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Abstract: T-spherical fuzzy set (TSFS) is a fuzzy layout aiming to provide a larger room for the
processing of uncertain information-based data where four aspects of unpredictable information are
studied. The frame of picture fuzzy sets (PFSs) and intuitionistic fuzzy sets (IFSs) provide limited
room for processing such kinds of information. On a scale of zero to one, similarity measures (SMs)
are a tool for evaluating the degrees of resemblance between various items or phenomena. The goal
of this paper is to investigate the shortcomings of picture fuzzy (PF) SMs in order to introduce a
new SM in a T-spherical fuzzy (TSF) environment. The newly improved SM has a larger ground for
accommodating the uncertain information with three degrees and is also responsible for the reduction
of information loss. The proposed SM’s validity is demonstrated mathematically and by examples.
To examine the application of the suggested SM two real-life issues are discussed, including the
concerns of medical diagnosis and pattern recognition. A comparison of the suggested SMs with
current SMs is also made to assess the proposed work’s reliability. Since symmetric triangular fuzzy
numbers are quite useful in database acquisition, we will consider the proposed SM for symmetric
T-spherical triangular fuzzy numbers in the near future.

Keywords: decision making; pattern recognition; similarity measures (SMs); fuzzy sets; picture fuzzy
sets (PFSs); T-spherical fuzzy sets (TSFSs)

1. Introduction

Zadeh [1] conceived the concept of fuzzy sets (FSs) in 1965. In FSs, a function of
memberships on a scale of {0, 1} was used to show the degree of membership (DM) of
an element in a set with the degree of non-membership (DNM) calculated by subtracting
DM from 1, i.e., DNM = 1− DM. Later, Atanassov [2] refined the concept from FSs to
intuitionistic fuzzy sets (IFSs) which define DM and DNM separately, but have their full
scope in the range of {0, 1}, i.e., DM + DNM ∈ [0, 1]. Atanassov’s model of IFSs also has
significant limitations, as the sum of DM and DNM might sometimes surpass the range of
{0, 1}. As a result, Yager [3] developed Pythagorean FSs (PyFSs) by expanding the space
of IFSs with a flexible constraint, i.e., DM2 + DNM2 ∈ [0, 1]. Yager [4] also introduced the
concept of q-Rung Orthopair FSs (q-ROFSs). In q-ROFSs, the sum of qth power of DM and
qth power of DNM is equal to or less than 1, i.e., DMq + DNMq ∈ [0, 1].

Although Atanassov’s IFSs model revealed Zadeh’s notion of FSs, there exist some
scenarios where there are more than two options including the degree of abstinence (DA)
and degree of refusal (DR). In this case, IFSs failed to comment on these uncertainties. By
considering all these shortcomings of IFSs, Cuong [5] devised picture FSs (PFSs) which
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have three membership functions represented by DM, DA, and DNM with a restriction
that their total should lie in the range of {0, 1}, i.e., DM + DA + DNM ∈ [0, 1]. The
term (1− (DM + DA + DNM)) was referred to as the DR of an element of a PFS. Some
recent studies on PFSs can be found in [6,7]. PFSs broadened the scope of FSs and IFSs,
but there are still constraints, and we cannot assign DM, DA, and DNM independently.
Mahmood et al. [8] proposed the idea of spherical fuzzy sets (SFSs) as a modification of
PFSs by enhancing the range of PFSs by realizing the structures of FSs, IFSs, and PFSs.
Similarly, the sum of DM, DA, and DNM may be more than the unit interval in the
structure of SFSs, and their squares must fall within the unit interval which is defined
as DM2 + DA2 + DNM2 ∈ [0, 1]. SFSs have a wider range than PFSs due to their new
restriction. However, even squaring is not enough as the squared sum of DM, DA, and
DNM exceeds the unit interval, i.e., DM2 + DA2 + DNM2 > 1. To deal with this kind
of situation, Mahmood et al. [8] also presented a modification of SFSs which was known
as T-spherical FSs (TSFSs). TSFSs have the condition that DMn + DAn + DNMn ∈ [0, 1]
where n ∈ Z+. We see that TSFSs are a more generic version of IFSs, PFSs, and SFSs. Some
recent work on SFSs and TSFSs can be found in [9–11].

Similarity measures (SMs) are used to assess the degree of similarity between different
items or phenomena on a scale of zero to one. SMs had been discussed on FSs since
Zadeh [1] introduced FSs. For example, Chen et al. [12] proposed the comparison of SMs
of fuzzy values in which they use fuzzy values to compare the attributes of several SMs.
Yang et al. [13] considered similarity measures between fuzzy numbers and then applied
them to database acquisition. Since Atanassov [2] proposed IFSs as a generalization of FSs,
despite the introduction of many SMs for FSs, they were unable to solve problems when
placed in an IFS environment. As a result, Dengfeng and Chuntian [14] proposed new
SMs on IFSs that can cope with the problems given in the environment of IFSs. Liang and
Shi [15] presented a new SM on IFSs based on the fact that the previously defined SMs are
not useful in some situations. Li et al. [16] evaluated and summarized known SMs between
IFSs and intuitionistic vague sets (IVSs). The benefits of each SM are explored as well as
the circumstances in which they may or may not operate as intended. For IFSs induced
by the Jaccard index, Hwang et al. [17] developed a novel SM. They demonstrate that the
recommended SMs are more logical than the alternatives using numerical examples. By
expanding the space of IFSs with a flexible constraint, Yager [3] established PyFSs. To cope
with the data given in the PyFSs environment, SMs for PyFSs were also introduced. Wei and
Wei [18] presented 10 SMs between PyFSs based on the cosine function with applications
to medical diagnosis. Zeng et al. [19] proposed distance and SMs of PyFSs and used them
in multiple criteria group decision making. Peng and Garg [20] proposed multiparametric
SMs between PyFSs and they were put to the test by applying them to pattern recognition
problems. Based on the Hausdorff metric, Hussain and Yang [21] presented distances and
SMs of PyFSs and then gave a fuzzy TOPSIS. Concerning SMs for q-ROFSs, PFSs, and SFSs,
Wang et al. [22] gave the SMs of q-ROFSs based on cosine functions.

