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Abstract

Formal concept analysis (FCA) has been applied suc-
cessively in diverse fields such as data mining, con-
ceptual modeling, social networks, software engineer-
ing, and the semantic web. One shortcoming of FCA,
however, is the large number of concepts that typically
arise in dense datasets hindering typical tasks such as
rule generation and visualization. To overcome this
shortcoming, it is important to develop formalisms and
methods to segment, categorize and cluster formal con-
cepts. The first step in achieving these aims is to define
suitable similarity and dissimilarity measures of formal
concepts. In this paper we propose three similarity mea-
sures based on existent set-based measures in addition
to developing the completely novel zeros-induced mea-
sure. Moreover, we formally prove that all the measures
proposed are indeed similarity measures and investigate
the computational complexity of computing them. Fi-
nally, an extensive empirical evaluation on real-world
data is presented in which the utility and character of
each similarity measure is tested and evaluated.

1 Introduction

Formal concept analysis (FCA) has been studied and applied
successively in many diverse fields such as data mining (Mo-
hammed J. Zaki 1998) (Alqadah & Bhatnagar 2009) (Li et
al. 2007) , conceptual modeling (Priss 2006), software en-
gineering (Tonella 2004), social networking (Snasel, Horák,
& Abraham 2008) and the semantic web (Y. Ding 2002).
However, one drawback of FCA is the fact that the set of
concepts tends to be quite large in dense datasets making
reasoning about the concepts difficult (Pfaltz 2007). To over-
come this shortcoming, it is essential to develop formalisms
and methods to segment, cluster and categorize the concepts;
yet as far as we know, these issues have been addressed
marginally by few unrelated works (Sylvain Blachon & Gan-
drillon 2007).

A vital and important step in any clustering algorithm is
the selection of a suitable similarity or dissimilarity mea-
sure. Nonetheless, only three previous works have attempted
to define such measures for formal concepts. In (Formica
2007) the author focuses on defining a single similarity mea-
sure geared specifically towards the semantic web. Further-
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more, the measure makes extensive use of a-priori knowl-
edge in the form of a lexicographical database. The authors
of (Y. Ding 2002) also define a measure based loosely on
the Jaccard index, nonetheless the measure is not formally
shown to be a similarity measure. Finally, the clustering al-
gorithm presented in (Sylvain Blachon & Gandrillon 2007)
makes use of a dissimilarity measure for concepts that is
derived in terms of the symmetrical difference of sets, yet
other measures were not studied or utilized in conjunction
with the algorithm. In all these previous works the measures
introduced were not formally shown to be similarity or dis-
similarity measures in addition to being largely application
driven. All other work in this field has focused on fuzzy con-
cept analysis (Belohlavek 2000) (Belohlavek 2002) (R. Be-
lohlavek 2004), while we prefer a deterministic approach.

Similarity measures for concepts in ontologies has been
wideley studied (Ichise 2009), yet this is a fundamentally
different problem. Concepts in ontologies are expressed as
labels for data; whereas a Formal Concept of a dataset con-
tains no label, and simply refers to a maximal biclique of
objects and attributes in the dataset. Similarity measures
for concepts in ontologies include string-based, graph based
and knowledge based similarity measures. The string-based
measures take advantage of the concept label and utilize
edit distance, prefix, suffix, and n-gram similarity measures.
Graph-based measures make use of the tree-structure of on-
tologies and integrate graph similarity along with concept
similarity, which again, depends on the label of the con-
cept (Melnik, Garcia-Molina, & Rahm 2002)(Giunchiglia,
Shvaiko, & Yatskevich 2004). Finally, knowledge based
similarity utilizes external knowledge sources such as a dic-
tionary to calculate similarities.

In this paper we propose several similarity measures for
unlabeled Formal Concepts, based on existent similarity
measures such as the Jaccard index, Sorensen similarity in-
dex and symmetric difference that generalize the measures
previously introduced for such Formal Concepts. Addition-
ally, the novel zeros-induced index is proposed to take ad-
vantage of the fact that concepts represent maximal sub-
matrices of 1s in the data matrix. The measures are formally
shown to satisfy all the properties of similarity measures,
and their computational costs are explored. Finally, an ex-
perimental study is presented in which the utility, similarity
matrix characteristics and practical computational cost of all



measures are compared and analyzed on real-world datasets.
In the next section, we review the basic notation and defini-
tions of FCA, while section 3 develops the novel similarity
measures, and finally the empirical study is presented in sec-
tion 4.

