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Abstract: A similarity transformation is obtained between general population matrices models of the Usher or Lefkovitch types and
a simpler model, the pseudo-Leslie model. The pseudo Lesliemodel is a matrix that can be decomposed in a row matrix, whichis
not necessarily non-negative and a subdiagonal positive matrix. This technique has computational advantages, since the solutions of
the iterative problem using Leslie matrices are readily obtained . In the case of two age structured population models, one Lefkovitch
and another Leslie, the Kolmogorov-Sinai entropies are different, despite the same growth ratio of both models. We prove that Markov
matrices associated to similar population matrices are similar.
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1 Introduction

This article deals with classic discrete structured models
for linear population dynamics [2,8] such as Leslie
matrices and Lefkovitch or Usher matrices. GivingA, a
non negativen× n matrix and a population vectorxk
which components are the fractions of the population at
each age or stage, the dynamical system that gives the
population vector at any positive timek+1 is given by

xk+1 = Axk, with initial conditionx0.

Obviously the solution is given by the powers ofA

xk = Akx0.

In this paper we prove that there is a similarity
transform that converts the complicated dynamics of the
so called Usher or Lefkovitch matrices to the simpler
study of matrices which are Leslie matrices or
pseudo-Leslie matrices, a concept that we introduce in
this paper.

The paper is organized in three sections, in the second
we introduce pseudo-Leslie matrices and prove the main
theorem. In the third section we present some
consequences of interest in population dynamics, namely
on the similarity of Markov matrices associated to similar
population dynamics matrices and obtain transformation
rules for corresponding stationary distributions.

2 Main theorem

In age structured population dynamics one divides the
population in classes [2,7]. When we consider size
classes or stage classes instead of pure age classes we
have a structured population model with dynamics given
by the linear equation

xn+1 = L xn, (1)

wherexn is a non negative structured absolute population
vector, or a proportion of individuals in each class andL
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is a matrix such that

L =




f1 f2 f3 · · · fn−1 fn
b1 c1 0 · · · 0 0
0 b2 c2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cn−2 0
0 0 0 · · · bn−1 cn−1



,

usually called Usher (in the classic reference [2]) or
Lefkovitch matrix in [7]. The coefficientf j is called the
fertility rate of classj > 1, the coefficientbk > 0, for any
k = 1, . . . ,n− 1, is the transition rate from classk− 1 to
classk and thecl the rate of individuals that remain in
classl . Along this paper we assume thatfn > 0, assuring
thatL is irreducible [2].

The coefficientf1 can be decomposed in̂f1 + c0, i.e.,
a fertility rate and a permanency rate. Since this
decomposition has no influence on the similarity
transformation we do not splitf1. One must keep in mind
the biological meaning of this coefficient.

The solution of the problem is given by the powers of
L , given the non-negative initial conditionx0

xn = L
nx0.

A Leslie matrix is a matrix of the type

L =




φ1 φ2 · · · φn−1 φn
b1 0 · · · 0 0
0 b2 · · · 0 0
...

...
.. .

...
...

0 0 · · · bn−1 0



,

where all the entriesφ j are non-negative and allb j are
strictly positive. The Leslie matrix can be decomposed in
two matrices

L = R+B,

where

R=




φ1 φ2 · · · φn−1 φn
0 0 · · · 0 0
0 0 · · · 0 0
...

...
.. .

...
...

0 0 · · · 0 0




andB=




0 0 · · · 0 0
b1 0 · · · 0 0
0 b2 · · · 0 0
...

...
.. .

...
...

0 0 · · · bn−1 0




.

When the entriesφn of the first row ofR are real numbers,
not restricted to the non-negative case, we say thatL is a
pseudo-Leslie matrix. Obviously this class of matrix does
not have an immediate biological correspondence when
some of its entries are negative. That poses no problem in
the framework of this article, sinceL is merely used as a
computational instrument.

To state the main theorem we define the sums of
products ofp factorsΓ p

i , where i = 1, ...,n denotes the
row index of a givenn×n Lefkovitch matrixL

Γ p
i =





(−1)p ∑
n−1≥ip>···>i2>i1≥i

ci1ci2 · · ·cip if 0 < p≤ n− i

1 if p= 0
0 if n− i < p

.

For the products of the transition ratesb1, ...,bn−1 of L

we use the notation

Λ j
i =





j

∏
k=i

bk if i ≤ j ≤ n−1

1 if j = i −1

.