Wei [23] considered SMs for PFSs and then used them to recognize construction
materials and mineral fields. SMs for SFS based cosine function were proposed by
Mahmood et al. [24] with applications in pattern recognition and medical diagnosis.
Rafiq et al. [25] proposed the cosine SM of SFSs and offered a number of numerical
decision-making applications to test the proposed SM’s correctness. After Mahmood
et al. [8] presented the concept of TSFSs, which is the extension of FSs, IFSs, PFSs, and SFSs,
Ullah et al. [26] proposed SMs for TSFSs with pattern recognition applications. Ye [27]
proposed SMs based on the modified distance of neutrosophic Z-number sets and a multi-
attribute decision-making technique. For pattern recognition and medical diagnostics,
Mahmood et al. [28] suggested hybrid vector similarity metrics based on complex hesi-
tant fuzzy sets. Power aggregation techniques and SMs based on improved intuitionistic
hesitant fuzzy sets were suggested by Mahmood et al. [29], as well as their applicability
to multiple attribute decision making. Chinram et al. [30] suggested and used a series of
novel cosine SMs based on hesitant complex fuzzy sets. Mahmood et al. [31] introduced
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Jaccard and dice SMs and their applications based on complicated dual hesitant fuzzy sets
that are one-of-a-kind.

Although Ullah et al. [26] had proposed SMs for TSFSs, we shall establish a new SM
for TSFSs in this paper so that it can be a generalized form of PFSs as done in the previously
proposed SMs by Luo and Zhang [32]. We begin by reviewing previously defined SMs
for PFSs and observe their limitations when it comes to their applicability. The main
reason to develop a new SM was the fact that TSFSs provide a flexible and larger range
for data representation under uncertain circumstances. To check the effectiveness of the
proposed SMs we provide an example of a pattern recognition system with its application
for decision-making. It can also be determined which example is more suitable and effective
by having a comparative study of both examples with the previously defined SMs. The
followings are the major contributions of this paper:

1. To view/observe the limitations of the previous SMs because of their applicability.
2. To propose a new SM with flexibility in the environment of TSFSs.
3. To check the validity of the proposed SM using some results.
4. To apply the proposed SM in pattern recognition and decision making.
5. To compare the proposed work with previous works by a comparative analysis where

the efficacy of the suggested SM is discussed.

The rest of the paper is organized as follows. In Section 2, we go over some key TSFS
concepts. A new SM for TSFSs is proposed in Section 3. In Section 4, the suggested SM is
used to recognize patterns in a pattern recognition system as well as to make decisions. In
Section 5, we come to a conclusion.

2. Preliminaries

Some SFSs and TSFSs definitions are outlined in this section. Throughout the work, X
denotes a universal set.

Definition 1 [8]. A SFS S on X is written as:

S =
{
µ(ҳ), η(ҳ), v(ҳ) : 0 ≤ µ2(ҳ) + η2(ҳ) + v2(ҳ) ≤ 1

}
such that µ, η, and v ranging from 0 to 1 denote the DM, DA, and DNM of ҳ ∈ X, respectively,
and r(ҳ) =

√
1− sum(µ2,η2, v2), with sum

(
µ2,η2, v2) = µ2 + η2 + v2, is the DR of ҳ in S,

where (µ, η, v) is considered as a spherical fuzzy number (SFN) for S.

Definition 2 [8]. A TSFS S on X is written as:

S = {µ(ҳ), η(ҳ), v(ҳ) : 0 ≤ µn(ҳ) + ηn(ҳ) + vn(ҳ) ≤ 1}

such that µ, η, and v ranging from 0 to 1 denote the DM, DA, and DNM of ҳ ∈ X, respectively,
for n ∈ Z+, and r(ҳ) = n

√
1− sum(µn,ηn, vn) is the DR of ҳ in S. (µ, η, v) is considered as a

T-spherical fuzzy number (TSFN).
Now, some notions of SMs are comparatively examined. The definitions described in this

section provided a base for this work.

Definition 3 [2]. For two IFNs Á =
(
µÁ, vÁ

)
and B = (µB, vB), an SM is written as:

Ś
(

Á, B
)
=

1
m

m

∑
ї=1

µÁҳї
µBҳї

+ vÁҳї
vBҳї√

µ2
Áҳї

+ v2
Á
(ҳї)

√
µ2

Bҳї
+ v2

Bҳї
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Definition 4 [5]. For two PFNs Á =
(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB), an SM is written as:

Ś
(

Á, B
)
=

1
3

 2√µÁµB + 2√ηÁηB + 2√vÁvB +
√(

1− ηÁ − vÁ
)
(1− ηB − vB)+√(

1− µÁ − vÁ
)
(1− µB − vB) +

√(
1− µÁ − ηÁ

)
(1− µB − ηB)


Definition 5. Let Á =

(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB) be two TSFNs. Then

1. Á ⊆ B iff µÁ 4 µB, ηÁ < ηB, vÁ < vB

2. Á = B iff Á ⊆ B and B ⊆ Á

Comparison rules are always crucial in FS theory, especially when it comes to decision-making
and other challenges. The comparison criteria enable us to discriminate between two FNs or, in some
situations, to assess the strength of a pair connection, i.e., how tightly two variables are linked.