2 Formal Concept Analysis

A context K = (G, M, I) consists of two sets G, M and a
relation I between G and M . The elements of G are referred
to as objects and the elements of M as attributes and we
assume that G ∩ M = ∅. A context may be depicted as a
|G| × |M | binary matrix, where the objects of G form row
labels and the objects M form column labels. Let mat(K)
denote the matrix representation of K, then we may fully
specify the entries of this matrix as

mat(K)ij =

{

1 if giImj

0 otherwise
(1)

Moreover, K may also be viewed as a bipartite graph, de-
noted as grph(K), with vertex set G ∪ M , and edge set I .
Therefore mat(K) is the adjacency matrix of grph(K).

For a set A ⊆ G, called an object-set, we define

A′ = {m ∈ M |gIm ∀g ∈ A} (2)

the objects of M common to the objects in A. For a set
B ⊆ M , called an attribute-set we also have

B′ = {g ∈ G|gIm ∀m ∈ B} (3)

Definition 1. A concept of the context (G, M, I) is a pair
C = (A, B) with A ⊆ G, B ⊆ M, such that A′ = B
and B′ = A. We call A the extent and B the intent of the
concept (A, B). B(G, M, I) denotes the set of all concepts
of the context K = (G, M, I).

The above definition can be shown to yield two closure
systems on G and M which are dually isomorphic to each
other (Gamter & Wille 1999). For every set A ⊆ G, A′ is an
intent of some concept, since (A′′, A′) is always a concept.
Utilizing the binary matrix representation, a concept (A, B)
can be represented by a maximal rectangle full of 1’s under
suitable permutations of the rows and columns.

Furthermore, the concepts of a context form a natural hi-
erarchical structure.

Definition 2. If (A1, B1) and (A2, B2) are concepts of a
context, (A1, B1) is called a subconcept of (A2, B2), pro-
vided that (A1 ⊆ A2) ( which is equivalent to B2 ⊆ B1).
In this case, (A2, B2) is a superconcept of (A1, B1), and
we write (A1, B1) ≤ (A2, B2). The relation ≤ is called
the hierarchical order of the concepts. A concept (A2, B2)
is called an upper neighbor of (A1, B1) if (A1, B1) ≤
(A2, B2) and there is no concept (A3, B3) in K fulfill-
ing (A2, B2) ≤ (A3, B3) ≤ (A1, B1), this is denoted by
(A2, B2) ≻ (A1, B1). The set of all concepts of (G, M, I)
ordered by the hierarchical order is denoted as B(G, M, I)
and is called the concept lattice of the context (G, M, I).

The Basic Theorem on Concept Lattices (Gamter & Wille
1999) states that the concept lattice B(G, M, I) is a com-
plete lattice in which the infimum and supremum are given

by:

∧

t∈T

(At, Bt) =

(

⋂

t∈T

At,

(

⋃

t∈T

Bt

)′′)

(4)

∨

t∈T

(At, Bt) =

((

⋃

t∈T

At

)′′

,
⋂

t∈T

Bt

)

(5)

where T is an index set.

Example 1. Consider the context depicted in figure 1(a). It
contains 10 concepts, depicted as a concept lattice in figure
1(b).

It can be easily shown that in the worst case the number

of concepts in a context K = (G, M, I) is 2min{|G|,|M|}, al-
though this rarely occurs in real-world data, the number of
concepts is still large. For example, the 8, 124 × 120 Mush-
rooms context available from the UCI machine learning
repository (Asuncion & Newman 2007) contains 238,709
concepts, far less than 2120, but still an excessive number
of concepts to reason with.

3 Similarity Measures

In this section we introduce several similarity measures to
evaluate the similarity of concepts and segment or cluster
concepts.

