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The wall dependence of length scales used to describe large- and small-scale structures
of turbulence is examined using highly resolved experiments in zero-pressure-gradient
turbulent boundary layers and pipe flows spanning the range 2000 < Reτ < 37 700.
Of particular interest is the influence of external intermittency on the scaling of these
length scales. It is found that when suitable scaling parameters are selected and external
intermittency is accounted for, the dissipative motions follow inner scaling even into the
outer-scaled regions of the flow, and that certain large-scale descriptions follow outer
scaling even in the inner-scaled regions of the flow. The wall dependence is the same
for both internal pipe and external boundary layer flows, and the different length scales
can be related to recognizable features in the longitudinal wavenumber spectrum.
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1. Introduction

Due to their importance in numerous engineering and natural systems, the scaling of
turbulent wall-bounded flows has been a subject of great interest (e.g. Coles 1956; Smits
et al. 2011; Marusic et al. 2013). Close to the wall, the mean flow follows inner scaling,
with a characteristic velocity scale called the friction velocity, uτ = (τw/ρ)−1/2, and a
characteristic length scale called the viscous length scale, ν/uτ , where τw is the wall
shear stress, and ρ and ν are the density and kinematic viscosity of the fluid, respectively.
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In the outer part of the flow, the statistics follow outer scaling, with the same velocity scale
uτ but a different length scale corresponding to the layer thickness δ. At high Reynolds
numbers, an overlap region develops where both scalings are valid. These observations
hold for pipe, channel and boundary layer flows, but the external boundary conditions
produce some differences in the functional relationships among these flows in the outer
region (that is, in the wake region).

The turbulent stresses generally follow this scaling behaviour, except that the large-scale
motions in the outer and overlap regions interact with the small-scale motions in the
inner region through time-dependent superimposition and amplitude modulation, so the
amplitudes of the inner layer stresses display a Reynolds number dependence (e.g.
Mathis, Hutchins & Marusic 2009; Marusic, Mathis & Hutchins 2010; Smits 2020; Smits
et al. 2021). Nevertheless, the stresses all display a wide range of wavenumbers, and
Kolmogorov (1941) proposed that at sufficiently large Reynolds number, the small scales
of turbulence (the high wavenumber parts of the spectrum) are homogeneous and isotropic,
and independent of boundary conditions, thereby having universal characteristics dictated
only by the mean dissipation rate 〈ε〉 of turbulent kinetic energy, and ν. We use 〈·〉 to
indicate a mean quantity assessed over a statistically homogeneous ensemble. For the
stationary and ergodic flows considered here, we determine 〈·〉 using a time average that is
thus dependent on spatial position. There is an intermediate range of wavenumbers, called
the inertial subrange, where the power spectral density is independent of the viscosity
and follows the famous −5/3 law. At the highest wavenumbers, in the dissipative range
where viscosity is dominant, dimensional analysis of 〈ε〉 and ν yields the Kolmogorov
length scale 〈ηK〉 = (ν3/〈ε〉)1/4 and velocity scale uη = (〈ε〉ν)1/4. Kolmogorov scaling
has been tested extensively in wall-bounded flows (e.g. Saddoughi & Veeravalli 1994) and
found to successfully scale the dissipative motions, for example through the collapse of
the high-wavenumber end of energy spectra scaled by 〈ε〉, ν and 〈ηK〉 (e.g. Grant, Stewart
& Moilliet 1962; Rosenberg et al. 2013).

What has received less attention in wall-bounded flow is the wavenumber relationship
between inner/outer scales, δ and ν/uτ , and their commensurate scales L and 〈ηK〉,
where L is a characteristic measure of the low-wavenumber end of the spectrum (e.g.
Kolmogorov 1941; Pope 2000). Of interest here is the universality of this coupling among
internal (pipe and channel) and external (turbulent boundary layer) flows. One of the
challenges associated with our investigation is that the Reynolds number needs to be large
enough to achieve sufficient separation of scales, so that δ � uτ /ν and L � 〈ηK〉.

Complicating any comparison between internal and external flows is the presence
of intermittency in external flows, where laminar freestream fluid is entrained into the
boundary layer along a time-dependent turbulent/non-turbulent interface (Kovasznay,
Kibens & Blackwelder 1970). This interaction between turbulent and non-turbulent fluid,
which is absent in fully-developed channel and pipe flows, occurs on two separate scales:
one that is correlated with the size of the large-scale motions in the outer layer (∼ 2δ–3δ),
and one that is a diffusive, viscous scale at the interface itself (Kovasznay 1967). The
first is called the entrainment scale, and the second is referred to as nibbling at the
interface (Mathew & Basu 2002; Westerweel et al. 2005; Holzner et al. 2007). The level
of intermittency varies strongly with the distance from the wall; near the wall, the flow
is fully turbulent, while it is laminar in the freestream. Hence it can be expected that the
presence of intermittency provides a strong influence on any locally averaged statistics
calculated in the outer layer of external flows.

Here, we combine previously unpublished highly resolved experimental data from a
high-Reynolds-number turbulent boundary layer with previously published well-resolved
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high-Reynolds-number pipe and boundary layer measurement data to examine the
relationship between different length scales of turbulence, with particular focus on
the influence of external intermittency on the comparison between internal to external
flows. The high Reynolds numbers of these data allows the conditions required for the
formation of an inertial subrange, i.e. L � 〈ηK〉, to be met. With these data, we show
that properly selected small-scale turbulence descriptors follow inner scaling throughout
the wall-bounded flow, including in regions expected to be described by outer scaling, and
that properly selected descriptors of large-scale turbulence follow outer scaling throughout
the wall-bounded flow. Similar behaviour was observed for both internal and external
boundary layer flows, once rectification had been applied for the effects of external
intermittency, and we show that these scales can be related to features in the longitudinal
energy spectrum.

2. Experiments description

2.1. Facilities and flow conditions
The high-Reynolds-number wall-bounded flow data were acquired using thermal
anemometry in three different facilities. Two data sets come from compressed-air facilities:
the High Reynolds Number Test Facility (HRTF) at the Princeton University Gas
Dynamics Lab, in which a zero-pressure-gradient turbulent boundary layer was developed
along a smooth flat plate in a compressed-air wind tunnel (with the measurements
described in Vallikivi, Hultmark & Smits 2015b); and the canonical pipe flow produced
by the Superpipe facility at the Princeton University Gas Dynamics Lab (with the
measurements described in Hultmark et al. 2012, 2013). These data are complemented
by additional, previously unpublished measurements taken in the High Reynolds Number
Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne, Australia, in
which the turbulent boundary layer develops along the wind tunnel floor. The HRNBLWT
facility is described in Nickels et al. (2007).