Definition 6 [26]. A SM between two TSFNs Á =
(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB) is a

mapping Ś
(

Á, B
)

: TSFNs× TSFNs→ [0, 1] satisfying the axioms:

(S1) Ś
(

Á, B
)
∈ [0, 1];

(S2) Ś
(

Á, B
)
= Ś

(
B, Á

)
;

(S3) Ś
(

Á, B
)
= 1 iff Á = B;

(S4) Let Ҫ be any TSFN(X), if Á ⊆ B ⊆ Ҫ, then Ś
(

Á, Ҫ
)
≤ Ś

(
Á, B

)
and Ś

(
Á, Ҫ

)
≤ Ś(B, Ҫ).

3. A New Similarity Measure between T-Spherical Fuzzy Sets

The proposed SM for TSFSs takes DM, DA, and DNM into account in which the
DM is represented by µ, the DA is represented by η, and the DNM is represented by v.
Furthermore, the RD is represented by r in this section. Let Á =

(
µÁ, ηÁ, vÁ

)
be a T

spherical fuzzy number (TSFN) where µÁ, ηÁ, vÁ ε [0, 1] with µn
Á + ηn

Á
+ vn

Á
≤ 1.

Proposition 1. Let Á =
(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB) be two TSFNs. Then, a mapping

Ś
(

Á, B
)

: TSFNs× TSFNs→ [0, 1] is defined as

Ś
(

Á, B
)

= 1
3

 2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)
 (1)

is a SM for the TSFNs Á and B.

Remark 1 . In Proposition 1, let Á =
(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB) be TSFNs. For the

TSFN Á, µÁ can be equal to an arbitrary value in
[
µÁ, µÁ + ρÁ

]
, ηÁ can be equal to an arbi-

trary value in
[
ηÁ, ηÁ + ρÁ

]
, and vÁ can be equal to an arbitrary value in

[
vÁ, vÁ + ρÁ

]
, where

rÁ = n
√

1− µn
Á
− ηn

Á
− vn

Á
. Similarly, µB can be equal to an arbitrary value in [µB, µB + ρB],

ηB can be equal to an arbitrary value in [ηB, ηB + ρB], and vB can be equal to an arbitrary value
in [vB, vB + ρB], where rB = n

√
1− µn

B − ηn
B − vn

B. Hence in Equation (1),
√
µn

Á
µn

B,
√
ηn

Á
ηn

B and√
vn

Á
vn

B represent the operations on the left endpoint of the interval of µÁ , µB and ηÁ , ηB and vÁ , vB,

respectively. Furthermore,
√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)

,
√(

1− µn
Á
− ηn

Á

)(
1− µn

B − ηn
B
)
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and
√(

1− ηn
Á
− vn

Á

)(
1− ηn

B − vn
B
)

represent the operations on the right endpoint of the inter-

val of µÁ , µB and ηÁ , ηB and vÁ , vB, respectively.

Proof of Proposition 1. Let Á =
{(

µÁ, ηÁ, vÁ
)}

, B = {(µB, ηB, vB)}, andҪ =
{(
µҪ, ηҪ, vҪ

)}
be three TSFNs.

(S1) 0 ≤ √ҳy. ≤
ҳ+y.

2 , for each ҳ, y. ∈ [0,+∞). We have

0 ≤ 2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)
≤

2.
µn

Á
+µn

B
2 + 2.

ηn
Á
+ηn

B
2 + 2.

vn
Á
+vn

B
2 +

(
1−ηn

Á
−vn

Á

)
+(1−ηn

B−vn
B)

2 +(
1−µn

Á
−vn

Á

)
+(1−µn

B−vn
B)

2 +

(
1−µn

Á
−ηn

Á

)
(1−µn

B−ηn
B)

2 = 3

Thus, we obtain

0 ≤ 1
3 2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)
≤ 1

From the above analysis, we get 0 ≤ Ś
(

Á, B
)
≤ 1.

(S2) Ś
(

Á, B
)
= Ś

(
B, Á

)
is obvious.

(S3)√ҳy. achieves
ҳ+y.

2 if ҳ = y. . Then,

Ś
(

Á, B
)
= 1.

⇔ 2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)
= 3

⇔ µn
Á
= µn

B , ηn
Á
= ηn

B , vn
Á
= vn

B(
1− ηn

Á
− vn

Á

)
= (1− ηn

B − vn
B)(

1− µn
Á
− vn

Á

)
= (1− µn

B − vn
B)(

1− µn
Á
− ηn

Á

)
= (1− µn

B − ηn
B)

⇔ Á = B

From the above analysis, we get Ś
(

Á, B
)
= 1 iff Á = B.
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(S4) Let Á, B, Ҫ be three TSFNs that fulfills the criteria Á ⊆ B ⊆ Ҫ. Therefore, we have
0 ≤ µÁ ≤ µB ≤ µҪ ≤ 1, 0 ≤ ηÁ ≤ ηB ≤ ηҪ ≤ 1, and 0 ≤ vҪ ≤ vB ≤ vÁ ≤ 1.
According to Equation (1), we obtain the SMs as follows:

Ś(B, Ҫ) = 1
3 (2
√

µn
Bµ

n
Ҫ + 2

√
ηn

Bη
n
Ҫ + 2

√
vn

Bvn
Ҫ +

√(
1− ηn

B − vn
B
)(

1− ηn
Ҫ − vn

Ҫ

)
+√(

1− µn
B − vn

Ҫ

)(
1− µn

Ҫ − vn
Ҫ

)
+

√(
1− µn

B − ηn
B
)(

1− µn
Ҫ − ηn

Ҫ

)
)

Ś
(

Á, Ҫ
)
= 1

3 (2
√

µn
Á
µn

Ҫ + 2
√

ηn
Á
ηn
Ҫ + 2

√
vn

Á
vn
Ҫ +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

Ҫ − vn
Ҫ

)
+√(

1− µn
Á
− vn

Á

)(
1− µn

Ҫ − vn
Ҫ

)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

Ҫ − ηn
Ҫ

)
)

Ś
(

Á, B
)
= 1

3 (2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)
)

For ã, Ь, ç, ∈ [0, 1], ã + Ь + ç ≤ 1, ҳ, y. , ż ∈ [0, 1], ҳ+ y. + ż ∈ [0, 1], then

f
(
ҳ, y. , ż

)
= 2
√

ãҳ+ 2
√

Ьy. + 2
√

çż +
√(

1− y. − ż
)
(1−Ь− ç)+

√
(1− ҳ− ż)(1− ã− ç) +

√(
1− ҳ− y.