Now we introduce an upper triangular matrixS and a
pseudo-Leslie matrixL defined by

S=




1 s1,2 s1,3 · · · s1,n−1 s1,n
0 1 s2,3 · · · s2,n−1 s2,n
0 0 1 · · · s3,n−1 s3,n
...

...
...

. . .
...

...
0 0 0 · · · 1 sn−1,n
0 0 0 · · · 0 1




,

with

si, j =
Γ j−i

i

Λ j−1
i

, for j ≥ i

and

L =




φ1 φ2 φ3 · · · φn−1 φn
b1 0 0 · · · 0 0
0 b2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · bn−1 0



,

with

φ j =−
Γ j

1

Λ j−1
1

+
j

∑
k=1

Γ j−k
k

Λ j−1
k

fk, for j = 1, ...,n.

We are now in position to state the main result of this work.

Theorem 1.For any Lefkovitch matrix,L , one has
S−1L S = L where S and L are the matrices defined
above.

The following lemma is used in the proof of theorem
1.

Lemma 1.If L is a n×n Lefkovitch matrix, thenΓ p+1
i =

ci−1Γ p
i +Γ p+1

i−1 , for all p≥ 0 and n≥ i > 1.

Proof. As Γ 0
i = 1, Γ 1

i −Γ 1
i−1 = ci−1 and Γ p

i = Γ p+1
i =

Γ p+1
i−1 = 0 for p> n− i, the proof is obvious forp= 0 or

p> n− i . So we may assume 0< p≤ n− i.
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If 0 < p< n− i, then

Γ p+1
i−1 = (−1)p+1 ∑

n−1≥ip+1>···>i2>i1≥i−1

ci1ci2 . . .cip+1

= (−1)p+1 ∑
n−1≥ip+1>···>i2>i1≥i

ci1ci2 . . .cip+1

− (−1)p ∑
n−1≥ip+1>···>i2≥i

ci−1ci2 . . .cip+1

= Γ p+1
i − ci−1Γ p

i .

Finally, assume that 0< p= n− i. In this case, asΓ p+1
i =

0, one gets

ci−1Γ p
i +Γ p+1

i−1 =

= ci−1 (−1)pcici+1 . . .cn−1+(−1)p+1ci−1ci . . .cn−1

= 0= Γ p+1
i . �

We are now in position to prove the main result.

Proof of theorem 1. In order to prove the equalityL S=
SL, we begin by computingSL. As si,i = 1 andsi, j = 0 for
i > j, one has

(SL)i, j =

{
si,1φn if j = n
si,1φ j + si, j+1b j if j < n

=





φn if i = 1, j = n
φ j + s1, j+1b j if i = 1, j < n
b j if i = j +1
si, j+1b j if n> j ≥ i > 1
0 otherwise

.

As Γ n
1 = 0 andΛ j

1 = Λ j−1
1 b j one has

φn =−
Γ n

1

Λn−1
1

+
n

∑
k=1

Γ n−k
k

Λn−1
k

fk

=
n

∑
k=1

Γ n−k
k

Λn−1
k

fk,

and

φ j + s1, j+1b j =−
Γ j

1

Λ j−1
1

+
j

∑
k=1

Γ j−k
k

Λ j−1
k

fk+
Γ j

1

Λ j
1

b j

=−
Γ j

1

Λ j−1
1

+
j

∑
k=1

Γ j−k
k

Λ j−1
k

fk+
Γ j

1

Λ j−1
1

=
j

∑
k=1

Γ j−k
k

Λ j−1
k

fk, for j < n,

finally we get

si, j+1b j =
Γ j+1−i

i

Λ j
i

b j =
Γ j+1−i

i

Λ j−1
i

, for n> j ≥ i.

Thus, we may write

(SL)i, j =





j

∑
k=1

Γ j−k
k

Λ j−1
k

fk if i = 1

b j if i = j +1
Γ j+1−i

i

Λ j−1
i

if n> j ≥ i > 1

0 otherwise

.

Notice that sinceΓ n+1−i
i = 0 for all i, we finally arrive at

(SL)i, j =





j

∑
k=1

Γ j−k
k

Λ j−1
k

fk if i = 1

b j if i = j +1
Γ j+1−i

i

Λ j−1
i

if j ≥ i > 1

0 otherwise

. (2)

Next we computeL S. As si,i = 1 andsi, j = 0 for i > j,
one has

(L S)i, j =

{
∑n

k=1sk, j fk if i = 1
bi−1si−1, j + ci−1si, j if i > 1

=





∑ j
k=1sk, j fk if i = 1

b j if i = j +1
bi−1si−1, j + ci−1si, j if j ≥ i > 1
0 otherwise

=





∑ j
k=1

Γ j−k
k

Λ j−1
k

fk if i = 1

b j if i = j +1

bi−1
Γ j−i+1

i−1

Λ j−1
i−1

+ ci−1
Γ j−i

i

Λ j−1
i

if j ≥ i > 1

0 otherwise

.

