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Abstract

Recent work has sought to understand the behav-

ior of neural networks by comparing representa-

tions between layers and between different trained

models. We examine methods for comparing neu-

ral network representations based on canonical

correlation analysis (CCA). We show that CCA

belongs to a family of statistics for measuring mul-

tivariate similarity, but that neither CCA nor any

other statistic that is invariant to invertible linear

transformation can measure meaningful similari-

ties between representations of higher dimension

than the number of data points. We introduce

a similarity index that measures the relationship

between representational similarity matrices and

does not suffer from this limitation. This simi-

larity index is equivalent to centered kernel align-

ment (CKA) and is also closely connected to CCA.

Unlike CCA, CKA can reliably identify corre-

spondences between representations in networks

trained from different initializations.

1. Introduction

Across a wide range of machine learning tasks, deep neural

networks enable learning powerful feature representations

automatically from data. Despite impressive empirical ad-

vances of deep neural networks in solving various tasks,

the problem of understanding and characterizing the neu-

ral network representations learned from data remains rel-

atively under-explored. Previous work (e.g. Advani &

Saxe (2017); Amari et al. (2018); Saxe et al. (2014)) has

made progress in understanding the theoretical dynamics

of the neural network training process. These studies are

insightful, but fundamentally limited, because they ignore

the complex interaction between the training dynamics and

structured data. A window into the network’s representation

can provide more information about the interaction between

machine learning algorithms and data than the value of the

loss function alone.
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This paper investigates the problem of measuring similari-

ties between deep neural network representations. An effec-

tive method for measuring representational similarity could

help answer many interesting questions, including: (1) Do

deep neural networks with the same architecture trained

from different random initializations learn similar repre-

sentations? (2) Can we establish correspondences between

layers of different network architectures? (3) How simi-

lar are the representations learned using the same network

architecture from different datasets?

We build upon previous studies investigating similarity be-

tween the representations of neural networks (Laakso &

Cottrell, 2000; Li et al., 2015; Raghu et al., 2017; Morcos

et al., 2018; Wang et al., 2018). We are also inspired by the

extensive neuroscience literature that uses representational

similarity analysis (Kriegeskorte et al., 2008a; Edelman,

1998) to compare representations across brain areas (Haxby

et al., 2001; Freiwald & Tsao, 2010), individuals (Connolly

et al., 2012), species (Kriegeskorte et al., 2008b), and be-

haviors (Elsayed et al., 2016), as well as between brains

and neural networks (Yamins et al., 2014; Khaligh-Razavi

& Kriegeskorte, 2014; Sussillo et al., 2015).

Our key contributions are summarized as follows:

• We discuss the invariance properties of similarity in-

dexes and their implications for measuring similarity of

neural network representations.

• We motivate and introduce centered kernel alignment

(CKA) as a similarity index and analyze the relationship

between CKA, linear regression, canonical correlation

analysis (CCA), and related methods (Raghu et al., 2017;

Morcos et al., 2018).

• We show that CKA is able to determine the correspon-

dence between the hidden layers of neural networks

trained from different random initializations and with

different widths, scenarios where previously proposed

similarity indexes fail.

• We verify that wider networks learn more similar repre-

sentations, and show that the similarity of early layers

saturates at fewer channels than later layers. We demon-

strate that early layers, but not later layers, learn similar

representations on different datasets.
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Problem Statement

Let X ∈ R
n×p1 denote a matrix of activations of p1 neu-

rons for n examples, and Y ∈ R
n×p2 denote a matrix of

activations of p2 neurons for the same n examples. We

assume that these matrices have been preprocessed to center

the columns. Without loss of generality we assume that

p1 ≤ p2. We are concerned with the design and analysis of

a scalar similarity index s(X,Y ) that can be used to com-

pare representations within and across neural networks, in

order to help visualize and understand the effect of different

factors of variation in deep learning.