Experimental conditions are summarized in tables 1–3 for the HRNBLWT, HRTF
and Superpipe, respectively. In this study, δ represents the radius and 99 % boundary
layer thickness for the pipe and turbulent boundary layer cases, respectively. Note that
for the HRNBLWT turbulent boundary layer data, the friction velocity was estimated
using the Clauser approach using von Kármán constant 0.39, whereas for the HRTF data,
multiple techniques were used to estimate uτ (see Vallikivi et al. 2015b). For the Superpipe
measurements, the friction velocity was determined from the pressure loss measured along
a length of the pipe (Hultmark et al. 2013). It should be noted that some differences
have been observed between the mean velocity profiles of the corrected Pitot data and
those produced by the Hultmark et al. (2013) data, which may be due to uncertainty in
the determined friction velocity (e.g. Bailey et al. 2014). The data set encompasses an
order of magnitude of Reynolds number range 2000 � Reτ � 38 000 in pipe flow, and
2500 � Reτ � 17 000 for the turbulent boundary layer. The HRNBLWT measurements,
having higher resolution than the HRTF measurements, also provide confidence that
observations made are agnostic to both facility and sensor resolution.

2.2. Instrumentation
To achieve the spatial and temporal resolutions required to resolve near-Kolmogorov
scales at these Reynolds numbers, a nanoscale thermal anemometry probe (NSTAP)
was used for all cases (as described in Bailey et al. 2010; Vallikivi et al. 2011;
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Parameter Case 1 Case 2 Case 3

Symbol
Boundary layer thickness, δ (m) 0.275 0.249 0.251
External mean velocity, Uex (m s−1) 11.0 16.8 21.0
Friction velocity, uτ (m s−1) 0.37 0.56 0.68
Reτ = δuτ /ν 6500 9000 11 000
Ambient pressure (kPa) 101 101 101
�+ = �uτ /ν 1.42 2.17 2.71

Table 1. Table of experimental conditions, HRNBLWT.

Parameter Case 1 Case 2 Case 3 Case 4

Symbol
Boundary layer thickness, δ (m) 0.0274 0.0280 0.0287 0.0281
External mean velocity, Uex (m s−1) 9.1 10.4 10.6 10.8
Friction velocity, uτ (m s−1) 0.33 0.35 0.35 0.34
Reτ = δuτ /ν 2600 5100 9500 17 000
Ambient pressure (kPa) 458 810 1499 2890
�+ = �uτ /ν 5.8 10 17 29

Table 2. Table of experimental conditions, HRTF.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Symbol
Pipe radius, δ (m) 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648
Centreline mean velocity,

Ucl (m s−1)
11.7 12.1 10.0 11.1 12.3 12.2

Friction velocity, uτ

(m s−1)
0.46 0.46 0.37 0.38 0.40 0.38

Reτ = δuτ /ν 2000 3300 5400 10 500 20 300 37 700
Ambient pressure (kPa) 101 169 345 651 1195 2382
�+ = �uτ /ν 1.8 3.1 5.0 9.7 19 35

Table 3. Table of experimental conditions, Superpipe.

Hultmark et al. 2012, 2013; Vallikivi & Smits 2014; Bailey & Witte 2016). These probes
measured the streamwise, U1, component of velocity. Here, we will use subscripts 1, 2, 3
to indicate streamwise, wall-normal and transverse directions, respectively.

The probe used in these experiments had a sensing element measuring � = 60 μm long
by 2 μm wide by 100 nm thick. The resulting �+ values are provided in tables 1–3 for each
case. Noting that the minimum 〈ηK〉+ is 2–3, these �+ values indicate that the probes were
smaller than the Kolmogorov scale for all HRNBLWT cases, and for Reτ < 5000 for the
Superpipe cases. At the highest Reτ measured, the probe was only at the same order of
magnitude of 〈ηK〉 within the outer layer. In addition, Monkewitz (2022) noted that sensor
blockage could influence statistics measured by the NSTAP when the probe was less than
300 μm from the wall. However, comparison of HRNBLWT and HRTF cases at matched
Reτ suggests that the reduced spatial resolution and increased potential for probe blockage
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within the compressed-air facilities does not appear to have a significant impact on the
statistics considered here.

In all cases, the NSTAP probes were operated using a Dantec Streamline anemometer
with resistance overheat ratio 1.2. However, digitization frequencies ranged from 250 kHz
for the HRNBLWT cases to 300 kHz for the HRTF and Superpipe cases, with
corresponding analogue anti-aliasing low-pass filter frequencies 100 kHz. Calibration of
the probes took place in situ, directly prior to, and following, each measurement run using
a Pitot-static tube located outside the boundary layer or at the centreline of the pipe. For all
cases, measurements were conducted at more than 40 positions in the wall-normal y = x2
direction.

Due to the feedback circuit employed in constant-temperature anemometry, and sample
rates exceeding the energy content of the turbulence, there was f 2 noise (Saddoughi &
Veeravalli 1996) present in the data at high frequencies. Therefore, when post-processing
the data, we assumed that the frequency at which the local gradient of spectra transitions
from negative to positive indicates the point where instrumentation noise is of the
same order as turbulent signal (Bailey et al. 2009). We eliminate frequency content
above this point using an eighth-order low-pass digital Butterworth filter with cutoff
frequency fcut. The actual value of fcut was a function of the signal-to-noise ratio and
varied with measurement position, Reynolds number and facility. In all cases, it was
determined to be higher than the frequency corresponding to the Kolmogorov time
scale.

In addition, Taylor’s frozen flow hypothesis was employed to translate temporal statistics
into spatial statistics, after ensuring that ratio |u1|/〈U1〉 was sufficiently small (Taylor
1938; Meneveau & Sreenivasan 1991), where u1 arises from Reynolds decomposition
following U1 = 〈U1〉 + u1. It was thus assumed that local mean velocity is the advective
velocity of all turbulent length scales, giving an approximation of spatial separation
Δx1 ≈ 〈U1〉Δt, where Δt is a time displacement. Generally, Taylor’s frozen flow
hypothesis provides a reasonable approximation for small scales of turbulence; however, it
is understood that it introduces error in translating large scales (Zaman & Hussain 1981;
del Álamo & Jiménez 2009).