As Λ j−1
i−1 = bi−1Λ j−1

i for j ≥ i > 1, one has

bi−1
Γ j−i+1

i−1

Λ j−1
i−1

+ ci−1
Γ j−i

i

Λ j−1
i

=
Γ j−i+1

i−1

Λ j−1
i

+ ci−1
Γ j−i

i

Λ j−1
i

=
Γ j−i+1

i−1 + ci−1Γ j−i
i

Λ j−1
i

and consequently

(L S)i, j =





∑ j
k=1

Γ j−k
k

Λ j−1
k

fk if i = 1

b j if i = j +1
Γ j−i+1

i−1 +ci−1Γ j−i
i

Λ j−1
i

if j ≥ i > 1

0 otherwise

. (3)

Now, using lemma1 we see that (2) and (3) are the same,
which completes the proof.�

The dynamical system (1) can be solved using the
easily computable powers ofL

xn = L
nx0 = S−1LnSx0.
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SinceL andL are similar, they share the same spectrum
and the Perron-Frobenius Theorem still holds forL in
what concerns the existence of a simple dominant positive
eigenvalue. Using a generating function and formal power
series obtained in [1] or the classic Jordan canonical
form, it is always possible to obtain the powers ofL. The
eigenvectors ofL will be studied in the next section.

3 Sinai Kolmogorov entropy, Markov
matrices and stationary distributions

In this section, using a simple example, we show that the
Kolmogorov-Sinai entropy [3,4,5,6] is not an algebraic
invariant. We also establish that two Markov matrices
associated [6] to population dynamics similar matrices1

are similar. Finally, we establish a transformation rule for
the two stationary distributions of Markov matrices
associated with two similar population matrices.

Given two matrices, one of Lefkovitch type and the
other of Leslie type2, with the same growth rate, they can
have different Sinai-Kolmogorov entropies as we see in the
following example.

Example 1.Let

L =

[
1 3

0.4 0.55

]
,

we have the similarity matrix

S=

[
1 −1.375
0 1

]
,

and a Leslie matrixL similar toL , which is

L =

[
1.55 1.625
0.4 0

]
.

The Perron-Frobenius dominant eigenvalue is
λ = 1.89331 both forL andL . The Markov matrixPA

[6], corresponding to a population matrixA is obtained
using the relations

pA
i j =

ai j u j

λui
,

whereλ is the dominant eigenvalue ofA, and the column
vector u = (ui)i=1,...,n > 0 is the Perron-Frobenius right
eigenvector ofA. (The left eigenvector will be called the
line vectorv = (vi)

T
i=1,...,n). For the Lefkovitch matrixL

we get the associated Markov matrix

PL =

[
0.528175 0.471825
0.709504 0.290496

]
,

1 Under very general conditions.
2 We consider a true non-negative Leslie matrix to establish

this conclusion.

the stationary distribution of PL is
πL =

[
0.600598 0.399402

]
. The population

Sinai-Kolmogorov entropy [6] is

HL =−
2

∑
i, j

πL
i pL

i j logpL
i j ,

where pL
i j are the entries ofPL and πL

i are the

components of the stationary distributionπL of PL (the
left eigenvector associated with the Perron-Frobenius
eigenvalue 1 ofPL , such thatπL PL = πL ). Doing the
same computation forL we have

HL =−
2

∑
i, j

πL
i pL

i j logpL
i j ,

wherePL is the matrix with entriespL
i j , the Markov matrix

associated toL is

PL =

[
0.818671 0.181329

1 0

]
.

The stationary distribution of PL is
πL =

[
0.846504 0.153496

]
and the entropies ofL andL

are different, respectively HL = 0.656027 and
HL = 0.400738.

The Markov matricesPL andPL associated toL and
L are also similar, with the same eigenvalues as we will
see below. This result can be stated in the general context
of similar matrices3 under the following hypothesis, which
are assumed until the end of the paper:

1.L is non-negative and irreducible, therefore has the
dominant eigenvalueλ , and associated left and right
positive eigenvectorst andw, respectively.