2. What Should Similarity Be Invariant To?

This section discusses the invariance properties of similarity

indexes and their implications for measuring similarity of

neural network representations. We argue that both intuitive

notions of similarity and the dynamics of neural network

training call for a similarity index that is invariant to orthog-

onal transformation and isotropic scaling, but not invertible

linear transformation.

2.1. Invariance to Invertible Linear Transformation

A similarity index is invariant to invertible linear transfor-

mation if s(X,Y ) = s(XA, Y B) for any full rank A and

B. If activations X are followed by a fully-connected layer

f(X) = σ(XW + β), then transforming the activations

by a full rank matrix A as X ′ = XA and transforming the

weights by the inverse A−1 as W ′ = A−1W preserves the

output of f(X). This transformation does not appear to

change how the network operates, so intuitively, one might

prefer a similarity index that is invariant to invertible linear

transformation, as argued by Raghu et al. (2017).

However, a limitation of invariance to invertible linear trans-

formation is that any invariant similarity index gives the

same result for any representation of width greater than or

equal to the dataset size, i.e. p2 ≥ n. We provide a simple

proof in Appendix A.

Theorem 1. Let X and Y be n × p matrices. Suppose s

is invariant to invertible linear transformation in the first

argument, i.e. s(X,Z) = s(XA,Z) for arbitrary Z and

any A with rank(A) = p. If rank(X) = rank(Y ) = n, then

s(X,Z) = s(Y, Z).

There is thus a practical problem with invariance to invert-

ible linear transformation: Some neural networks, especially

convolutional networks, have more neurons in some layers

than there are examples the training dataset (Springenberg

et al., 2015; Lee et al., 2018; Zagoruyko & Komodakis,

2016). It is somewhat unnatural that a similarity index

could require more examples than were used for training.

A deeper issue is that neural network training is not invari-

Figure 1. First principal components of representations of net-

works trained from different random initializations are similar.

Each example from the CIFAR-10 test set is shown as a dot col-

ored according to the value of the first two principal components of

an intermediate layer of one network (left) and plotted on the first

two principal components of the same layer of an architecturally

identical network trained from a different initialization (right).

ant to arbitrary invertible linear transformation of inputs

or activations. Even in the linear case, gradient descent

converges first along the eigenvectors corresponding to the

largest eigenvalues of the input covariance matrix (LeCun

et al., 1991), and in cases of overparameterization or early

stopping, the solution reached depends on the scale of the

input. Similar results hold for gradient descent training

of neural networks in the infinite width limit (Jacot et al.,

2018). The sensitivity of neural networks training to linear

transformation is further demonstrated by the popularity of

batch normalization (Ioffe & Szegedy, 2015).

Invariance to invertible linear transformation implies that the

scale of directions in activation space is irrelevant. Empiri-

cally, however, scale information is both consistent across

networks and useful across tasks. Neural networks trained

from different random initializations develop representa-

tions with similar large principal components, as shown in

Figure 1. Consequently, Euclidean distances between ex-

amples, which depend primarily upon large principal com-

ponents, are similar across networks. These distances are

meaningful, as demonstrated by the success of perceptual

loss and style transfer (Gatys et al., 2016; Johnson et al.,

2016; Dumoulin et al., 2017). A similarity index that is

invariant to invertible linear transformation ignores this as-

pect of the representation, and assigns the same score to

networks that match only in large principal components or

networks that match only in small principal components.

2.2. Invariance to Orthogonal Transformation

Rather than requiring invariance to any invertible linear

transformation, one could require a weaker condition; in-

variance to orthogonal transformation, i.e. s(X,Y ) =
s(XU, Y V ) for full-rank orthonormal matrices U and V

such that UTU = I and V TV = I .
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Indexes invariant to orthogonal transformations do not share

the limitations of indexes invariant to invertible linear trans-

formation. When p2 > n, indexes invariant to orthogonal

transformation remain well-defined. Moreover, orthogo-

nal transformations preserve scalar products and Euclidean

distances between examples.