2.3. External intermittency detection
Appearance of intermittent laminar regions interspersed with regions of turbulent flow
is known to bias the probability density functions (PDFs) of local dissipative length
scale η towards larger scales within the outer layer (Alhamdi & Bailey 2018), and
a similar influence can be expected on other statistical quantities. Hence an external
intermittency detection approach was used to distinguish instances when the probe was
within turbulent flow from when it was in laminar flow. In previous work, identification of
the turbulent–laminar interface within velocity time series was conducted using detection
functions based on time derivatives of velocity components, instantaneous shear stress,
velocity magnitude and local kinetic energy (Hedleyt & Keffer 1974; Tsuji et al. 1991;
Chauhan et al. 2014). Here, the kinetic energy criterion was used to identify turbulent
regions following the procedure developed by Chauhan et al. (2014). This approach
assumes that within the outer region of a turbulent boundary layer, non-turbulent regions
have an advective velocity close to the external flow velocity Uex, while turbulent regions
originating from the wall will have mean velocity that is lower than Uex (Corrsin
& Kistler 1955; Fiedler & Head 1966; Kovasznay et al. 1970; Jiménez et al. 2010;
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Chauhan et al. 2014). This allows the formation of the detection function

γ (t) = 100
(

1 − U1(t)
Uex

)2

, (2.1)

such that, when combined with a threshold value, the region is assumed to be non-turbulent
when γ (t) is less than the threshold. Previous experimental work showed that in case of the
external boundary layer, the freestream turbulence intensity is not exactly zero, in contrast
to jet flows, thus selecting correct threshold value can be challenging (Chauhan et al. 2014).
Here, the threshold value γt = 0.05 was used, which corresponds to |u1| ≈ 0.02Uex at the
edge of the boundary layer.

Using this indicator, statistics could be extracted from only the turbulent regions
detected within the time series. Note that external intermittency was most evident for
y/δ � 0.5, increasing in frequency with y, and reaching a maximum frequency at y ≈ 0.7δ.
For y > 0.8δ, external laminar flow was predominant, which meant that the average length
of laminar regions became larger than the average length of turbulent regions. Hence
as y approached δ, some individual turbulent regions were found to become too short
to achieve converged statistics. To address this issue, the minimum size of turbulent
regions considered was set at half the boundary layer thickness. This value (� 0.5δ)
was selected for two reasons: (1) it was found to be the minimum value that allowed
calculation of acceptable energy spectra; and (2) it ensured that the lengths of the shortest
turbulent regions were of the order of the wall-normal distance and/or the boundary layer
thickness. For the purpose of the current paper, small-scale nibbling motions around the
interface were assumed to be a part of the turbulent structure, therefore only larger-scale
motions (≈ O(δ), as suggested by Chauhan et al. 2014) were considered in separating
turbulent/non-turbulent flows. However, it was found that effects of including short regions
in deriving the statistics were insignificant for the range 0.5δ � y � δ.

Finally, when calculating point statistics requiring an advective velocity, the advective
velocity used was the global mean value of all the turbulent regions. This was done to
account for contributions to the local fluctuations from the different advective velocities
of each turbulent region. Conversely, to avoid biases by the interfaces when calculating
time-dependent statistics, these were calculated using the advective velocity for the
individual turbulent regions and then ensemble averaged. For example, to evaluate the
energy spectrum at a wall-normal distance within the region influenced by external
intermittency, the spectrum was calculated for each portion of the time series identified
as turbulent, and then interpolated to a common wavenumber vector prior to averaging.

3. Results

3.1. Large scales
We begin by examining the scaling of parameters used to characterize large and most
energetic scales of turbulence, L. In practice, the integral length scale ILS is often used
as a measure of L, to represent the low wavenumber end of the inertial subrange (or
the beginning of the −5/3 region). To calculate ILS, we used Taylor’s hypothesis and
integrated the autocorrelation following

ILS = 〈U1〉
〈u2

1〉
∫ τc

0
〈u1(t + τ)u1(t)〉 dτ, (3.1)

where τc is the value of τ where the autocorrelation first reaches value 0.
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Wall-bounded turbulent flow has large-scale anisotropic structures that will influence
ILS, which here is calculated using the longitudinal velocity component only. These
structures include sublayer streaks (Kline et al. 1967), hairpin vortices near the wall (Head
& Bandyopadhyay 1981), large-scale motions corresponding to bulges of turbulence at the
edge of the wall layer (Kim & Adrian 1999; Guala, Hommema & Adrian 2006; Balakumar
& Adrian 2007), and superstructures of very large scale within the overlap region and, in
the case of pipe and channel flows, within the wake region as well (Kim & Adrian 1999;
Hutchins, Hambleton & Marusic 2005; Monty 2005; Tomkins & Adrian 2005; Guala et al.
2006; Balakumar & Adrian 2007; Monty et al. 2009). Large-scale motions also modulate
the near-wall flow and influence the flow structure near the wall (Mathis et al. 2009).
Considering the various length scales of these energy-containing motions, the ILS value
can be expected to represent a superposition of a range of anisotropic contributions, and
therefore may not be an appropriate metric to exemplify the idealized isotropic eddies
below the low-wavenumber end of the inertial subrange. Within wall bounded flows, it has
also been suggested that the energy-containing range of the spectrum depends on δ, with
an overlap inertial layer scaling with y (Perry, Henbest & Chong 1986; Morrison et al.
2004; Vallikivi, Ganapathisubramani & Smits 2015a).

An alternative approach to describe L, which can be used when there is no clear
geometric large scale, can be found from scaling arguments based on the energy cascade,
specifically

L = TKE3/2

〈ε〉 , (3.2)

where TKE is the turbulent kinetic energy.
However, (3.2) requires estimation of both mean dissipation rate 〈ε〉 and turbulent

kinetic energy TKE. As the NSTAP was unable to resolve more than one component of
velocity, we instead use the approximation

L ≈
(

3
2 〈u2

1〉
)3/2

〈ε〉 . (3.3)

Note that due to the anisotropy of wall-bounded turbulence, 3
2 〈u2

1〉 should not be
considered to be an accurate estimate of TKE. Furthermore, 〈u2

1〉 is itself subject to
contributions from longitudinal energetic structures, hence their contribution cannot be
neglected, and L should be considered as an estimate of the longitudinal scale of the large
eddies. When examining the scaling of dissipative motions at low Reτ (Alhamdi & Bailey
2017, 2018), this measure of the longitudinal length scale provided reasonable scaling of
fine turbulent structure within the boundary layer for the entire range of y, once external
intermittency was accounted for.

