answers even if
ε varies a little. This, in turn, means that the top-k task is
not suitable for comparing the three techniques.

We instead perform the comparison using the task of time
series similarity matching. Even though DUST is not a sim-
ilarity matching technique (like PROUD and MUNICH), it
can still be used to find similar time series, when we specify
a maximum threshold on the distance between time series.
In [18], the evaluation of DUST was based on top-k similar
time series. However, we note that this problem includes the
problem of similarity matching [8], where the most similar
time series form the answer to the top-k query.

Following the above discussion, in order to perform a
fair comparison we need to specify distance thresholds for
all three techniques. This translates to finding equivalent
thresholds ε for each one of the techniques. We proceed as
follows.

Since the distances in MUNICH and PROUD are based
on the Euclidean distance, we will use the same threshold
for both methods, εeucl. Then, we calculate an equivalent
threshold for DUST, εdust. Given a query q and a dataset
C, we identify the 10th nearest neighbor of q in C. Let that
be time series c. We define εeucl as the Euclidean distance
on the observations between q and c and εdust as the DUST
distance between q and c. This procedure is repeated for
every query q.

The quality of results of the different techniques is eval-
uated by comparing the query results to the ground truth.
We performed experiments for each dataset separately, us-
ing each one of the time series as a query and performing a
similarity search. In the graphs, we report the averages of
all these results, as well as the 95% confidence intervals.

4.2 Results on Quality Performance
In order to evaluate the quality of the results, we used

the two standard measures of recall and precision. Recall
is defined as the percentage of the truly similar uncertain
time series that are found by the algorithm. Precision is the
percentage of similar uncertain time series identified by the
algorithm, which are truly similar. Accuracy is measured in
terms of F1 score to facilitate the comparison. The F1 score
is defined by combining precision and recall:

F1 = 2 ∗
precision ∗ recall

precision + recall
(14)

We verify the results with the exact answer using the
ground truth, and compare the results with the algorithm
output (as described in Section 4.1.2).

4.2.1 Accuracy
The first experiment, represents a special case with re-

stricted settings. This was necessary to do, because the
computational cost of MUNICH was prohibitive for a full
scale experiment. We compare MUNICH, PROUD, DUST
and Euclidean on the Gun Point dataset, truncating it to
60 time series of length 6. For each timestamp, we have 5
samples as input for MUNICH. Results are averaged on 5
random queries. For both MUNICH and PROUD we are
using the optimal probabilistic threshold, τ , determined af-
ter repeated experiments. Distance thresholds are chosen
(according to Section 4.1.2) such that in the ground truth
set they return exactly 10 time series.

The results (refer to Figure 3) show that all techniques
perform well (F1 >80%) when the standard deviation of the
errors is low (σ = 0.2), with MUNICH being the best per-
former (F1=88%). However, as the standard deviation in-



creases to 2, the accuracy of all techniques decreases. This
is expected, since a larger standard deviation means that
the time series have more uncertainty. The behavior of MU-
NICH though, is interesting: its accuracy falls sharply for
σ > 0.6. (This trend was verified with different error distri-
butions and datasets, but we omit these results for brevity.)

Figure 4 shows the results of the same experiment, but just
for PROUD, DUST, and Euclidean. In this case (and for all
the following experiments), we report the average results
over the full time series for all datasets. Once again, the er-
ror distribution is normal (results for uniform and exponen-
tial distributions are very similar, and omitted for brevity),
and PROUD is using the optimal threshold, τ , for every
value of the standard deviation.

The results show that there is virtually no difference among
the different techniques. This observation holds across the
entire range of standard deviations that we tried.
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4.2.2 Precision and Recall
In order to better understand the behavior of the differ-

ent techniques, we take a closer look at precision and re-

call. Figures 5 and 6 show respectively precision and recall
for PROUD, as a function of the error standard deviation,
when the distribution of the error follows a uniform, a nor-
mal, and an exponential distribution (results for DUST and
Euclidean exhibit the same trends). PROUD is using the
optimal threshold, τ , for every value of the standard devia-
tion.