Invariance to orthogonal transformation seems desirable for

neural networks trained by gradient descent. Invariance to

orthogonal transformation implies invariance to permuta-

tion, which is needed to accommodate symmetries of neural

networks (Chen et al., 1993; Orhan & Pitkow, 2018). In

the linear case, orthogonal transformation of the input does

not affect the dynamics of gradient descent training (LeCun

et al., 1991), and for neural networks initialized with rota-

tionally symmetric weight distributions, e.g. i.i.d. Gaussian

weight initialization, training with fixed orthogonal trans-

formations of activations yields the same distribution of

training trajectories as untransformed activations, whereas

an arbitrary linear transformation would not.

Given a similarity index s(·, ·) that is invariant to orthog-

onal transformation, one can construct a similarity index

s′(·, ·) that is invariant to any invertible linear transforma-

tion by first orthonormalizing the columns of X and Y ,

and then applying s(·, ·). Given thin QR decompositions

X = QARA and Y = QBRB one can construct a similarity

index s′(X,Y ) = s(QX , QY ), where s′(·, ·) is invariant to

invertible linear transformation because orthonormal bases

with the same span are related to each other by orthonormal

transformation (see Appendix B).

2.3. Invariance to Isotropic Scaling

We expect similarity indexes to be invariant to isotropic scal-

ing, i.e. s(X,Y ) = s(αX, βY ) for any α, β ∈ R
+. That

said, a similarity index that is invariant to both orthogonal

transformation and non-isotropic scaling, i.e. rescaling of

individual features, is invariant to any invertible linear trans-

formation. This follows from the existence of the singular

value decomposition of the transformation matrix. Gener-

ally, we are interested in similarity indexes that are invariant

to isotropic but not necessarily non-isotropic scaling.

3. Comparing Similarity Structures

Our key insight is that instead of comparing multivariate

features of an example in the two representations (e.g. via re-

gression), one can first measure the similarity between every

pair of examples in each representation separately, and then

compare the similarity structures. In neuroscience, such

matrices representing the similarities between examples

are called representational similarity matrices (Kriegesko-

rte et al., 2008a). We show below that, if we use an inner

product to measure similarity, the similarity between repre-

sentational similarity matrices reduces to another intuitive

notion of pairwise feature similarity.

Dot Product-Based Similarity. A simple formula relates

dot products between examples to dot products between

features:

〈vec(XXT), vec(Y Y T)〉 = tr(XXTY Y T) = ||Y TX||2F.
(1)

The elements of XXT and Y Y T are dot products between

the representations of the ith and jth examples, and indi-

cate the similarity between these examples according to the

respective networks. The left-hand side of (1) thus mea-

sures the similarity between the inter-example similarity

structures. The right-hand side yields the same result by

measuring the similarity between features from X and Y ,

by summing the squared dot products between every pair.

Hilbert-Schmidt Independence Criterion. Equation 1

implies that, for centered X and Y :

1

(n− 1)2
tr(XXTY Y T) = ||cov(XT, Y T)||2F. (2)

The Hilbert-Schmidt Independence Criterion (Gretton et al.,

2005) generalizes Equations 1 and 2 to inner products

from reproducing kernel Hilbert spaces, where the squared

Frobenius norm of the cross-covariance matrix becomes

the squared Hilbert-Schmidt norm of the cross-covariance

operator. Let Kij = k(xi,xj) and Lij = l(yi,yj) where k
and l are two kernels. The empirical estimator of HSIC is:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH), (3)

where H is the centering matrix Hn = In − 1

n11
T. For

linear kernels k(x,y) = l(x,y) = xTy, HSIC yields (2).

Gretton et al. (2005) originally proposed HSIC as a test

statistic for determining whether two sets of variables are

independent. They prove that the empirical estimator con-

verges to the population value at a rate of 1/
√
n, and Song

et al. (2007) provide an unbiased estimator. When k and

l are universal kernels, HSIC = 0 implies independence,

but HSIC is not an estimator of mutual information. HSIC

is equivalent to maximum mean discrepancy between the

joint distribution and the product of the marginal distribu-

tions, and HSIC with a specific kernel family is equivalent

to distance covariance (Sejdinovic et al., 2013).