)
(1− ã−Ь)

We can obtain

∂f
∂ҳ =

√
ã√
ҳ −

√
1−ã−ç

2
√

1−ҳ−ż
−
√

1−ã−Ь
2
√

1−ҳ−y.
∂f
∂ҳ =

√
ã

2
√

ҳ −
√

1−ã−ç
2
√

1−ҳ−ż
+
√

ã
2
√

ҳ −
√

1−ã−Ь
2
√

1−ҳ−y.
∂f
∂ҳ = ã(1−ż)−ҳ(1−ç)

2
√

ҳ(1−ҳ−ż)
(√

ã(1−ҳ−ż
)
+
√

ҳ(1−ã−ç))
+

ã
(

1−y.

)
−ҳ(1−Ь)

2
√

ҳ
(

1−ҳ−y.

)(√
ã(1−ҳ−y.

)
+
√

ҳ(1−ã−Ь))∣∣∣ ∂f
∂ҳ

∣∣∣ y. = Ь
ż = ç

= (ã−ҳ)(1−ç)

2
√

ҳ(1−ҳ−ç)
(√

ã(1−ҳ−ç
)
+
√

ҳ(1−ã−ç))
+

(ã−ҳ)(1−Ь)

2
√

ҳ(1−ҳ−Ь)
(√

ã(1−ҳ−Ь
)
+
√

ҳ(1−ã−Ь))

∂f
∂y.

=
√

Ь√
y.
−
√

1−Ь−ç
2
√

1−y.−z
−
√

1−ã−Ь
2
√

1−ҳ−y.
∂f
∂y.

=
√

Ь
2
√

y.
−
√

1−Ь−ç
2
√

1−y.−z
+
√

Ь
2
√

y.
−
√

1−ã−Ь
2
√

1−ҳ−y.

∂f
∂y.

=
Ь(1−ż)−y. (1−ç)

2
√

y.

(
1−y.−ż

)(√
Ь(1−y.−ż

)
+
√

y. (1−Ь−ç))
+

Ь(1−ҳ)−y. (1−ã)

2
√

y.

(
1−ҳ−y.

)(√
Ь(1−ҳ−y.

)
+
√

y. (1−ã−Ь))∣∣∣∣ ∂f
∂y.

∣∣∣∣ ҳ = ã
ż = ç

=

(
Ь−y.

)
(1−ç)

2
√

y.

(
1−y.−ç

)(√
Ь(1−y.−ç

)
+
√

y. (1−Ь−ç))
+

(
Ь−y.

)
(1−ã)

2
√

y.

(
1−y.−Ь

)(√
Ь(1−y.−ã

)
+
√

y. (1−ã−Ь))
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and
∂f
∂ż =

√
ç√
ż
−
√

1−Ь−ç
2
√

1−y.−ż
−
√

1−ã−ç
2
√

1−ҳ−ż

∂f
∂ż =

√
ç

2
√

ż
−
√

1−Ь−ç
2
√

1−y.−ż
+
√

ç
2
√

ż
−
√

1−ã−ç
2
√

1−ҳ−ż

∂f
∂ż =

ç
(

1−y.

)
−ż(1−Ь)

2
√

z
(

1−y.−ż
)(√

ç(1−y.−ż
)
+
√

ż(1−Ь−ç))
+

ç(1−ҳ)−z(1−ã)

2
√

z(1−ҳ−ż)
(√

ç(1−ҳ−ż
)
+
√

ż(1−ã−ç))∣∣∣ ∂f
∂ż

∣∣∣ ҳ = ã
y. = Ь

= (ç−ż)(1−Ь)

2
√

z(1−Ь−ż)
(√

ç(1−ż−Ь
)
+
√

ż(1−Ь−ç))
+

(ç−ż)(1−ã)

2
√

ż(1−ż−ã)
(√

ç(1−ż−ã
)
+
√

ż(1−ã−ç))

For ã ≤ ҳ ≤ 1, we have ∂f/∂ҳ ≤ 0, which shows that f is a reducing function of ҳ,
when y. = Ь, ż = ç, ҳ ≥ ã. For 0 ≤ ҳ ≤ ã, we have ∂f/∂ҳ ≥ 0, which means that f is a
growing function of ҳ, when y. = Ь, ż = ç, ҳ < ã.

Similarly, we may get ∂f/∂y. ≤ 0 for Ь ≤ y. ≤ 1. It indicates that f is a reducing
function of y. when ҳ = ã, ż = ç,y. ≥ Ь. We have ∂f/∂y. ≥ 0 for 0 ≤ y. < Ь and it indicates
that f is an increasing function of y. when ҳ = ã, ż = ç,y. < Ь. Since ∂f/∂ż ≤ 0 for ç ≤ ż ≤ 1,
it indicates that f is a reducing function of ż when ҳ = ã,y. = Ь, ż ≥ ç. We have ∂f/∂ż ≥ 0
for 0 ≤ ż < ç which indicates that f is a growing function of ż when ҳ = ã,y. = Ь, ż < ç.