The graphs show that recall always remains relatively high
(between 63%-83%). On the contrary, precision is heavily
affected, falling from 70% to a mere 16% as standard devi-
ation increases from 0.2 to 2. Therefore, an increased stan-
dard deviation does not have a significant impact on the
false positives, but introduces many false negatives, which
may be undesirable.
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4.2.3 Mixed Error Distributions
While in all previous experiments the error distribution

is constant across all the values of a time series, in this ex-
periment we evaluate the accuracy of PROUD, DUST, and
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Euclidean when we have different error distributions present
in the same time series (Figure 7). Each time series has been
perturbated with normal error, but of varying standard devi-
ation. Namely, the error for 20% of the values has standard
deviation 1, and the rest 80% has standard deviation 0.4.

We note that this is a case that PROUD cannot handle,
since it does not have the ability to model different error
distributions within the same time series (in this experi-
ment, PROUD was using a standard deviation setting of
0.7). Therefore, PROUD does not produce better results
than Euclidean. On the other hand, DUST is taking into
account these variations of the error, and achieves a slightly
improved accuracy (3% more than PROUD and Euclidean).

4.3 Time
In Figure 8, we report the CPU time per query for the

normal error distribution when varying the error standard
deviation in the range [0.2, 2.0]. Results for uniform and
exponential distributions are very similar, and omitted for
brevity.

The graph shows that the standard deviation of the nor-
mal distribution only slightly affects performance for DUST.
As expected, Euclidean is not affected at all, and exhibits
the best time performance of all techniques.

We note that for PROUD we did not use the wavelet syn-
opsis, since we did not use any summarization technique for
the other techniques either. However, it is possible to apply
PROUD on top of a Haar wavelet synopsis. This results in
CPU time for PROUD that is equal or less to the CPU time
of Euclidean, while maintaining high accuracy [23].

We did not include the time performance for MUNICH in
this graph, because it is orders of magnitude more expensive
(i.e., in the order of min).

5. DISCUSSION AND CONCLUSIONS
In this work, we reviewed the existing techniques for sim-

ilarity matching in uncertain time series, and performed
analytical and experimental comparisons of the techniques.
Based on our evaluation, we can provide some guidelines for
the use of these techniques.

MUNICH and PROUD are based on the Euclidean dis-

tance, while DUST proposes a new distance measure. Nev-
ertheless, DUST outperforms Euclidean only if the distribu-
tion of the observation errors is mixed, and the parameters
of this distribution are known.

An important factor for choosing among the available
techniques is the information that is available about the dis-
tribution of the time series and its errors. When we do not
have enough, or accurate information on the distribution of
the error, PROUD and DUST do not offer an advantage
in terms of accuracy when compared to Euclidean. Never-
theless, Euclidean does not provide quality guarantees while
MUNICH, PROUD and DUST do.

The probabilistic threshold τ has a considerable impact
on the accuracy of the MUNICH and PROUD techniques.
However, it not obvious how to set τ , and no theoretical
analysis has been provided on that. The only way to pick
the correct value is by experimental evaluation, which can
sometimes become cumbersome.

Our experiments showed that MUNICH is applicable only
in the cases where the standard deviation of the error is
relatively small, and the length of the time series is also small
(otherwise the computational cost is prohibitive). However,
we note that this may not be a restriction for some real
applications. Indeed, MUNICH’s high accuracy may be a
strong point when deciding the technique to use.

In conclusion, we note that the area of uncertain time
series processing and analysis is new, with many interesting
problems. In this study, we evaluated the state of the art
techniques for similarity matching in uncertain time series,
because it can be the basis for more complex algorithms.
We believe that the results we report and the experience we
gained will be useful for the further research investigations
in this area.
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