Centered Kernel Alignment. HSIC is not invariant to

isotropic scaling, but it can be made invariant through nor-

malization. This normalized index is known as centered ker-

nel alignment (Cortes et al., 2012; Cristianini et al., 2002):

CKA(K,L) =
HSIC(K,L)

√

HSIC(K,K)HSIC(L,L)
. (4)
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Invariant to

Invertible Linear Orthogonal Isotropic

Similarity Index Formula Transform Transform Scaling

Linear Reg. (R2
LR) ||QT

Y X||2F/||X||2F Y only ✓ ✓

CCA (R2
CCA) ||QT

Y QX ||2F/p1 ✓ ✓ ✓

CCA (ρ̄CCA) ||QT
Y QX ||∗/p1 ✓ ✓ ✓

SVCCA (R2
SVCCA) ||(UY TY )

TUXTX ||2F/min(||TX ||2F, ||TY ||2F) If same subspace kept ✓ ✓

SVCCA (ρ̄SVCCA) ||(UY TY )
TUXTX ||∗/min(||TX ||2F, ||TY ||2F) If same subspace kept ✓ ✓

PWCCA
∑p1

i=1
αiρi/||α||1, αi =

∑

j |〈hi,xj〉| ✗ ✗ ✓

Linear HSIC ||Y TX||2F/(n− 1)2 ✗ ✓ ✗

Linear CKA ||Y TX||2F/(||XTX||F||Y TY ||F) ✗ ✓ ✓

RBF CKA tr(KHLH)/
√

tr(KHKH)tr(LHLH) ✗ ✓ ✓∗

Table 1. Summary of similarity methods investigated. QX and QY are orthonormal bases for the columns of X and Y . UX and UY

are the left-singular vectors of X and Y sorted in descending order according to the corresponding singular vectors. || · ||∗ denotes the

nuclear norm. TX and TY are truncated identity matrices that select left-singular vectors such that the cumulative variance explained

reaches some threshold. For RBF CKA, K and L are kernel matrices constructed by evaluating the RBF kernel between the examples as

in Section 3, and H is the centering matrix Hn = In − 1

n
11

T. See Appendix C for more detail about each technique.
∗Invariance of RBF CKA to isotropic scaling depends on the procedure used to select the RBF kernel bandwidth parameter. In our

experiments, we selected the bandwidth as a fraction of the median distance, which ensures that the similarity index is invariant to

isotropic scaling.

For a linear kernel, CKA is equivalent to the RV coefficient

(Robert & Escoufier, 1976) and to Tucker’s congruence co-

efficient (Tucker, 1951; Lorenzo-Seva & Ten Berge, 2006).

Kernel Selection. Below, we report results of CKA with

a linear kernel and the RBF kernel k(xi, xj) = exp(−||xi−
xj ||22/(2σ2)). For the RBF kernel, there are several possible

strategies for selecting the bandwidth σ, which controls the

extent to which similarity of small distances is emphasized

over large distances. We set σ as a fraction of the median

distance between examples. In practice, we find that RBF

and linear kernels give similar results across most exper-

iments, so we use linear CKA unless otherwise specified.

Our framework extends to any valid kernel, including ker-

nels equivalent to neural networks (Lee et al., 2018; Jacot

et al., 2018; Garriga-Alonso et al., 2019; Novak et al., 2019).

4. Related Similarity Indexes

In this section, we briefly review linear regression, canon-

ical correlation, and other related methods in the context

of measuring similarity between neural network representa-

tions. We let QX and QY represent any orthonormal bases

for the columns of X and Y , i.e. QX = X(XTX)−1/2,

QY = Y (Y TY )−1/2 or orthogonal transformations thereof.

Table 1 summarizes the formulae and invariance properties

of the indexes used in experiments. For a comprehensive

general review of linear indexes for measuring multivariate

similarity, see Ramsay et al. (1984).