Definition 3. A similarity measure S is a function with non-
negative real values defined on the Cartesian product X×X
of a set X

S : X × X → R (6)

such that the following three properties are satisfied

1. ∃s0 ∈ R : −∞ < S(x, y) ≤ s0 < +∞, ∀x, y ∈ X

2. s(x, x) = s0 ∀x ∈ X

3. s(x, y) = s(y, x) ∀x, y ∈ X

If in addition

1. s(x, y) = s0 ↔ x = y

2. s(x, y)s(y, z) ≤ [s(x, y)+ s(y, z)]s(x, z) ∀x, y, z ∈ X

then S is called a metric similarity measure

In the pattern recognition and data mining communities,
similarity measures have typically been defined on sets of
real-valued or discrete-valued vectors. For discrete-valued
vectors similarity measures are inspired by the compar-
ison of sets and the cardinalate of sets. Some common
set-inspired similarity measures for discrete-valued vectors
include

Jaccard index SJac =
|x ∩ y|

|x ∪ y|
(7)

Sorenesen coefficient SSor =
2 ∗ |x ∩ y|

|x| + |y|
(8)

Symmetric difference SXor = 1 −
|x ⊖ y|

|x ∪ y|
(9)

where x ⊖ y is the symmetric difference of x and y:

x ⊖ y = (x \ y) ∪ (y \ x) (10)



m1 m2 m3 m4

g1 0 1 0 1
g2 0 0 1 1
g3 0 0 0 1
g4 1 0 0 0
g5 1 1 1 0
g6 0 0 1 0
g7 1 1 0 0

(a) Sample context depicted as
binary matrix

✉
m1,m2,m3,m4

✉
m1,m2,m3

g5

✉
m2,m4

g1

✉
m3,m4

g2

✉
m1,m2

g5,g7

✉
m3

g2,g5,g6

✉
m4

g1,g2,g3

✉
m1

g4,g5,g7

✉
m2

g1,g5,g7

✉

g1,g2,g3,g4,g5,g6,g7

(b) Sample concept lattice

Figure 1: Representations of a context, formal concepts and concept lattice

We now wish to extend these set-inspired similarity mea-
sures to concepts. A concept consists of two sets; therefore
intuition suggests we weigh and combine set-based similar-
ity measures to form a concept-based similarity measure. A
similar approach was followed in (Y. Ding 2002), (Formica
2007) and (Sylvain Blachon & Gandrillon 2007) where they
incorporated additional a-priori knowledge.

Definition 4. Given concepts C1 = (A1, B1),C2 =
(A2, B2) ∈ K for any context (G, M, I) the weighted con-
cept similarity of C1 and C2 is

Sw
S (C1,C2) = w∗S(A1, A2)+(1−w)∗S(B1, B2) (11)

where 0 ≤ w ≤ 1 and S is the Jaccard index, Sorensen
coefficient, or Symmetric Difference.

Claim 1. The weighted concept similarity Sw
S function is a

similarity measure.

Proof. Case 1, S = SJac:

1. By the properties of set union and set intersection
SJac(x, y) ≤ 1 ∀x, y, thus by the definition of weighted
concept similarity, s0 = 1.

2. Property 2 is trivially satisfied by the fact that SJac is a
similarity measure, thus SJac(x, x) = 1 and therefore

Sw
Jac(C1,C1) = w∗1+(1−w)∗1 = 1 ∀C1 ∈ B(G, M, I)

3. Property 3 is also satisfied by the fact that SJac is a simi-
larity measure, so SJac(x, y) = SJac(y, x) thus

Sw
Jac(C1,C2)

= w ∗ SJac(A1, A2) + (1 − w) ∗ SJac(B1, B2)

= w ∗ SJac(A2, A1) + (1 − w) ∗ SJac(B2, B1)

= Sw
Jac(C2,C1)

Case 2, S = SSor:

1. For any two sets x, y |x| + |y| ≥ 2 ∗ (|x ∩ y|), however if
x = y then |x| + |y| = 2 ∗ (|x ∩ y|), thus s0 = 1.

2. Analogous to (2) in case 1, due to the fact that s0 = 1 and
SSor is a similarity measure.

3. Analogous to (3) in case 1.

Case 3: We first show that SXor is a similarity measure,
with S0 = 1, with the rest of the proof being analogous to
case 1.