The mean dissipation rate 〈ε〉 was found assuming local isotropy and integrating
the one-dimensional dissipation spectrum D(k1) (Townsend 1976). This, in turn, was
approximated by the one-dimensional longitudinal energy spectrum E11(k1) such that

〈ε〉 ≈
∫ kc

0
D(k1) dk1 ≈ 15ν

∫ kc

0
k2

1 E11(k1) dk1, (3.4)

where the streamwise wavenumber was found from frequency f according to k1 ≈
2πf /〈U1〉. Note that kc is the wavenumber representation of the filter frequency fcut. For
y+ > 50, comparison of 〈ε〉 calculated using this approach by Bailey & Witte (2016)
in channel flow was found to compare favourably to the 〈ε〉 values calculated from the
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direct numerical simulation data of Lee & Moser (2015) at similar Reynolds numbers.
The reduced agreement for y+ < 50 can be attributed to the reduced scale separation and
increased anisotropy of the small scales near the wall. Similar behaviour can be expected
in the current data set.

It was found that the HRTF data had under-resolved high-frequency content due to low
signal-to-noise ratio at the high frequency. Therefore, to obtain estimates of 〈ε〉 for these
cases, the longitudinal energy spectrum scaling was assumed, allowing a fit to the inertial
subrange such that

〈ε〉 ≈
(

1
C1

k5/3
1 E11(k1)

)3/2

, (3.5)

using C1 = 0.53 as suggested by Sreenivasan (1995).
Although both ILS and L have been identified as potential characteristic longitudinal

length scales of the energy containing eddies, which are expected to scale with
δ, comparison of the outer-scaled behaviour between the two, as done in figure 1,
shows significant differences in their scaling behaviours. Figure 1(a) reveals that
despite there being collapse of ILS/δ for y/δ < 0.05, for y/δ > 0.05 there is both
Reynolds-number-dependent and geometry-dependent variability observed. Although
ILS ≈ δ for y/δ > 0.1, the profiles of L/δ shown in figure 1(b) show larger values with
L ≈ 1.5δ–2.5δ. Hence, with increasing y, the values of L are larger than ILS for y/δ > 0.5,
although neither appears to capture the scale of large-scale (2δ–3δ) or very-large-scale
(10δ–20δ) motions.

For both ILS/δ and L/δ, the boundary layer cases show higher Reynolds number
dependence than the pipe flow cases for all y < δ. Notably, this behaviour changes
significantly when only the turbulent regions of the outer layer are considered when
calculating these scales, as shown in figures 1(c) and 1(d) for ILS/δ and L/δ, respectively.
From figure 1(c), it is evident that the Reynolds number dependence of ILS/δ for the
boundary layer is reduced significantly, and two clear trends appear, differentiating the
pipe and boundary layer flow behaviours. The decrease in ILS/δ evident with increasing
y/δ is consistent with the wall-normal structure of the uniform momentum zones observed
in turbulent boundary layers (de Silva, Hutchins & Marusic 2016).

Interestingly, as shown in figure 1(d), there is an increased agreement between pipe and
boundary layer cases in the wall-normal dependence of L/δ (in the range 0.05 < y ≤ δ)
once the boundary layer cases have been corrected for external intermittency. Note that
variability in the L/δ scaling for y/δ < 0.05 could be attributed to the approximations
used to estimate 〈ε〉. The improvement in agreement further from the wall suggests that
much of the differences between the two geometries in the outer layer can be attributed to
external intermittency. One possible explanation for this reduced geometry dependence is
that L, being composed of 〈u2

1〉 and 〈ε〉, will be modulated by the isotropy of 〈ε〉, and much
more tightly bounded by y than ILS which, as discussed previously, can include increased
contributions from anisotropic large scales.

This last observation is further highlighted by comparing the ILS/〈ηK〉 and L/〈ηK〉
Reynolds number dependence which, following classical scaling arguments, is expected
to follow Re3/4

ILS or Re3/4
L behaviour, respectively. Here, ReILS = 〈|ΔILS|〉 ILS/ν and

ReL = 〈|ΔL|〉 L/ν, where
Δτ = u1(t + τ) − u1(t), (3.6)

is the longitudinal velocity increment, and |τ | is equal to ILS/〈U1〉 and L/〈U1〉 for ΔILS
and ΔL, respectively.
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Figure 1. Outer-scaled (a) ILS and (b) L, including laminar portions of the time series in the ILS and
L calculation. Corresponding outer-scaled profiles using only turbulent portions of the time series in the
calculation are shown in (c) ILS and (d) L. All cases are shown with symbols as provided in tables 1–3.

In figures 2(a,b), we compare the scaling of ILS/〈ηK〉 as a function of ReILS to the
scaling of L/〈ηK〉 as a function of ReL. Although both descriptions of the large scales
produce trends close to the expected 3/4 exponent, the ILS/〈ηK〉 scaling shows more
variability about the slope. Although it is not strictly clear in figure 2(a), at high ReILS
a single profile can produce multiple values of ILS/〈ηK〉 for the same value of ReILS. This
is best illustrated in figure 2(c), which isolates the single case of pipe flow at Reτ = 10 500.

Conversely, L/〈ηK〉 (see figure 2b) has much more consistent agreement with the
theoretical 3/4 slope, and little evidence of non-uniqueness in the ReL dependence.
Figure 2(d) shows this behaviour for the isolated pipe flow case at Reτ = 10 500. However,
for ReL > 103, the local slope of L/〈ηK〉 deviates from Re3/4

L and becomes closer to Re0.76
L .

Note that the agreement of the L/〈ηK〉 scaling is not unexpected as 〈ηK〉 ∼ L Re−3/4
L can be

recovered exactly by replacing ΔL with 〈u2
1〉1/2 as the velocity scale in ReL. Therefore, the

deviation from 3/4 slope in figure 2(b) reflects the difference between 〈u2
1〉1/2 and ΔL as

representative velocity scales associated with L. However, since 〈u2
1〉1/2 is an integrated

quantity over all scales, it is less descriptive of the largest scales, therefore it makes
heuristic sense to use ΔL as a description of the large-scale turbulence as it is linked
directly to the energy at spatial scale L. There is also deviation of L/〈ηK〉 from 3/4 slope
at ReL < 200, which can be attributed to insufficient scale separation.
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Figure 2. Scale separation represented by (a) ILS/〈ηK〉 and (b) L/〈ηK〉 as functions of ReILS and ReL,
respectively. The same results isolated for a single case of pipe flow at Reτ = 10 500 are shown in (c) and
(d), respectively. Symbols as provided in tables 1–3, with a red line indicating Re3/4

ILS in (a), and Re3/4
L in (b).

External intermittency effects are accounted for in both (a) and (b).