Let ã = µÁ, Ь = ηÁ, ç = vÁ, with two TSFNs (µB, ηB, vB) and
(
µҪ, ηҪ, vҪ

)
, satisfying:

ã = µÁ ≤ µB ≤ µҪ

Ь = ηÁ ≤ ηB ≤ ηҪ

ç = vҪ ≤ vB ≤ vÁ

we can obtain
f
(
µҪ, Ь, ç

)
≤ f(µB, Ь, ç) ≤ f(ã, Ь, ç)

f
(
ã, ηҪ, ç

)
≤ f(ã, ηB, ç) ≤ f(ã, Ь, ç)

f
(
ã, Ь, vҪ

)
≤ f(ã, Ь, vB) ≤ f(ã, Ь, ç)

and then
f
(
µҪ, ηҪ, vҪ

)
≤ f(µB, ηB, vB)

i.e.,

2
√

µn
Bµ

n
Ҫ + 2

√
ηn

Bη
n
Ҫ + 2

√
vn

Bvn
Ҫ +

√(
1− ηn

B − vn
B
)(

1− ηn
Ҫ − vn

Ҫ

)
+√(

1− µn
B − vn

Ҫ

)(
1− µn

Ҫ − vn
Ҫ

)
+

√(
1− µn

B − ηn
B
)(

1− µn
Ҫ − ηn

Ҫ

)
≤ 2

√
µn

Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)

Thus, Ś
(

Á, Ҫ
)
≤ Ś

(
Á, B

)
according to the above analysis.

Similarly, if we suppose ã = µҪ , Ь = ηҪ , ç = vҪ , and the two TSFNs(
µÁ , ηÁ , vÁ

)
and (µB, ηB, vB) satisfy:

ã = µÁ ≤ µB ≤ µҪЬ = ηÁ ≤ ηB ≤ ηҪc = vҪ ≤ vB ≤ vÁ
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we can obtain
f
(
µÁ, Ь, ç

)
≤ f(µB, Ь, ç) ≤ f(a, Ь, ç)

f
(
ã, ηÁ, ç

)
≤ f(ã, ηB, ç) ≤ f(ã, Ь, ç)

f
(
ã, Ь, vÁ

)
≤ f(ã, Ь, vB) ≤ f(ã, Ь, ç)

and then
f
(
µÁ, ηÁ, vÁ

)
≤ f(µB, ηB, vB)

i.e.,

2
√

µn
Á
µn

Ҫ + 2
√

ηn
Á
ηn
Ҫ + 2

√
vn

Á
vn
Ҫ +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

Ҫ − vn
Ҫ

)
+√(

1− µn
Á
− vn

Á

)(
1− µn

Ҫ − vn
Ҫ

)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

Ҫ − ηn
Ҫ

)
≤

2
√

µn
Bµ

n
Ҫ + 2

√
ηn

Bη
n
Ҫ + 2

√
vn

Bvn
Ҫ +

√(
1− ηn

B − vn
B
)(

1− ηn
Ҫ − vn

Ҫ

)
+√(

1− µn
B − vn

Ҫ

)(
1− µn

Ҫ − vn
Ҫ

)
+

√(
1− µn

B − ηn
B
)(

1− µn
Ҫ − ηn

Ҫ

)
.

Thus, Ś
(

Á, Ҫ
)
≤ Ś(B, Ҫ) based on the preceding analysis. The SM Ś

(
Á, B

)
with

Equation (1) satisfies Definition 6. �

Theorem 3. Let Á =
{(

µÁҳї
, ηÁҳї

, vÁҳї

)
|ҳї ∈ X

}
, B = {(µBҳї , ηBҳї , vBҳї)|ҳї ∈ X} be two

TSFSs on X = {ҳ1, ҳ2, . . . , ҳn}. The mapping Ś
(

Á, B
)

: TSFS(X)× TSFS(X)→ [0, 1] is
defined as follows:

Ś
(

Á, B
)
=

1
3n

n

∑
ї=1



2
√

µn
Áҳї

µn
Bҳї

+ 2
√

ηn
Áҳї

ηn
Bҳї

+ 2
√

vn
Áҳї

vn
Bҳї

+√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Bҳї
− vn

Bҳї

)
+

√(
1− µn

Áҳї
− vn

Áҳї

)(
1− µn

Bҳї
− vn

Bҳї

)
+

√(
1− µn

Áҳї
− ηn

Áҳї

)(
1− µn

Bҳї
− ηn

Bҳї

)


. (2)

Then, Ś
(

Á, B
)

is a SM for the TSFSs Á and B.

Proof of Theorem 3. Let Á =
{(

µÁҳї
, ηÁҳї

, vÁҳї

)
|ҳї ∈ X

}
, B = {(µBҳї , ηBҳї , vBҳї)|ҳї ∈ X}

and Ҫ =
{(

µҪҳї
, ηҪҳї

, vҪҳї

)
|ҳї ∈ X

}
be the three TSFSs on X = {ҳ1, ҳ2, . . . , ҳn}.
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(S1) 0 ≤ √ҳy. ≤
ҳ+y.

2 , for each ҳ, y. ∈ [0,+∞). We have

0 ≤ 2
√

µn
Áҳї

µn
Bҳї

+ 2
√

ηn
Áҳї

ηn
Bҳї

+ 2
√

vn
Áҳї

vn
Bҳї

+√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− vn

Áҳї

)(
1− µn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− ηn

Áҳї

)(
1− µn

Bҳї
− ηn

Bҳї

)
≤

2.
µn

Áҳї
+µn

Bҳї
2 + 2.

