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ABSTRACT
Motivation: Transcription-factor binding sites in promoter
sequences of higher eukaryotes are commonly modeled
using position frequency matrices. The ability to compare
position frequency matrices representing binding sites is
especially important for de novo sequence motif discovery,
where it is desirable to compare putative matrices to one
another and to known matrices.
Results: We describe a position frequency matrix similarity
quantification method based on product-multinomial dis-
tributions, demonstrate its ability to identify position fre-
quency matrix similarity and show that it has a better false
positive to false negative ratio compared to existing meth-
ods.

We group transcription factor binding site frequency
matrices from two libraries into matrix families, and
identify the matrices that are common and unique to
these libraries. We identify similarities and differences
between the skeletal-muscle-specific and non-muscle-
specific frequency matrices for the binding sites of Mef-
2, Myf, Sp-1, SRF and TEF of Wasserman and Fickett
(1998). We further identify known frequency matrices and
matrix families that are strongly similar to the matrices
given by Wasserman and Fickett. We provide methodology
and tools to compare and query libraries of frequency
matrices for transcription factor binding sites.
Availability: Software is available to use over the web at
http://rulai.cshl.edu/MatCompare
Contact:

�
dschones, sumazin, mzhang � @cshl.edu

Supplementary Information: Database and clustering
statistics, matrix families, and representatives are avail-
able at http://rulai.cshl.edu/MatCompare/Supplementary

INTRODUCTION
Transcription-factor binding site (TFBS) discovery in pro-
moter sequences is important for predicting transcription
regulation. These binding sites are often represented as
matrices, which are known in the literature under a variety
of names: position weight matrices, position frequency
matrices, alignment matrices, profiles, etc (Knuppel et al.
(1994), Sandelin et al. (2004); Lenhard and Wasserman

(2002)). We refer to a matrix consisting of nucleotide
counts per position as a position frequency matrix (PFM).
Schneider et al. (1982, 1986) and Staden (1984) were
some of the first studies to use PFMs to characterize
DNA binding site specificity. Berg and von Hippel (1987,
1988), Hertz et al. (1990); Hertz and Stormo (1999), and
Stormo and Hartzell III (1989) refined the method to allow
quantitative discrimination of sites, with calculated site
scores approximating the binding energy of the profiled
transcription factor.

Comparison tools for TFBS PFMs are important for
testing newly discovered matrices against existing matri-
ces, reducing redundancy in databases and increasing the
quality of the matrices. Previous approaches for quanti-
fying PFM similarity include: the average log likelihood
ratio method proposed by Wang and Stormo (2003),
the Pearson correlation coefficient method described
by Pietrokovski (1996) and Hughes et al. (2000), and a
method recently introduced by Sandelin and Wasserman
(2004).

We describe a column-by-column method for PFM sim-
ilarity quantification based on the likelihood that aligned
columns are independent and identically distributed obser-
vations from the same multinomial distribution. We com-
pare the performance of this method to the average log
likelihood ratio method and the Pearson correlation coef-
ficient method on simulated data. Our method outperforms
the other methods in each of our tests. We do not compare
with the method introduced by Sandelin and Wasserman
(2004), because it is fundamentally different as they allow
for gapped PFM alignment.

We use this PFM similarity quantification to classify
TFBSs by PFM similarity. We group PFMs in TRANS-
FAC (Knuppel et al. (1994)) and JASPAR (Sandelin
et al. (2004); Lenhard and Wasserman (2002)) into PFM-
families and generate representatives for each family. We
find that PFM-families are likely to include TFBS PFMs
for related transcription factors. PFM-families and their
representatives are useful for reducing the error when
searching a PFM library. By comparing the similarity
of a novel PFM to a PFM-family representative, as
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opposed to all other PFMs, we lower the false positive
rate while increasing the computational efficiency. Once
a PFM-family is chosen, similarity between its family
members and the novel PFM is computed with greater
accuracy.