To summarize, the comparison of ILS to L as a characteristic measure of the longitudinal
large length scale of wall-bounded turbulent flow demonstrates that L exhibits significantly
less dependence on Reτ and geometry. There are two potential reasons for this result.
First, in fixed-point measurements, calculation of ILS requires assuming that Taylor’s
frozen flow hypothesis is valid at large scales. It has long been acknowledged that Taylor’s
hypothesis can bias large-scale statistics (e.g. del Álamo & Jiménez 2009). Conversely,
the calculation of L requires the Taylor’s hypothesis to be valid only at small scales,
which is a more reasonable assumption, at least farther from the wall ( y+ > 50). Second,
since ILS is a superposition of a wide range of large length scales, it is influenced by
external intermittency. Even when a correction is imposed (e.g. (2.1)), the correction
effectively high-pass filters integral statistics by segmenting the turbulent regions into
smaller ensembles, which reduces the measured longitudinal scale. In contrast, L, being
a point statistic (which can also be calculated in the statistically homogeneous spanwise
and azimuthal directions), displays greatly reduced Reτ and geometry dependence once
external intermittency corrections have been applied.

3.2. Small scales
We now examine the effect of external intermittency on the scaling of the smallest,
dissipative motions of turbulence. To do so, we examine not just the scaling of the
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Figure 3. Inner-scaled (a) 〈ηK〉 and (b) η0, including laminar portions of the time series in the 〈ηK〉 and
η0 calculations. Corresponding inner-scaled profiles using only turbulent portions of the time series in the
calculation are shown in (c) 〈ηK〉 and (d) η0. All cases are shown with symbols as provided in tables 1–3. Blue
lines indicate (3.7), and red lines indicate (3.8).

Kolmogorov scale 〈ηK〉, but also an alternative descriptor η0, introduced to account
for internal intermittency (Yakhot 2006; Hamlington et al. 2012a; Schumacher et al.
2014). This length scale, defined as η0 ∼ L Re−0.73

L , can be considered as analogous to
〈ηK〉, but intrinsically enforces the scaling presented in figure 2. We first examine the
inner-scaled behaviour of these parameters using figure 3, which shows 〈ηK〉+ = 〈ηK〉uτ /ν

and η+
0 = η0uτ /ν as functions of inner-scaled wall-normal distance y+ = yuτ /ν.

The quantities 〈ηK〉 and η0 represent two approaches to quantify the dissipative scales,
and as shown in figures 3(a,b), both of these metrics for the small scales exhibit inner
scaling in the near-wall region for both geometries over a wide range of Reynolds
numbers, with 〈ηK〉+ exhibiting better agreement than η+

0 . Notably, the pipe flow results
exhibit collapse over the entire range of y+ values, whereas the turbulent boundary layer
results exhibit Reτ dependence in the outer layer. This last observation is shown to be a
consequence of external intermittency as demonstrated by figures 3(c,d), which reveals
that once external intermittency was accounted for, both parameters scale well using inner
scaling over the entire depth of the wall-bounded flow over a large Reynolds number
range and independent of boundary conditions. That said, figure 3(c) does show some
residual outer-layer dependence, with deviations from the general trend less than 20 %.
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Similar outer-layer dependence was noted in the lower-Reynolds-number channel flow
measurements of Bailey & Witte (2016).

Note that 〈ηK〉+ and η+
0 are of the same order, and both show dependence on y+,

which can be expected given the change in local turbulence Reynolds number and
corresponding wall-distance-dependent scale separation within the turbulence. However,
a slightly different relationship with y+ can be observed between the two, as could be
expected from the different ReL behaviours for these two parameters.

For y+ ≥ 10, the wall-normal dependencies of both 〈ηK〉+ and η+
0 were well represented

by empirical power-law approximations

〈ηK〉+ ≈ 0.85( y+)0.25 coth
(

y+

50

)0.3

(3.7)

and

η+
0 ≈ 1.45( y+)0.23 coth

(
y+

20

)0.25

, (3.8)

where the hyperbolic cotangent is introduced as a damping function to represent the
increased influence of viscosity near the wall (see figure 3).

Both dissipation rate and scales have also been understood to have spatially intermittent
behaviour, where regions of intensive dissipation are separated by regions of lower
turbulent dissipation rate (Batchelor & Townsend 1949). This internal intermittency
suggests that the mean dissipation rate, and by extension 〈ηK〉, may be a poor
representation of the highly skewed dissipation field (Schumacher et al. 2014). Instead,
it has been proposed that treating dissipation as a random fluctuating field introduces the
potential for improved scaling of small-scale statistics at higher-order moments (Yakhot
2006; Yakhot, Bailey & Smits 2010).

By treating the dissipation scale as a fluctuating field of local dissipation scales, it is then
characterized using a distribution of dissipative scales. This distribution can be obtained
for the Kolmogorov scales by utilizing the intermittent distribution of dissipation rate.
Time series of instantaneous dissipation rate can be approximated using

ε(t) ≈ 15ν

〈U1〉2

(
du1

dt

)2

. (3.9)

In turn, the time dependence of the local Kolmogorov scale can be formed from

ηK(t) ≈
(

ν3

ε(t)

)1/4

, (3.10)

allowing a probability density function (PDF) of ηK(t) to be calculated from each
measured time series.

The resulting PDFs Q(ηK/〈ηK〉) are presented in figure 4(a) for all data sets considered
here, including all Reτ and wall-normal distances, totaling 552 time series.

The PDFs shown in figure 4(a) are analogous to the moments of the dissipation rate
εn/〈ε〉n presented in Hamlington et al. (2012a,b) and Schumacher et al. (2014), who
observed universality in the Re dependence of these moments for homogeneous isotropic
turbulence, the centreline of turbulent channel flow and the centre of Rayleigh–Bénard
convection cells – locations where mean shear is minimal. However, they also observed
that mean shear affects the PDF of local dissipation scales at low Re. Figure 4(a)
shows that although the same general distribution is observed for the different Reτ and
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Figure 4. PDFs of (a) ηK and (b) η shown normalized, including laminar portions of the time series.
Corresponding PDFs considering only turbulent portions of the time series are shown for (c) ηK and (d) η.
All measurement locations for all cases measured are shown. The solid blue line is a log-normal distribution
with mean 0.28〈ηK〉 and standard deviation 0.45〈ηK〉. The solid red line shows the empirical fit given by (3.12).

wall-normal positions (i.e. mean shear) considered here, there is significant variability in
the distributions.