1. For any two sets x, y we have

x \ y ⊆ x

y \ x ⊆ y

(x \ y) ∪ (y \ x) ⊆ (x ∪ y)

1 −
|x ⊖ y|

|x ∪ y|
≤ 1

2. By definition of symmetric set difference x⊖ x = ∅, thus
SXor(x, x) = 1

3. Follows directly from the commutative property of sym-
metric set difference.

The set-based similarity measures are based on well-
established similarity measures and are efficient to com-
pute. Set intersection, union, and difference of any
two sets x, y can be computed in O(min{|x|, |y|}) time,
thus the worst case time of all the set-based measures is
O(min({|A1|, |B1|, |A2|, |B2|}) for any given pair of con-
cepts (A1, B1) and (A2, B2). Although, all the weighted
concept similarity measures enjoy the same theoretical com-
putation cost, the practical cost of computing the measures
differ significantly in real-world data, as will be illustrated
by our empirical study.

The set-based measures encompass two shortcomings:
First, setting the value of w greatly effects the measure, and



thus computing similarity cannot be performed parameter-
free. Second, the measures only consider the cardinalate of
the sets and do not explicitly consider the amount of infor-
mation shared between two concepts. For example, con-
sider the concepts C1 = ({g5}, {m1, m2, m3}), C2 =
({g2, g5, g6}, {m3}), and C3 = ({g4, g5, g7}, {m1}) of the
context depicted in figure 1(a). Let w = 0.5, then we have

S0.5
Jac(C1,C2) = S0.5

Jac(C1,C3) = 0.333

and

S0.5
Sor(C1,C2) = S0.5

Sor(C1,C3) = 0.5

We see that the weighted concept similarity yields equiva-
lent similarity between C1,C2 and C1,C3 in both cases.
This result is reasonable in terms of the overlap between the
sets of attributes and objects of each concept, yet closer in-
spection of the context would suggest otherwise. Comparing
concept C2 to C1 we see that C2 dropped attributes m1, m2

but gained objects g2, g6; upon inspecting the context, we
observe that these objects do not encompass attributes m1

and m2. On the other hand, comparing concept C3 to C1 we
see that C3 dropped attributes m2, m3 and gained objects
g4, g7; upon inspecting the context, we observe that object
g7 does encompass attribute m7 (this can also be observed
in the lower neighbor of C3). The fact that the objects of C3

encompass more attributes of C1 than the objects of C2 in-
fers that the similarity between C1 and C3 should be greater
than that of C1 and C2; however this is not reflected utiliz-
ing weighted concept similarity.

In order to consider all information shared between two
concepts we look beyond set based similarity measures.
Concepts may be viewed as maximal sub-matrices full of
1s in mat(K), and thus combining any two concepts C1 =
(A1, B1) and C2 = (A2, B2) to form a larger sub-matrix
D = (A1 ∪ A2, B1 ∪ B2) must result in the introduction of
zeros. We may then think of the similarity between C1 and
C2 in terms of the number of zeros introduced.

Definition 5. Given any two concepts C1 = (A1, B1),
C2 = (A2, B2) of a context K then the zeros induced by
C1 and C2, denoted as z(C1,C2), is the number of zeros
enclosed by the sub-matrix induced by rows (A1 ∪ A2) and
columns (B1 ∪ B2) in mat(K).

Computing z(C1,C2) consists of summing up the num-
ber of zeros in each row of the sub-matrix induced by C1

and C2:

z(C1,C2) =
∑

a∈A1∪A2

|(B1 ∪ B2) \ a′| (12)

Definition 6. Given concepts C1 = (A1, B1) and C2 =
(A2, B2) the zeros-induced index is

Sz =
|A1 ∪ A2| ∗ |B1 ∪ B2| − z(C1,C2)

|A1 ∪ A2| ∗ |B1 ∪ B2|
(13)

Claim 2. The zeros-induced index is a concept similarity
measure.

Proof.