2.L andL are similar, related by the invertible similarity
matrixS, such thatL S= SL.

3.L, not necessarily non-negative, has right and left
eigenvectors, respectivelyu and v, associated toλ
with all entries positive.

The right eigenvector ofL associated to the dominant
eigenvalueλ

Lu = λu

is related to the right eigenvectorw of L by the
transformation rulew =Su, since

L Su =λSu ⇔L w =λw.

The same happens for the left eigenvectorv of L

vL = λv

and the left eigenvectort = vS−1 of L , since

vS−1
L=λvS−1⇔ tL=λ t.

3 Not necessarily Lefkovitch, Usher or Leslie matrices.
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The Markov matrix associated withL [6] is given by its
entries

pL
i j =

Li j u j

λui
.

On the other hand, the Markov matrix associated withL

is given by

pL
i j =

Li j wj

λwi
.

The stationary distribution [6] of PL is

πL =

[
v1u1 v2u2 . . . vnun

]

vu
,

wherevu is a compact notation for the inner product of
the line vectorv and the column vectoru. The stationary
distribution ofL is

πL =

[
t1w1 t2w2 . . . tnwn

]

tw
.

It is possible to prove that the Markov matricesPL andPL

are similar.

Proposition 1.PL and PL are similar if L and L are
similar.

Proof. One defines the square matricesU andW such that

U =




u1
u2

. . .
un


 , W =




w1
w2

. . .
wn




with all ui 6= 0 andwi 6= 0, the inverses ofU andW are

U−1 =




1
u1

1
u2

. . .
1
un




, W−1 =




1
w1

1
w2

. . .
1

wn




.

With this notation consider the transformations

PL =
1
λ

U−1LU andPL =
1
λ

W−1
LW,

whereλ 6= 0.
Now, it is straightforward to prove thatPL andPL are

similar

PL =
1
λ

W−1
LW =

1
λ

W−1SLS−1W.

On the other hand

PL =
1
λ

U−1LU .

Therefore,λQ andλP are similar, since both are similar
to L. Explicitly

L = λS−1WPL W−1S= λUPLU−1

or
PL =U−1S−1WPL W−1SU, (4)

as desired.�
We can prove thatπL is a stationary distribution of

PL [6] using matrix notation.

Proposition 2.The row vector πL is a stationary
distribution of PL .

Proof. Using the left eigenvectort =
[
t1 t2 . . . tn

]
of L ,

we define a diagonal matrix

T =




t1
t2

. . .
tn


 .

We have

πL PL =
1

λ tw

[
1 1 ... 1

]
TWW−1

LW

=
1

λ tw

[
t1 t2 ... tn

]
LW,

sincet is a left eigenvector ofL we have

πL PL =
1

λ tw
λ
[
t1 t2 ... tn

]
W

=
TW
tw

= πL . �

Using analogous techniques we obtain the relation
between the two stationary distributions ofPL andPL .

Proposition 3.The stationary distributionsπL andπL are
related by

πL = πL W−1SU

Proof. From (4) we have

PL = Z−1PL Z,

whereZ =W−1SU. In that case the stationary distribution
πL is given by the relationship

πLPL = πL
,

so

πLZ−1PL Z = πL ⇐⇒ πLZ−1PL = πLZ−1
,

which means that

πL = πLZ−1,

as desired.�
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Remark.All the results in this section apply to the case of
an irreducible Lefkovitch matrixL and a similar pseudo-
Leslie matrixL, since any matrix of the form

L =




φ1 φ2 · · · φn−1 φn
b1 0 · · · 0 0
0 b2 · · · 0 0
...

...
.. .

...
...

0 0 · · · bn−1 0



,

with positive coefficientsb j and with the dominant
eigenvalueλ has the positive right eigenvector

u =




Λ0
1

Λ1
1

λ
Λ2

1
λ 2

...
Λn−1

1
λ n−1




=




1
b1
λ

b1b2
λ 2

...
b1b2···bn−1

λ n−1




.

The similar Lefkovitch matrix

L =




f1 f2 f3 · · · fn−1 fn
b1 c1 0 · · · 0 0
0 b2 c2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cn−2 0
0 0 0 · · · bn−1 cn−1




is always irreducible iffn > 0 and all theb j are positive,
[2]. Therefore, similar Lefkovitch and pseudo-Leslie
matrices,L andL, satisfy conditions1, 2 and3.
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