Linear Regression. A simple way to relate neural net-

work representations is via linear regression. One can fit

every feature in Y as a linear combination of features from

X . A suitable summary statistic is the total fraction of

variance explained by the fit:

R2
LR = 1− minB ||Y −XB||2F

||Y ||2F
=

||QT
Y X||2F

||X||2F
. (5)

We are unaware of any application of linear regression to

measuring similarity of neural network representations, al-

though Romero et al. (2015) used a least squares loss be-

tween activations of two networks to encourage thin and

deep “student” networks to learn functions similar to wide

and shallow “teacher” networks.

Canonical Correlation Analysis (CCA). Canonical cor-

relation finds bases for two matrices such that, when the

original matrices are projected onto these bases, the cor-

relation is maximized. For 1 ≤ i ≤ p1, the ith canonical

correlation coefficient ρi is given by:

ρi = max
w

i

X
,wi

Y

corr(Xwi
X , Ywi

Y )

subject to ∀j<i Xwi
X ⊥ Xw

j
X

∀j<i Ywi
Y ⊥ Yw

j
Y .

(6)

The vectors wi
X ∈ R

p1 and wi
Y ∈ R

p2 that maximize ρi
are the canonical weights, which transform the original data

into canonical variables Xwi
X and Ywi

Y . The constraints

in (6) enforce orthogonality of the canonical variables.

For the purpose of this work, we consider two summary
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statistics of the goodness of fit of CCA:

R2
CCA =

∑p1

i=1
ρ2i

p1
=

||QT
Y QX ||2F
p1

(7)

ρ̄CCA =

∑p1

i=1
ρi

p1
=

||QT
Y QX ||∗
p1

, (8)

where || · ||∗ denotes the nuclear norm. The mean squared

CCA correlation R2
CCA is also known as Yanai’s GCD mea-

sure (Ramsay et al., 1984), and several statistical pack-

ages report the sum of the squared canonical correlations

p1R
2
CCA =

∑p1

i=1
ρ2i under the name Pillai’s trace (SAS In-

stitute, 2015; StataCorp, 2015). The mean CCA correlation

ρ̄CCA was previously used to measure similarity between

neural network representations in Raghu et al. (2017).

SVCCA. CCA is sensitive to perturbation when the con-

dition number of X or Y is large (Golub & Zha, 1995). To

improve robustness, singular vector CCA (SVCCA) per-

forms CCA on truncated singular value decompositions of

X and Y (Raghu et al., 2017; Mroueh et al., 2015; Kuss

& Graepel, 2003). As formulated in Raghu et al. (2017),

SVCCA keeps enough principal components of the input

matrices to explain a fixed proportion of the variance, and

drops remaining components. Thus, it is invariant to invert-

ible linear transformation only if the retained subspace does

not change.

Projection-Weighted CCA. Morcos et al. (2018) pro-

pose a different strategy to reduce the sensitivity of CCA to

perturbation, which they term “projection-weighted canoni-

cal correlation” (PWCCA):

ρPW =

∑c
i=1

αiρi
∑

i=1
αi

αi =
∑

j

|〈hi,xj〉|, (9)

where xj is the jth column of X , and hi = Xwi
X is the

vector of canonical variables formed by projecting X to the

ith canonical coordinate frame. As we show in Appendix

C.3, PWCCA is closely related to linear regression, since:

R2
LR =

∑c
i=1

α′

iρ
2
i

∑

i=1
α′

i

α′

i =
∑

j

〈hi,xj〉2. (10)

Neuron Alignment Procedures. Other work has studied

alignment between individual neurons, rather than align-

ment between subspaces. Li et al. (2015) examined correla-

tion between the neurons in different neural networks, and

attempt to find a bipartite match or semi-match that maxi-

mizes the sum of the correlations between the neurons, and

then to measure the average correlations. Wang et al. (2018)

proposed to search for subsets of neurons X̃ ⊂ X and

Ỹ ⊂ Y such that, to within some tolerance, every neuron

in X̃ can be represented by a linear combination of neu-

rons from Ỹ and vice versa. They found that the maximum

matching subsets are very small for intermediate layers.