1. For any two sets x, y x \ y ⊆ x, thus z(C1,C2) ≤ |A1 ∪
A2| ∗ |B1 ∪ B2| ∀C1,C2, implying that s0 = 1.

2. For any concept C = (A, B) , by definition A′ = B
which implies

∀a ∈ A a′ ⊇ B

→ z(C,C) = 0

→ Sz(C, C) = s0

3. Property 3 is guaranteed by the commutative property of
set union.

The zeros-induced index does not require any parameters
and also considers all information relating the two sets of at-
tributes and objects. Consider once again concepts C1 =
({g5}, {m1, m2, m3}), C2 = ({g2, g5, g6}, {m3}), and
C3 = ({g4, g5, g7}, {m1}). Applying the zeros-induced in-
dex we have

Sz(C1,C2) =
9 − 4

9
=

5

9
and

Sz(C1,C3) =
9 − 3

9
=

2

3

The example illustrates the more discerning result of assign-
ing greater similarity to C1 and C3 is accomplished uti-
lizing the zeros-induced index. Computing Sz , however, is
much more expensive than any set-based measure. A direct
implementation of equation 12 entails O(|A1 ∪A2|) set dif-
ferences resulting in O(max{|A1|, |B1|, |A2|, |B2|}2) time
complexity for each pair of concepts.

4 Experiments

Name Dimensions Density Num. classes

Congress 435 × 48 0.33 2
Mushrooms 8124 × 120 0.1917 2
news mer 2000 × 892 0.003 2
news pcr 1997× 1025 0.0026 2

news allrec 3124× 1671 0.0014 4

Figure 2: Datasets used in empirical evaluation

Several experiments were performed to empirically com-
pare the utility of each similarity measure. Real-world, la-
beled datasets were obtained from the UCI machine learn-
ing repository (Asuncion & Newman 2007), and are sum-
marized in figure 2. The concepts of each context were enu-
merated via an implementation of the concept enumeration
algorithm described in (Berry, Bordat, & Sigayret 2007),
and the similarity matrix of the concepts was computed for
each similarity measure. Finally, the CLUTO agglomerative
clustering algorithm (Clu 2009) was applied to the similarity
matrices while varying the number of desired clusters.

To compare the utility of the similarity measures, the
cluster validity of each clustering was determined via the
F (BCubed) extrinsic cluster validity metric; this metric
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Figure 3: Clustering results and similarity matrices

combines the B3Prec and B3Rcl of a cluster using the F1

score. It was illustrated in (Enrique Amig & Verdejo 2008)
that the F (BCubed) metric maintains the desirable proper-
ties of cluster homogeneity, cluster completeness, rag bag,
and cluster size vs quantity while other popular cluster va-
lidity metrics such as precision, inverse-precision, entropy
and mutual information do not. Moreover, F (BCubed) ac-
counts for both hard and soft clusterings of objects. For-
mally, for any object e of G, there exists a set of ideal cat-
egories (class labels), denoted by L(e) to which e belongs.
Also let C(e) denote the set of clusters that e belongs to.
Given this we may define the multiplicity precision and mul-
tiplicity recall between any two objects e and e′ as follows:

MultPrec(e, e′) =
min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|C(e) ∩ C(e′)|

MultRcl(e, e′) =
min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|L(e) ∩ L(e′)|

Note that MultPrec is only defined when e and e′ share a
cluster and MultRcl is only defined when e and e′ share a
category. Intuitively, MultPrec grows if there is a match-

ing category for each cluster where two objects co-occur;
MultRcl grows when we add a shared cluster for each cat-
egory shared by two items. Thus if we have fewer shared
clusters than needed, we lose recall; if we have fewer cate-
gories than clusters we lose precision. From these measures
the BCubed measures are derived as:

B3Prec = Avge

[

Avge′,C(e)∩C(e′) 6=∅ [MultPrec(e, e′)]
]

B3Rcl = Avge

[

Avge′,L(e)∩L(e′) 6=∅ [MultRcl(e, e′)]
]

Figure 3 illustrates the results of the clustering experi-
ment and reveal an interesting trend. All similarity mea-
sures lead to comparable clustering results in the two dense
datasets of Mushrooms and Congress, with a slight edge to
SSor and Sz respectively. However, on all the newsgroup
datasets, which were quite sparse, the Sz measure consis-
tently produced superior clustering results. Specifically, we
found that for any number of clusters, the recall was sig-
nificantly larger when the zeros induced index was utilized
on these sparse datasets. This trend points out the advan-
tage of the fine-grain approach of the zeros induced index
as opposed to the set-based measures particularly for sparse
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Figure 4: Effect of w on set-based measures