Alternative approaches to describing the dissipative scales have also been proposed
(Paladin & Vulpiani 1987). For example, one possibility is to define a local dissipation
scale η using the velocity increment (3.6) such that Δτ is found with |τ | = η/〈U1〉 (Yakhot
2006; Schumacher, Sreenivasan & Yakhot 2007). The definition of a dissipation scale is
therefore an event where

η |Δη| ≈ ν. (3.11)

This is equivalent to identifying instances where the local Reynolds number is of order
unity, i.e. Reη = ηΔη/ν = O(1). When normalized by the scaling parameter η0, the PDFs
obtained from high-resolution direct numerical simulations data of homogeneous and
isotropic turbulence as well as turbulent channel flows (Bailey et al. 2009; Hamlington
et al. 2012a; Bailey & Witte 2016) were found to be in good agreement. The equivalent
PDFs Q(η/η0) for the experiments considered here were found following the procedure
described in Bailey & Witte (2016). Specifically, for each time series, for all t, Δτ was
calculated where the time step τ was calculated using Taylor’s hypothesis as τ = η/〈U1〉.
Then instances where 0.5 ≤ Reη ≤ 2 were identified and counted to obtain a numerical
distribution P(η) over the range 0 < η < 4L. The PDFs were then found from P(η) by
normalization, such that Q(η) = ∫ 4L

0 P(η) dη = 1.
The resulting PDFs are shown in figure 4(b) and take the form of a highly skewed

distribution, with a peak at η ≈ 2η0, indicating that dissipation can occur at scales
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much larger than η0, including at energy-producing scales. Notably, there is much less
scatter in the distributions, although some variability can be observed and attributed
to the outer-layer regions of the boundary layer cases. This variability was attributed
previously to the presence of external intermittency by Alhamdi & Bailey (2018), and
when external intermittency is accounted for, as shown in figure 4(d), there is significantly
better agreement between all Reτ , wall-distance and geometries considered here.

Furthermore, when the PDFs Q(ηK/〈ηK〉) are also calculated accounting for the
presence of external intermittency, the variability in the resulting distributions is also
significantly reduced, although there is still some higher-order variability evident. This
is illustrated by the distributions in figure 4(c) being well approximated for ηK ≈ 〈ηK〉
by a log-normal distribution with mean 0.28〈ηK〉 and standard deviation 0.45〈ηK〉. Note
that at the tails of Q(ηK/〈ηK〉), additional noise was evident due to limited instrumental
sensitivity for these small velocity differences (i.e. for large values of ηK , the local
dissipation rate ε, and thus velocity difference, must be small).

Clear differences in the distribution of dissipation scales appear between the approaches
used in figures 4(c) and figure 4(d). The Q(ηK/〈ηK〉) distributions are noticeably less
skewed, with much more concentration at smaller scales than the corresponding Q(η/η0)

distributions. Both approaches demonstrated good collapse of PDFs, with peaks at 〈ηK〉
and 2η0, respectively, representing a factor of 3 difference in the most probable length
scale (as indicated by figure 3).

Furthermore, as noted previously, Q(η/η0) shows good collapse over the entire
range of η/η0, while Q(ηK/〈ηK〉) has better agreement for the peak of the PDF.
Similar observations of universality of these distributions have been made previously,
although previous measurements of Q(η/η0) were limited to relatively low Reynolds
numbers (Bailey et al. 2009; Zhou & Xia 2010; Hamlington et al. 2012a; Morshed,
Venayagamoorthy & Dasi 2013; Alhamdi & Bailey 2017).

Finally, it was also found that the structure of Q(η/η0) over the range 1/4 ≤ η/η0 ≤ 104

could be well approximated by the empirical function

Q(η/η0) ≈ 12(η/η0)
0.13

tanh (1.3η/η0)
15

16(η/η0)2 , (3.12)

as shown in figure 4(d). Hence (3.8) and (3.12) can be combined to yield the distribution
of dissipative scales over a very large Reynolds number range and over all distances from
the wall.

3.3. Additional length scales
The length scales 〈ηK〉 and η0 describe the smallest dynamically important scales of
turbulence. However, the majority of turbulent kinetic energy dissipation occurs at scales
significantly larger than 〈ηK〉 and η0 (as illustrated in figure 4, for example).

In many cases, Taylor’s microscale λf is often used as a proxy to describe the largest
length scale at which viscous forces are relevant. In other words, it is used to describe
the high-wavenumber end of the inertial subrange, at which dissipation starts becoming
significant. This is consistent with Taylor’s microscale being an intermediate length scale
(L > λf > 〈ηK〉). Following the comparison of the large- and small-scale descriptors
between the external and internal flows, we can also examine the scaling of λf . Here, the
longitudinal Taylor’s microscale was calculated using the isotropic assumptions required
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Figure 5. (a) Inner-scaled and (b) outer-scaled longitudinal Taylor’s microscale λf . All cases are shown with
symbols as provided in tables 1–3.

for the current data sets such that

λf ≈
(

30ν〈u2
1〉

〈ε〉

)1/2

. (3.13)

Due to anisotropy in the Reynolds stresses, this approximation will likely result in an
overestimation of the Taylor microscale.

As can be seen in figures 5(a,b), λf does not follow either inner or outer scaling,
deviating from inner scaling for y+ > 100, and showing no sign of collapse of the data
in outer scaling. This can be attributed to the mixed-scale nature of λf , formed from 〈u2

1〉,
which broadly follows outer scaling for y/δ > 0.02 (Hultmark et al. 2013), and 〈ε〉, which,
as demonstrated by figure 3(c), can be expected to follow inner scaling for most of the
range y < δ. Note that following the discussion in the previous subsection, the calculation
has already accounted for the effects of external intermittency.

As an alternative to λf for describing the length scales at which the majority of
turbulent kinetic energy dissipation is occurring, we can instead introduce a length scale
Lε corresponding to the wavenumber at which the peak of the premultiplied dissipation
spectrum occurs, i.e. the wavenumber at which 15νk3

1E11(k1) is a maximum. This peak is
then 2π/Lε, and represents the scales with the largest contribution to turbulent dissipation,
following (3.4).

As shown in figure 6(a), this scale closely follows inner scaling for a wide range of Reτ

for all three data sets, and is consistent with the scaling of 〈ηK〉+ shown in figure 3(c). For
y+ > 50, where small-scale homogeneous and isotropic assumptions are expected to be
valid, Lε can be approximated by Lε ≈ 31〈ηK〉.

Comparing figures 5(a) and 6(a), λf and Lε are of the same order of magnitude and
almost identical at y+ ≈ 50. However, as the Reynolds number increases with wall-normal
distance, the agreement between the two scales disappears, and λ+f becomes Reτ - and
y-dependent.

To assess the relative importance of viscous forces at Lε, it is possible to define
a local Reynolds number ReLε = ΔLεLε/ν, where ΔLε is the velocity increment from
(3.6) with |τ | = Lε/〈U1〉. This Reynolds number therefore describes the ratio of
inertial forces to viscous forces at scales corresponding to Lε. Figure 6(b) shows ReLε

as a function of y+. Interestingly, ReLε is constant near a value of 100 for both
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Figure 6. Profiles of (a) inner-scaled dissipation peak length scale Lε and (b) ReLε as functions of y+. The
solid red line in (a) shows (3.7) multiplied by a factor of 31. All cases are shown with symbols as provided in
tables 1–3.