ηn
Áҳї

+ηn
Bҳї

2 + 2.
vn

Áҳї
+vn

Bҳї
2 +(

1−µn
Áҳї
−vn

Áҳї

)
+
(

1−µn
Bҳї
−vn

Bҳї

)
2 +

(
1−µn

Áҳї
−vn

Áҳї

)
+
(

1−µn
Bҳї
−vn

Bҳї

)
2 +(

1−µn
Áҳї
−ηn

Áҳї

)
+
(

1−µn
Bҳї
−ηn

Bҳї

)
2 = 3

Thus, we can obtain

0 ≤ 1
3n

n

∑
ї=1



2
√

µn
Áҳї

µn
Bҳї

+ 2
√

ηn
Áҳї

ηn
Bҳї

+ 2
√

vn
Áҳї

vn
Bҳї

+√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− vn

Áҳї

)(
1− µn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− ηn

Áҳї

)(
1− µn

Bҳї
− ηn

Bҳї

)


≤ 1.

From the above analysis, we get 0 ≤ Ś
(

Á, B
)
≤ 1.

(S2) Ś
(

Á, B
)
= Ś

(
B, Á

)
is obvious.

(S3)√ҳy. achieves
ҳ+y.

2 if ҳ = y. . Then

Ś
(

Á, B
)
= 1

⇔ 2
√

µn
Áҳї

µn
Bҳї

+ 2
√

ηn
Áҳї

ηn
Bҳї

+ 2
√

vn
Áҳї

vn
Bҳї

+√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− vn

Áҳї

)(
1− µn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− ηn

Áҳї

)(
1− µn

Bҳї
− ηn

Bҳї

)
= 3

⇔ µÁҳї
= µBҳї

, ηÁҳї
= ηBҳї

, vÁҳї
= vBҳї(

1− ηÁҳї
− vÁҳї

)
=
(

1− ηBҳї
− vBҳї

)
(

1− µÁҳї
− vÁҳї

)
=
(

1− µBҳї
− vBҳї

)
(

1− µÁҳї
− ηÁҳї

)
=
(

1− µBҳї
− ηBҳї

)
⇔ Á = B.
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Therefore, Ś
(

Á, B
)
= 1 iff Á = B.

Ś
(

Á, B
)
= 1

3n

n
∑
ї=1


2
√

µn
Áҳї

µn
Bҳї

+ 2
√

ηn
Áҳї

ηn
Bҳї

+ 2
√

vn
Áҳї

vn
Bҳї

+

√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Bҳї
− vn

Bҳї

)
+√(

1− µn
Áҳї
− vn

Áҳї

)(
1− µn

Bҳї
− vn

Bҳї

)
+

√(
1− µn

Áҳї
− ηn

Áҳї

)(
1− µn

Bҳї
− ηn

Bҳї

)


Ś (B, Ҫ) = 1
3n

n
∑
ї=1

 2
√

µn
Bҳї

µn
Ҫҳї

+ 2
√

ηn
Bҳї

ηn
Ҫҳї

+ 2
√

vn
Bҳї

vn
Ҫҳї

+

√(
1− ηn

Bҳї
− vn

Bҳї

)(
1− ηn

Ҫҳї
− vn

Ҫҳї

)
+

√(
1− µn

Bҳї
− vn

Bҳї

)(
1− µn

Ҫҳї
− vn

Ҫҳї

)
+

√(
1− µn

Bҳї
− ηn

Bҳї

)(
1− µn

Ҫҳї
− ηn

Ҫҳї

)


Ś
(

Á, Ҫ
)
= 1

3n ∑n
ї=1


2
√

µn
Áҳї

µn
Ҫҳї

+ 2
√

ηn
Áҳї

ηn
Ҫҳї

+ 2
√

vn
Áҳї

vn
Ҫҳї

+

√(
1− ηn

Áҳї
− vn

Áҳї

)(
1− ηn

Ҫҳї
− vn

Ҫҳї

)
+√(

1− µn
Áҳї
− vn

Áҳї

)(
1− µn

Ҫҳї
− vn

Ҫҳї

)
+

√(
1− µn

Áҳї
− ηn

Áҳї

)(
1− µn

Ҫҳї
− ηn

Ҫҳї

)
.

This proof is similar to Proposition 1. We can get Ś
(

Á, Ҫ
)
≤ Ś

(
Á, B

)
, Ś
(

Á, Ҫ
)
≤ Ś(B, Ҫ)

according to the above analysis, and thus, SM Ś
(

Á, B
)

with Equation (2) fulfills the criteria of
Definition 6. �

4. Consequences of the Proposed Work

In the previous Section 3, we proposed a new SM for TSFNs Á =
(
µÁ, ηÁ, vÁ

)
and B = (µB, ηB, vB), and also another SM for TSFSs Á =

{(
µÁҳї

, ηÁҳї
, vÁҳї

)
|ҳї ∈ X

}
,

and B = {(µBҳї , ηBҳї , vBҳї)|ҳї ∈ X} on X = {ҳ1, ҳ2, . . . , ҳn}. Since the proposed SMs
for TSFNs and TSFSs can be the generalizations of some SMs, we will present some
consequences of the proposed SMs under some special cases in this section.

Recall that the proposed SM of Equation (1) for TSFNs Á =
(
µÁ, ηÁ, vÁ

)
and

B = (µB, ηB, vB) is as follows:

Ś
(

Á, B
)
=

1
3

 2
√

µn
Á
µn

B + 2
√

ηn
Á
ηn

B + 2
√

vn
Á

vn
B +

√(
1− ηn

Á
− vn

Á

)(
1− ηn

B − vn
B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á
− ηn

Á

)(
1− µn

B − ηn
B
)


• If we replace n = 2 in the proposed SM, then SM for SFSs is obtained and given as:

Ś
(

Á, B
)
=

1
3

 2
√

µ2
Á
µ2

B + 2
√

η2
Á
η2

B + 2
√

v2
Á

v2
B +

√(
1− η2

Á
− v2

Á

)(
1− η2

B − v2
B
)
+√(

1− µ2
Á
− v2

Á

)(
1− µ2

B − v2
B
)
+

√(
1− µ2

Á
− η2

Á

)(
1− µ2

B − η2
B
)
.

