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SIMILARITY  OF MATRICES OVER FINITE RINGS

J. pomfret

Abstract. It is shown that questions of similarity of certain

invertible matrices over a finite ring can be reduced to questions of

similarity over finite fields through the application of canonical

epimorphisms.

Suprunenko has shown in [3] that two invertible matrices over Z\Zm

whose orders are relatively prime to m are similar if and only if their

canonical images are similar over the fields Z\Zp for each prime divisor

p of m. An analogous result holds for invertible matrices over any finite

commutative ring with identity.

Preliminaries. If R is a finite commutative ring with identity, then R

is uniquely a ring direct product of finite local rings [1, Theorem 8.7,

p. 90]. Suppose that 7?=n¿=i Ri, where Rf is a finite local ring with

maximal ideal M^ Each 7?, has cardinality pi' for some prime /? and has

associated with it a canonical projection,

fc^-JW-GFÛtf).

Setting rc~GF(/»i') we wiU say tnat tne finite fields {A:i:/=1, 2, - - • , /}

are the fields associated with R.

Observe that the decomposition of R carries over to the general linear

group of degree n over R yielding GL„(/?)3in<=iGLB(.Ri). Furthermore,

for each i, the projection h¿ induces an epimorphism,

hi:GLn(Ri)^GLn(ki).

If GLn(R¡) is taken as the group of n by n invertible matrices over 7?,-,

then ht is simply reduction modulo Mt. Note that the kernel of h¡, Kiy

has cardinality a power of/»¿ and thus is a solvable group.

The following corollary to P. Hall's extension of the Sylow theorems

[2, Theorem 9.3.1, p. 141] is the key result needed for Theorems 1 and 2.

Observation. Let G be a finite group with solvable normal subgroup K

and let G=GjK={g\g e G}. Let a and ß be elements of G with (|a|, \k\)=

l = (\ß\, \K\). Then 5~/S implies a— ß.
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Proof. Since ä.=y~xßy for some y it follows that (x)K=(y-xßy)K.

By P. Hall's theorem it follows that (a) and (y~xßy) are conjugate in

(<x)K. Thus there is a p in K and r>0 such that p~xy~xßyp=xr. Hence

5.r=y~xßy=ä. and, since a and 5. have the same order, ¡x=ar. Therefore

<x=(yp)~1ß(yp.) and <x~/>\

The theorems.

Theorem 1. Let R be a finite local ring with maximal ideal M and

RjM=GV(pi)=k. Let a, ß be elements ofGLn(R) with (|(a)|,/»)=l and

(\(ß)\,p)=l. Then a is similar to ß if and only if a is similar to ß modulo M.

Proof. This follows from the Observation by noting that the kernel,

K, of h:GLn(R)—>-GLn(RlM) is solvable with cardinality a power of p.

Theorem 2. Let R be a finite commutative ring with identity and let

the cardinality of R be m. Two elements a and ß of GL„(7?) satisfying

(\(a.)\, m) = (\(ß)\, m)—l are similar if and only if their canonical images

over the Galois fields associated with R are similar.

Proof. This follows from Theorem 1 directly by means of the sequence

of epimorphisms

GL„(R) = Ó GLn(Ri) ̂i> GLn(Ri) A> GLB(^).
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