Superpipe and HRNBLWT flows for y+ > 50 for all Reτ , with the exception of the
two highest Reynolds number HRTF cases, in which the calculation of the dissipation
spectrum was found to be more challenging due to the presence of high-frequency
noise.

Noting that Lε is the scale where turbulence undergoes the highest rate of dissipation,
this suggests that dissipation occurs when viscous effects are 1 % of inertial effects. For
y+ < 50, both pipe and boundary layer profiles follow the same trend, forming a peak
for ReLε ≈ 250 at y+ ≈ 10. This is believed to be due to the fact that despite the peak
production occurring in this y+ range, the local ReL value is relatively small, and there
is insufficient separation of scales, resulting in increased inertial eddies occurring at the
dissipation scales.

As the scaling of the large-scale turbulence in the boundary layer was found to be
impacted significantly by the presence of external intermittency, it therefore becomes of
interest to also examine the wavelength of the external intermittency and evaluate how this
wavelength might be related to the underlying large-scale motions.

The intermittency detection approach described in § 2.3 provides a consistent way of
detecting turbulent regions and the corresponding interface wavelength (IWL), which
here is quantified by the average time between leading edges of two near turbulent
regions at a fixed y location. This time displacement is then transformed to a spatial
wavelength through Taylor’s hypothesis. Since the frequency of external intermittency
was y-dependent, the y location selected for defining IWL was the location with the most
probable interface location, i.e. the location with the highest frequency of intermittent
occurrences. From the current data, this location was identified to be at y ≈ 0.7δ, which
is close to the most probable interface location suggested by Chauhan et al. (2014). We
thus define IWL as the average distance between leading edges of two near turbulent
regions at y ≈ 0.7δ. Note that since the turbulent detection function (2.1) was low-pass
filtered, IWL is constrained to � 0.5δ, resulting in small-scale nibbling motions being
neglected.

It was found that IWL is nearly constant, with values between 2.38δ and 2.49δ detected
for all Reτ cases of the HRNBLWT and HRTF data sets. This is consistent with the 2δ–3δ

scales attributed to outer layer bulges, and these motions being coupled with the boundary
layer thickness.
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Figure 7. Example longitudinal one-dimensional energy spectra (E11), premultiplied longitudinal
one-dimensional energy spectra (k1E11), and estimated premultiplied dissipation spectra (15νk3

1E11).
Results are shown for HRNBLWT data taken at Reτ = 9500 for four different wall-normal locations:
(a) y+ = 4580, y/δ ≈ 0.46; (b) y+ = 1006, y/δ ≈ 0.1; (c) y+ = 95, y/δ ≈ 0.01; and (d) y+ = 10,
y/δ ≈ 0.001. Vertical lines indicate wavenumbers corresponding to scales indicated in the legend.

4. Connection between scales and features of the wavenumber spectrum

In the previous section, we examined the wall-normal scaling of several characteristic
length scales: outer-scaled parameters ILS, L and IWL, which depend on δ, describing
large-scale flow features; inner-scaled parameters Lε, η0 and 〈ηK〉, which describe the
dissipative motions; and intermediate length scale λf . In this section, we examine these
scales in the wavenumber domain, and examine their relationship to commonly observed
spectral features – specifically, the most energetic motions and the inertial subrange
boundaries.

Figure 7 presents three different wavenumber spectrum representations: one-dimensional
longitudinal energy spectrum E11(k1〈ηK〉), premultiplied longitudinal energy spectrum
k1E11(k1〈ηK〉), and the premultiplied dissipation spectrum approximation of 15νk3

1E11
(k1〈ηK〉). These spectra are examined for four wall-normal distances (i.e. different ReL)
from the Reτ = 9500 measurements taken in the HRNBLWT turbulent boundary layer.
Note that the other cases showed similar results.

Interestingly, in the region where external intermittency is prominent (figure 7a), the
average spectrum calculated from individual spectra measured in discrete turbulent regions
displays a clearly identifiable, well-developed inertial subrange E11 ∝ k−5/3

1 . This is
consistent with the scale separation (L � 〈ηK〉 is approximately 3–4 orders of magnitude).
The inertial subrange is bounded by L ≈ IWL at its low-wavenumber end, and by λf at its
high-wavenumber end. In contrast to L and IWL, ILS lies in the inertial subrange and
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does not correspond to any clearly identifiable spectral feature. As expected, Lε is smaller
than λf , with the latter being a good representation of the upper bound of the inertial
subrange. Hence despite being an average formed from intermittent turbulent regions, this
longitudinal energy spectrum exhibits classical high-Reynolds-number energy spectrum
characteristics. The exception is at the low-wavenumber end of the spectrum, which is
under-resolved due to the variable lengths of the turbulent regions acting as a high-pass
filter during the averaging process. Thus the shorter lengths of the turbulent regions do not
contain any low-wavenumber information, consistent with its dependence on IWL.

At measurement locations closer to the wall, where external intermittency is not
present, the energy-containing range is extended due to the ability to resolve much longer
wavelengths (see figures 7b–d). However, the peak in the energy-containing range still
corresponds closely to the scales associated with IWL.

Additionally, it was found that IWL is a good approximation of the wavelength
associated with the peak of the premultiplied energy spectrum E11k1 for y+ > 200, as can
be seen in figures 7(a,b). Closer to wall, the effect of the turbulent/non-turbulent interface
disappears due to the increased importance of viscous forces.

At y+ ≈ 1000, y/δ ≈ 0.1 (figure 7b), the high-Reynolds-number characteristics remain
similar to those of figure 7(a), with IWL representing the energy-containing eddies, L
representing the low-wavenumber boundary of the inertial subrange, λf representing the
high-wavenumber boundary, and the peak dissipation occurring at scales smaller than λf .

As shown in figures 7(b–d), as the wall is approached, L continues to closely
approximate the low-wavenumber end of the inertial subrange, decreasing faster than 〈ηK〉
(e.g. as shown by comparison of figures 1d and 3c), and the local separation of scales
reduces. Hence the wavenumber range of the inertial subrange decreases, and the local
slope of energy spectra between the wavenumbers corresponding to L and λf deviates
significantly from 0.53〈ε〉2/3k−5/3

1 , producing energy content above this inertial subrange
description.