Mutual Information. Among non-linear measures, one

candidate is mutual information, which is invariant not only

to invertible linear transformation, but to any invertible trans-

formation. Li et al. (2015) previously used mutual infor-

mation to measure neuronal alignment. In the context of

comparing representations, we believe mutual information

is not useful. Given any pair of representations produced by

deterministic functions of the same input, mutual informa-

tion between either and the input must be at least as large as

mutual information between the representations. Moreover,

in fully invertible neural networks (Dinh et al., 2017; Jacob-

sen et al., 2018), the mutual information between any two

layers is equal to the entropy of the input.

5. Linear CKA versus CCA and Regression

Linear CKA is closely related to CCA and linear regression.

If X and Y are centered, then QX and QY are also centered,

so:

R2
CCA = CKA(QXQT

X , QY Q
T
Y )

√

p2
p1

. (11)

When performing the linear regression fit of X with design

matrix Y , R2
LR = ||QT

Y X||2F /||X||2F , so:

R2
LR = CKA(XXT, QY Q

T
Y )

√
p1||XTX||F
||X||2F

. (12)

When might we prefer linear CKA over CCA? One way

to show the difference is to rewrite X and Y in terms of

their singular value decompositions X = UXΣXV T
X , Y =

UY ΣY V
T
Y . Let the ith eigenvector of XXT (left-singular

vector of X) be indexed as ui
X . Then R2

CCA is:

R2
CCA = ||UT

Y UX ||2F/p1 =

p1
∑

i=1

p2
∑

j=1

〈ui
X , u

j
Y 〉2/p1. (13)

Let the ith eigenvalue of XXT (squared singular value of

X) be indexed as λi
X . Linear CKA can be written as:

CKA(XXT, Y Y T) =
||Y TX||2F

||XTX||F||Y TY ||F

=

∑p1

i=1

∑p2

j=1
λi
Xλj

Y 〈ui
X , u

j
Y 〉2

√

∑p1

i=1
(λi

X)2
√

∑p2

j=1
(λj

Y )
2

.

(14)

Linear CKA thus resembles CCA weighted by the eigen-

values of the corresponding eigenvectors, i.e. the amount

of variance in X or Y that each explains. SVCCA (Raghu

et al., 2017) and projection-weighted CCA (Morcos et al.,

2018) were also motivated by the idea that eigenvectors

that correspond to small eigenvalues are less important, but
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Figure 2. CKA reveals consistent relationships between layers of

CNNs trained with different random initializations, whereas CCA,

linear regression, and SVCCA do not. For linear regression, which

is asymmetric, we plot R2 for the fit of the layer on the x-axis with

the layer on the y-axis. Results are averaged over 10 networks.

See Table 2 for a numerical summary.

linear CKA incorporates this weighting symmetrically and

can be computed without a matrix decomposition.

Comparison of (13) and (14) immediately suggests the pos-

sibility of alternative weightings of scalar products between

eigenvectors. Indeed, as we show in Appendix D.1, the sim-

ilarity index induced by “canonical ridge” regularized CCA

(Vinod, 1976), when appropriately normalized, interpolates

between R2

CCA, linear regression, and linear CKA.

6. Results

6.1. A Sanity Check for Similarity Indexes

We propose a simple sanity check for similarity indexes:

Given a pair of architecturally identical networks trained

from different random initializations, for each layer in the

first network, the most similar layer in the second network

should be the architecturally corresponding layer. We train

10 networks and, for each layer of each network, we com-

pute the accuracy with which we can find the corresponding

layer in each of the other networks by maximum similarity.

We then average the resulting accuracies. We compare CKA

with CCA, SVCCA, PWCCA, and linear regression.