Dataset Similarity Measure CPU Time (seconds)

Mushrooms

Weighted Jaccard 545.23± 3.45
Weighted Sornensen 300.35± 1.64
Weighted SymmDiff 961.62± 2.13

Zeros Induced 4125.22± 3.76

Congress

Weighted Jaccard 522.24± 4.2204
Weighted Sornensen 289.89± 0.69
Weighted SymmDiff 885.89± 2.77

Zeros Induced 3233.54± 3.45

news allrec

Weighted Jaccard 3.9170± 0.0440
Weighted Sornensen 2.6630± 0.0517
Weighted SymmDiff 6.1900± 0.0474

Zeros Induced 8.2050± 0.1203

news mer

Weighted Jaccard 0.7700± 0.0067
Weighted Sornensen 0.5100± 0.0176
Weighted SymmDiff 1.2270± 0.0134

Zeros Induced 1.9720± 0.0225

news pcr

Weighted Jaccard 0.7680± 0.0092
Weighted Sornensen 0.5040± 0.0158
Weighted SymmDiff 1.2280± 0.0235

Zeros Induced 1.8530± 0.0183

Figure 5: CPU times for computing similarity measures

data. Exploring the characteristics of the similarity matrices
(figures 3(f) -3(i)) further explains this trend. The set-based
measures produce very sparse similarity matrices in sparse
data (figure 3(f)) due to the fact that concepts that do not ex-
plicitly share an object or attribute are penalized, and thus
assigned low scores. On the other hand, the zeros-induced
index produces dense similarity matrices in both sparse and
dense datasets (figures 3(g) and 3(i)); this is due to the fine-
grain approach of accounting for all the 1s in the induced
sub-matrix of each pair of concepts. When the similarity
matrices of all measures were of comparable densities (in
dense datasets) the clustering quality was also consistently
comparable. However, the additional information retained
by the zeros-induced similarity matrices in sparse data con-
stantly lead to both higher recall and overall higher quality
of clusters.

The effect of w on the performance of the set-based mea-
sures was also investigated. Figure 4 displays the result of
this experiment. Clearly, the effect of w is highly dataset
dependent; for example in the news mer dataset the quality
of the clustering fluctuates with every different value of w,
while the opposite is true in the Mushrooms dataset. Setting
the value of w thus remains a challenge and disadvantage
when utilizing the set-based measures. Finally, several per-
formance tests were conducted to investigate the practical

computation cost of each measure. Each similarity matrix
was computed ten times on a 2.7 GHz 2x AMD Athlon CPU
with 6 GB of main memory, and the average CPU time is
reported in figure 5. Although, all the set-based measures
have the same theoretical time complexity, we clearly see
that the weighted Sorensen measure is the least costly. This
is attributed to the fact that only a single set intersection
needs to be computed per concept pair, without comput-
ing the set union. The theoretical computational cost of the
zeros-induced measure was quadratic compared to the lin-
ear cost of set-based measures, and this is demonstrated in
the performance tests. In the dense datasets of Congress and
Mushrooms the CPU time is at least an order of magnitude
larger than the set-based approaches.

5 Conclusion

In this paper we have taken a necessary first step towards
clustering formal concepts by specifying and studying four
similarity measures. Three of these measures were inspired
by existent set-based similarity and dissimilarity measures,
while the completely novel zeros-induced index was intro-
duced. This novel measure takes advantage of the fact that
concepts form maximal sub-matrices of 1s in the data ma-
trix by computing the ratio of 1s to the total area of the sub-
matrix induced by joining two concepts. All four measures
were formally proven to be similarity measures and the com-
putational cost of each measure was analyzed. Initial em-
pirical studies indicate that the zeros-induced index leads to
superior clustering results in sparse data, and comparable re-
sults in dense datasets. However, the computational cost of
the measure in time is substantially more expensive than all
other measures. Future work may focus on formally specify-
ing more similarity measures by incorporating the structure
of the concepts as established by the hierarchical order and
the concept lattice.
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