Once an inertial subrange is no longer evident, as in figure 7(c), the premultiplied
spectrum exhibits the multiple modes corresponding to large-scale and very-large-scale
motions. Interestingly, this also corresponds to the decrease in L, and corresponding
separation of IWL and L, such that IWL corresponds to the low-wavenumber peak in
the premultiplied spectrum, and L corresponds to the high-wavenumber peak. At the
high-wavenumber end of the spectrum, λf becomes closer to Lε, and no longer appears
to correspond to the E11 roll-off associated with the low-wavenumber boundary of the
dissipation range.

Very near the wall, as shown in figure 7(d), the shift in λf with respect to Lε continues,
and λf becomes smaller than Lε, i.e. it describes scales smaller than those at which peak
dissipation occurs. The variability of λf within the dissipation range highlights the care
that should be taken when interpreting λf as a physical turbulence scale (Tennekes &
Lumley 1972), at least when ReL is not large enough to produce an inertial subrange.
Furthermore, L and IWL no longer correspond to peaks in the premultiplied spectrum, as
there is significant energy at scales smaller than L.

Noting that L corresponds closely to the low-wavenumber limit of the inertial subrange,
IWL corresponds to the scales of the most energetic eddies, and Lε corresponds to
the scales at which the highest rate of dissipation occurs, we now examine scaling the
relationship of the scale separation described by L/〈ηK〉, IWL/Lε, and that described by
Reτ . The ratios of these different quantities are presented as functions of wall-normal
distance in figure 8.

965 A17-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.417


Similarity of length scales in high Reynolds number

0

0.5

1.0

1.5

2.0

2.5

3.0

HRNBLWT, 3 Reτ cases

HRTF, 4 Reτ cases

Superpipe, 6 Reτ cases

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

HRNBLWT, 3 Reτ cases
HRTF, 4 Reτ cases
Superpipe, 6 Reτ cases

100 101 102 103 104 105

y+ y/δ

0.05

0.10

0.15

0.20

0.25

0.30

(I
W
L/
L ε

)/
Re

τ3
/4

(L
/〈η
K
〉)/
Re

τ3
/4

HRNBLWT, 3 Reτ cases
HRTF, 4 Reτ cases

0 0.2 0.4 0.6 0.8 1.0

100 101 102 103 104 105

0.05

0.10

0.15

0.20

0.25

0.30
HRNBLWT, 3 Reτ cases
HRTF, 4 Reτ cases

(b)(a)

(c) (d )

Figure 8. Profiles of (L/〈ηK〉)/Re3/4
τ as functions of (a) y+ and (b) y/δ, along with corresponding profiles of

(IWL/Lε)/Re3/4
τ as functions of (c) y+ and (d) y/δ. Results are for all turbulent boundary layer cases, with

symbols as provided in tables 1–3.

Figures 8(a) and 8(b) show the ratio (L/〈ηK〉)/Re3/4
τ as functions of y+ and y/δ,

respectively. Although there does not appear to be any consistency in y+, the y/δ
dependence is consistent throughout all cases. Figure 8(b) also suggests that the largest
inertial subrange can be expected at y/δ ≈ 0.3.

Although L/〈ηK〉 appears to scale only with y/δ, (Lε/IWL)/Re3/4
τ showed both y+

and y/δ dependence (figures 8(c) and 8(d), respectively). These results indicate that the
scale separation between peaks of premultiplied energy and dissipation spectra is a unique
function of Reτ and y. It should be noted, however, that since IWL and Reτ are constant for
a given profile, the wall-normal dependence shown in figures 8(c) and 8(d) is ultimately
the wall-normal dependence of Lε and a restructuring of the wall-distance dependence
shown in figure 6(a). Interestingly, though, figure 8(d) suggests that through measurement
of a longitudinal spectrum at a known y and δ, it is possible to recover uτ . This is because
the spectral measurement allows determination of Lε, and given that IWL ≈ 2.45δ, Reτ

(and hence uτ ) can be determined from the curve shown in figure 8(d).

5. Conclusion

The Reynolds number and wall-normal dependencies of different turbulence length scales
in pipe flow and zero-pressure-gradient boundary layer flow were investigated over a
Reynolds number range spanning an order of magnitude. We examined: outer-scaled
parameters L, ILS and IWL, which depend on δ, and describe large-scale flow features;
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inner-scaled parameters η0, 〈ηK〉 and Lε, which describe the dissipative motions; and the
intermediate length scale λf .

The results show that, following a correction for external intermittency, the large-scale
length scale L that is characteristic of the low-wavenumber end of the inertial subrange (the
start of the universal part of the spectrum) was independent of boundary conditions and
depends only on the outer-scaled distance from the wall. Conversely, the integral length
scale ILS, often conflated with the length scale of most energetic eddies, did not follow
either inner or outer scaling for either pipe or boundary layer flows.

Clearly, there is a fundamental difference between these two scales, in that L
assumes universal equilibrium range behaviour within its definition, whereas ILS
covers a wide range of anisotropic, non-universal wavenumbers. The length scale IWL,
representing the wavelength of the external intermittency, was found to correspond
closely to the low-wavenumber peak in premultiplied longitudinal energy spectra for
y+ > 200.

Following a similar examination, the dissipative motions were found to obey inner
scaling, with the same y+ dependence regardless of boundary conditions or Reynolds
number. This was the case for the classical Kolmogorov length scale 〈ηK〉, the dissipation
length scale that accounts for internal intermittency η0, and their respective probability
density functions. The length scale Lε, representing the scale at which the maximum rate
of dissipation occurs, also obeyed inner scaling for all y < δ. When coupled with 〈η+

K 〉,
L+

ε provides a robust description of the wall-normal dependence of the high-wavenumber
dissipation range in the longitudinal spectrum.

Finally, the scale separation between the energy-containing eddies described by L
and the dissipative scales described by 〈ηK〉 was found to be independent of boundary
conditions, and a unique function of Reτ and y/δ. Conversely, for the turbulent boundary
layer cases, the scale separation described by IWL and Lε was found to be described
uniquely by Reτ and y+ for y+ < 0.5Reτ , or y/δ for y/δ > 0.001.

These results suggest that suitable selection of scaling arguments can be used to describe
different features of the one-dimensional turbulence spectrum regardless of boundary
conditions. Descriptions of the large- and small-scale wall-dependence can be leveraged
potentially to improve the application of large-eddy simulation, for example by providing
guidance on required mesh resolution near the wall for wall-resolved methods, or providing
guidance when selecting filter cutoff values by providing scales that can guide longitudinal
spectrum models, or provide estimates of where scale separation is sufficient to assume
an inertial subrange. Alternatively, information about dissipation scale distributions
can be used to develop small-scale forcing models used for implicit large-eddy
simulations.
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