• If we replace n = 1 in the proposed SM, then the SM for PFSs is obtained and given as:

Ś
(

Á, B
)
=

1
3

 2√µÁµB + 2√ηÁηB + 2√vÁvB +
√(

1− ηÁ − vÁ
)
(1− ηB − vB)+√(

1− µÁ − vÁ
)
(1− µB − vB) +

√(
1− µÁ − ηÁ

)
(1− µB − ηB)

.

• If we neglect the DA in the proposed SM, then the SM for q-ROFSs is obtained and
given as:

Ś
(

Á, B
)
=

1
3

 2
√

µn
Á
µn

B + 2
√

vn
Á

vn
B +

√(
1− vn

Á

)(
1− vn

B
)
+√(

1− µn
Á
− vn

Á

)(
1− µn

B − vn
B
)
+

√(
1− µn

Á

)(
1− µn

B
)
.
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• If we replace n = 2 and neglect the DA in the proposed SM, then the SM for PyFSs is
obtained and given as:

Ś
(

Á, B
)
=

1
3

 2
√

µ2
Á
µ2

B + 2
√

v2
Á

v2
B +

√(
1− v2

Á

)(
1− v2

B
)
+√(

1− µ2
Á
− v2

Á

)(
1− µ2

B − v2
B
)
+

√(
1− µ2

Á

)(
1− µ2

B
)
.

• If we replace n = 1 and neglect the DA in the proposed SM, then the SM for IFSs is
obtained and given as:

Ś
(

Á, B
)
=

1
3

 2√µÁµB + 2√vÁvB +
√(

1− vÁ
)
(1− vB)+√(

1− µÁ − vÁ
)
(1− µB − vB) +

√(
1− µÁ

)
(1− µB)

.

Based on the preceding findings, we conclude that the proposed SMs can obtain some
new SMs for IFSs, PyFSs, PFSs, and SFSs. The major goal of the SMs presented in this work
is that they can solve problems when the data is provided in the TSF environment.

5. Applications and Algorithm

In this section, we create an algorithm for pattern recognition based on the proposed
SMs to find out which pattern is the best to use. We also discuss the application of
the proposed SMs in decision-making to sketch out which alternative is the finest for
making a decision.

5.1. Algorithm for Pattern Recognition

Let X = {ҳ1,ҳ2, . . . ,ҳn}, and let us have m patterns Pj =
{(

µPj(ҳї), ηPj(ҳї),vPj(ҳї)
)
|ҳї ∈ X

}
,

j = 1,2,3, . . . ,m, and a test sample P =
{(

µp(ҳї), ηp(ҳї),vp(ҳї)
)
|ҳї ∈ X

}
. To check which pattern

of Pj, j = 1,2,3, . . . ,m will mostly match the pattern P, we give the following recognition steps:
Step 1. We calculate the SMs Ś

(
Pj, P

)
, j = 1, 2, 3, . . . , m between Pj and P.

Step 2. We have to choose the maximum one Ś
(
Pj0, P

)
from Ś

(
Pj, P

)
, j = 1, 2, 3, . . . , m,

i.e., Ś
(
Pj0, P

)
= max

1≤j≤m

{
Ś
(
Pj, P

)}
. Then, the sample P is classified to the pattern Pj0 by the

maximum principle of SMs.

Example 1. We use the proposed SMs to solve the building material recognition challenge in
Ullah et al. [26]. Consider TSFNs Pї(ї = 1, 2, 3, 4) which represent four types of construction mate-
rials. Let us consider X = {ҳї : ї = 1, 2, 3, . . . , 7} to be the attributes. We have another unknown
material P. Using the proposed SMs for TSFNs and TSFSs, we use four materials to determine the
class of an unknown material denoted by Pї(ї = 1, 2, 3, 4). Now we have to evaluate class Pї to P.

Step 1. All the data are in the form of TSFNs given in Table 1. Assume that given
values are TSFNs for n = 4; in Table 1, this indicates that when data is presented in the TSF
environment, neither IFSs nor PFSs tools can resolve this issue.

Table 1. Data on building material.

P1 P2 P3 P4 P

ҳ1 0.56 0.47 0.22 0.81 0.3 0.37 0.43 0.43 0.55 0.57 0.51 0.39 0.34 0.56 0.78

ҳ2 0.11 0.11 0.11 0.59 0.66 0.66 0.91 0.34 0.68 0.56 0.76 0.31 0.47 0.38 0.84

ҳ3 0.35 0.45 0.61 0.42 0.56 0.71 0.81 0.41 0.35 0.27 0.59 0.72 0.55 0.44 0.65

ҳ4 0.33 0.54 0.31 0.59 0.45 0.9 0.44 0.55 0.77 0.46 0.46 0.45 0.76 0.46 0.85

ҳ5 0.35 0.2 0.64 0.16 0.33 0.42 0.55 0.44 0.77 0.57 0.66 0.91 0.13 0.35 0.57

ҳ6 0.47 0.37 0.68 0.68 0.46 0.88 0.47 0.66 0.75 0.41 0.73 0.41 0.24 0.54 0.45

ҳ7 0.78 0.55 0.03 0.49 0.54 0.39 0.58 0.34 0.23 0.21 0.43 0.13 0.82 0.46 0.69
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Step 2. In this step, we apply Equation (1) on the information given in Table 1. The
results using the SM for TSFNs are given in Table 2.

Table 2. Similarity Measure of Pї with P.