Index Accuracy

CCA (ρ̄) 1.4

CCA (R2

CCA) 10.6
SVCCA (ρ̄) 9.9

SVCCA (R2

CCA) 15.1
PWCCA 11.1
Linear Reg. 45.4
Linear HSIC 22.2
CKA (Linear) 99.3
CKA (RBF 0.2) 80.6
CKA (RBF 0.4) 99.1
CKA (RBF 0.8) 99.3

Table 2. Accuracy of identifying corresponding layers based on

maximum similarity for 10 architecturally identical 10-layer CNNs

trained from different initializations, with logits layers excluded.

For SVCCA, we used a truncation threshold of 0.99 as recom-

mended in Raghu et al. (2017). For asymmetric indexes (PWCCA

and linear regression) we symmetrized the similarity as S + ST.

CKA RBF kernel parameters reflect the fraction of the median

Euclidean distance used as σ. Results not significantly different

from the best result are bold-faced (p < 0.05, jackknife z-test).

We first investigate a simple VGG-like convolutional net-

work based on All-CNN-C (Springenberg et al., 2015) (see

Appendix E for architecture details). Figure 2 and Table 2

show that CKA passes our sanity check, but other methods

perform substantially worse. For SVCCA, we experimented

with a range of truncation thresholds, but no threshold re-

vealed the layer structure (Appendix F.2); our results are

consistent with those in Appendix E of Raghu et al. (2017).

We also investigate Transformer networks, where all layers

are of equal width. In Appendix F.1, we show similarity

between the 12 sublayers of the encoders of Transformer

models (Vaswani et al., 2017) trained from different random

initializations. All similarity indexes achieve non-trivial

accuracy and thus pass the sanity check, although RBF CKA

and R2

CCA performed slightly better than other methods.

However, we found that there are differences in feature

scale between representations of feed-forward network and

self-attention sublayers that CCA does not capture because

it is invariant to non-isotropic scaling.

6.2. Using CKA to Understand Network Architectures

CKA can reveal pathology in neural networks representa-

tions. In Figure 3, we show CKA between layers of individ-

ual CNNs with different depths, where layers are repeated

2, 4, or 8 times. Doubling depth improved accuracy, but

greater multipliers hurt accuracy. At 8x depth, CKA indi-

cates that representations of more than half of the network

are very similar to the last layer. We validated that these

later layers do not refine the representation by training an ℓ2-

regularized logistic regression classifier on each layer of the

network. Classification accuracy in shallower architectures

progressively improves with depth, but for the 8x deeper
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Figure 3. CKA reveals when depth becomes pathological. Top: Linear CKA between layers of individual networks of different depths on

CIFAR-10. Titles show accuracy of each network. Later layers of the 8x depth network are similar to the last layer. Bottom: Accuracy of

a logistic regression classifier trained on layers of the same networks is consistent with CKA.

Figure 4. Linear CKA between layers of a ResNet-62 model. The

grid pattern for ResNets in the left panel arises from the archi-

tecture. Right panels show similarity separately for even layer

(post-residual) and odd layer (block interior) activations. Layers in

the same block group (i.e. at the same feature map scale) are more

similar than layers in different block groups.

network, accuracy plateaus less than halfway through the

network. When applied to ResNets (He et al., 2016), CKA

reveals no pathology (Figure 4). We instead observe a grid

pattern that originates from the architecture: Post-residual

activations are similar to other post-residual activations, but

activations within blocks are not.

CKA is equally effective at revealing relationships between

layers of different architectures. Figure 5 shows the relation-

ship between different layers of networks with and without

residual connections. CKA indicates that, as networks are

made deeper, the new layers are effectively inserted in be-

tween the old layers. Other similarity indexes fail to reveal

meaningful relationships between different architectures, as

we show in Appendix F.5.

In Figure 6, we show CKA between networks with differ-

ent layer widths. Like Morcos et al. (2018), we find that

increasing layer width leads to more similar representations

between networks. As width increases, CKA approaches 1;

CKA of earlier layers saturates faster than later layers. Net-

works are generally more similar to other networks of the

same width than they are to the widest network we trained.