SM (P1, P) (P2, P) (P3 ,P) (P4, P)

Values 0.8872037 0.9014245 0.9010272 0.8464994

Step 3. Analyzing Table 2, we conclude that

(P4, P) < (P1, P) < (P3, P) < (P2, P)

As a result, the material P2 is nearest to P because the SM of (P2, P) is greater than all
the other pairs. Consequently, it is concluded that the unidentified material P corresponds
to the P2 category of material. The results of Table 2 are also portrayed in Figure 1 where it
shows that the unknown pattern P is closed to P2. The results also show that the unknown
pattern P is still sufficiently close to the pattern P3 as well.
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Figure 1. Results of SM of unknown pattern with known pattern.

5.2. Comparative Study

In this section, we make comparisons of the results using the proposed SM for TSFSs
with the results using the SM for TSFSs proposed by Ullah et al. [26] and Wu et al. [33].
Table 3 summarizes the findings. We find that the results using the proposed SM for TSFSs
are the same as the results using the SM for TSFSs proposed by Wu et al. [33]. Here, we
also show the limited nature of IFSs and PFSs. A brief comparison of the current paper’s
aggregated results with those of other previous papers is provided in Table 3.

Table 3. Comparative Study.

SM Environment Results

The proposed SM for TSFSs TSFSs (P4, P) < (P1, P) < (P3, P) < (P2, P)

The SM for TSFSs by Ullah et al. [25] TSFSs (P4, P) < (P3, P) < (P1, P) < (P2, P)

The SM for TSFSs by Wu et al. [32] TSFSs (P4, P) < (P1, P) < (P3, P) < (P2, P)



Symmetry 2022, 14, 410 13 of 16

5.3. Applications for Decision Making

Now we will discuss how the proposed SM can be used to make decisions. The bigger
the SM, according to the SM principle, the more correct the decision.

Example 2. We use the proposed SM to solve the decision-making challenge proposed in Ullah et al. [34].
Islamabad, Pakistan’s capital, is regarded as one of the most beautiful cities in the world. There
are various parks and picnic areas in Islamabad where a large number of people visit on a daily
basis. The Metropolitan Corporation of Islamabad (MCI) is in charge of the city government. To
maintain its appeal, the MCI decided to restore all of the parks and picnic areas. MCI will need to
recruit some private contractors to do so. MCI chose four private firms for further consideration
after some preliminary screening. Á1: Arish Associates, Á2: Nauman Estate and Builders, Á3:
Areva Engineering, Construction and Interiors, and Á4: The Wow Architects, are among the four
firms. MCI’s specialists devised five point criteria for selecting the best corporation or company.
Ҫ1: Cost, Ҫ2: Previous performance, Ҫ3: Time constraint, Ҫ4: Quality assurance, and Ҫ5: Labor
quantity, are the five criteria. The decision-making panel has given all the information in TSFNs
which is given in Table 3. The followings are the designated steps for the decision-making algorithm:

Step 1. Decision-makers’ views are expressed in the form of TSFNs, as indicated in
Table 4.

Table 4. Data on decision making.

Ҫ1 Ҫ2 Ҫ3 Ҫ4 Ҫ5

Á1 0.1 0.7 0.4 0.5 0.8 0.9 0.8 0.8 0.8 0.6 0.7 0.8 0.3 0.5 0.7

Á2 0.2 0.7 0.6 0.6 0.7 0.8 0.3 0.7 0.7 0.1 0.7 0.9 0.4 0.6 0.8

Á3 0.5 0.6 0.6 0.5 0.6 0.7 0.5 0.7 0.1 0.9 0.6 0.2 0.5 0.6 0.9

Á4 0.5 0.6 0.8 0.8 0.7 0.4 0.8 0.7 0.3 0.6 0.6 0.1 0.8 0.4 0.4

Ҫ 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Step 2. The SM of each TSFN given in Table 4 are evaluated with Ҫ(1, 0, 0) based on
Equation (1). Table 5 summarizes the findings.

Table 5. SM of Áї with Ҫ.

SM (Á1, Ҫ) (Á2, Ҫ) (Á3, Ҫ) (Á4, Ҫ)

Values 0.5110507 0.3707117 0.5988922 0.7403513

Step 3. Analyzing Table 5, we obtain

Á2 < Á1 < Á3 < Á4.

Therefore, Á4 is the best choice. The results of Table 5 are also shown in Figure 2 which
indicates that, after applying the proposed SM, Á4 should be the best choice.

The findings of the proposed SM for TSFSs are then compared to the results of the
SMs for TSFSs proposed by Ullah et al. [34]. Table 6 summarizes the findings. We find that
both methods give the same decision.
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Table 6. Comparative Study.

SM Environment Results

The proposed SM for TSFSs TSFSs Á2 < Á1 < Á3 < Á4

The SM for TSFSs by Ullah et al. [29] TSFSs Á2 < Á1 < Á3 < Á4

6. Conclusions

In this paper, a new SM was presented for TSFSs which is based on DM, DA, and
DNM. We had shown that the proposed SM for TSFSs satisfies the axiom of SM. It was also
observed that the proposed SM provides a flexible and larger range for data representation
under uncertain circumstances in which it can be a generalized SM for IFSs, PyFSs, PFSs, or
SFSs. By using numerical examples, it was shown that the presented SM is more efficient
and can provide accurate results as the information under consideration was based on
TSFNs where more than two aspects of uncertain information were discussed. In addition,
we applied the proposed SM in pattern recognition and decision-making to observe its
effectiveness. The comparative studies on pattern recognition and decision making indicate
that the proposed SM is valid and can be used in some real-life problems, especially in
decision making, pattern recognition, and clustering. In general, symmetric triangular
fuzzy numbers can be well used in database acquisition and so our further work shall
first consider the proposed SM for symmetric T-spherical triangular fuzzy numbers. In
our future works, we will also extend the proposed SM for interval valued TSFSs and
complex TSFSs. We shall further develop new distances for TSFSs and give more entropy
measures for TSFSs and then apply them in clustering and medical diagnosis problems
under TSFSs environment.
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