Figure 5. Linear CKA between layers of networks with different

architectures.

Figure 6. Layers become more similar to each other and to wide

networks as width increases, but similarity of earlier layers satu-

rates first. Left: Similarity of networks with the widest network

we trained. Middle: Similarity of networks with other networks

of the same width trained from random initialization. All CKA

values are computed between 10 networks; shaded regions reflect

jackknife standard error.
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Figure 7. CKA shows that models trained on different datasets

(CIFAR-10 and CIFAR-100) develop similar representations, and

these representations differ from untrained models. The left panel

shows similarity between the same layer of different models on the

CIFAR-10 test set, while the right panel shows similarity computed

on CIFAR-100 test set. CKA is averaged over 10 models of each

type (45 pairs).

6.3. Similar Representations Across Datasets

CKA can also be used to compare networks trained on dif-

ferent datasets. In Figure 7, we show that models trained on

CIFAR-10 and CIFAR-100 develop similar representations

in their early layers. These representations require training;

similarity with untrained networks is much lower. We fur-

ther explore similarity between layers of untrained networks

in Appendix F.3.

6.4. Analysis of the Shared Subspace

Equation 14 suggests a way to further elucidating what CKA

is measuring, based on the action of one representational

similarity matrix (RSM) Y Y T applied to the eigenvectors

u
i
X of the other RSM XXT. By definition, XXT

u
i
X points

in the same direction as ui
X , and its norm ||XXT

u
i
X ||2 is

the corresponding eigenvalue. The degree of scaling and

rotation by Y Y T thus indicates how similar the action of

Y Y T is to XXT, for each eigenvector of XXT. For visu-

alization purposes, this approach is somewhat less useful

than the CKA summary statistic, since it does not collapse

the similarity to a single number, but it provides a more

complete picture of what CKA measures. Figure 8 shows

that, for large eigenvectors, XXT and Y Y T have similar

actions, but the rank of the subspace where this holds is

substantially lower than the dimensionality of the activa-

tions. In the penultimate (global average pooling) layer, the

dimensionality of the shared subspace is approximately 10,

which is the number of classes in the CIFAR-10 dataset.

7. Conclusion and Future Work

Measuring similarity between the representations learned

by neural networks is an ill-defined problem, since it is not

entirely clear what aspects of the representation a similarity

Figure 8. The shared subspace of two Tiny-10 networks trained

from random initialization is spanned primarily by the eigenvectors

corresponding to the largest eigenvalues. Each row represents a

different network layer. Note that the average pooling layer has

only 64 units. Left: Scaling of the eigenvectors ui

X of the RSM

XXT from network A by RSMs of networks A and B. Orange

lines show ||XXT
u
i

X ||2, i.e. the eigenvalues. Purple dots show

||Y Y T
u
i

X ||2, the scaling of the eigenvectors of the RSM of net-

work A by the RSM of network B. Right: Cosine of the rotation

by the RSM of network B, (ui

X)TY Y T
u
i

X/||Y Y T
u
i

X ||2.

index should focus on. Previous work has suggested that

there is little similarity between intermediate layers of neu-

ral networks trained from different random initializations

(Raghu et al., 2017; Wang et al., 2018). We propose CKA as

a method for comparing representations of neural networks,

and show that it consistently identifies correspondences be-

tween layers, not only in the same network trained from

different initializations, but across entirely different archi-

tectures, whereas other methods do not. We also provide a

unified framework for understanding the space of similarity

indexes, as well as an empirical framework for evaluation.

We show that CKA captures intuitive notions of similarity,

i.e. that neural networks trained from different initializa-

tions should be similar to each other. However, it remains

an open question whether there exist kernels beyond the

linear and RBF kernels that would be better for analyzing

neural network representations. Moreover, there are other

potential choices of weighting in Equation 14 that may be

more appropriate in certain settings. We leave these ques-

tions as future work. Nevertheless, CKA seems to be much

better than previous methods at finding correspondences be-

tween the learned representations in hidden layers of neural

networks.
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