We compare the matrices present in the TRANSFAC
database to those in JASPAR, and vice versa. With
a similarity threshold of 0.05, 16 of the PFMs from
JASPAR are found to have no counterpart in TRANSFAC,
including binding site matrices for EN-1, Elk-1, FREAC-
3, GATA-2, Gfi, Gklf, HMG-1, MYB.ph3, Pax-2, SAP-1,
SQUA, Tal1beta-E47S, c-FOS, c-MYB 1, p50, and Spz1.
With a similarity threshold of 0.01, six of the PFMs from
JASPAR have no counterpart in TRANSFAC, including
binding site matrices for Elk-1, FREAC-3, GATA-2,
HMG-1, SAP-1, and Tal1beta-E47S.

We compare the skeletal muscle binding site PFMs
given by Wasserman and Fickett (1998) to the inde-
pendently curated matrices, and to PFM-families and
individual PFMs in TRANSFAC. We show that the
muscle-specific and the non-muscle-specific binding site
matrices for Mef-2 are strongly similar in eight core
positions, and different in the remaining positions; the
PFMs for Myf are similar in seven core positions; the the
PFMs for TEF are similar; and the PFMs for SRF are
weakly similar.

In the remainder of the paper we introduce methods
for calculating PFM similarity distances, and compare
these to PFM similarity measures described previously.
We use the methods we introduce to build PFM families
in TRANSFAC and JASPAR. We demonstrate the ef-
fectiveness of these techniques by producing conclusive
comparisons of the PFMs given by Wasserman and
Fickett (1998), and by identifying similar PFMs and PFM
families in TRANSFAC and JASPAR.

SYSTEMS AND METHODS
In this section we present and compare the performance
of four methods for comparing PFMs: the Pearson cor-
relation coefficient, the average log likelihood ratio, the
Pearson chi square test, and the Fisher-Irwin exact test.
We conclude the section with a description of the cluster-
ing methodology used to build PFM-families, and with a
description of the PFM libraries themselves. It is impor-
tant to note that, as expected, all methods perform less
effectively when PFMs are built from alignments of few
sequences. The Pearson chi square test and Fisher-Irwin
exact test allow for power quantification that can be used
to determine the confidence level in the similarity of the
PFMs.

Distance Measures
We adopt the methodology of Liu et al. (1995), where
position frequency matrices follow a product multinomial
distribution. Each column is a set of independent and
identically distributed observations, and matrix compar-
isons reduce to column by column comparisons. The
overall similarity score for a matrix pair is derived from
the individual column scores.

Methods for comparing frequency matrices have been
described by Pietrokovski (1996), Hughes et al. (2000),
Wang and Stormo (2003), and Sandelin and Wasserman
(2004). Pietrokovski tested four different methods for
comparing multiple alignments of protein sequences and
determined that the Pearson correlation coefficient is the
most effective statistic of the four. Hughes et al. employ
the Pearson correlation coefficient to compare PFMs.
Wang and Stormo introduce the average log likelihood
ratio statistic, based on the information content of the
binding sites.

We use a statistical test for determining the likelihood
that two columns are generated from the same multinomial
distribution. This likelihood can be computed using the
Fisher-Irwin exact test or approximated using the Pearson
chi square test.

Pearson Correlation Coefficient A general similarity mea-
sure between two columns X and Y can be written as in
Eisen et al. (1998):
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where,
� � �"! ��$# �� ��� �&% ��� %'����	)( . For TFBS ma-

trices, we have an alphabet of size four (N = 4). When
%����

is set to the mean of Z (
%*���+� ,%-� �� # �� ��� % � ), this

similarity measure is the Pearson correlation coefficient
(PCC) given in Equation 2. To compare matrices consist-
ing of multiple columns, the scores of the individual col-
umn comparisons are summed.
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Average Log Likelihood Ratio The average log likelihood
ratio statistic (ALLR), introduced by Wang and Stormo
(2003), is a weighted sum of two log likelihood ratios.
The ALLR of two column vectors X and Y is given in
Equation 3, where = 4 is the number of occurrences, > 4 �= 4 /N is the frequency, and ? 4 is the prior for base @ . Again,
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to compare matrices consisting of multiple columns, the
scores of the individual column comparisons are summed.

������� � # 2 4 �<5 = 4 ���	��
 ����	�� � 	�� # 2 4 �65 = 4 ���	��
 ����	�� � 	#;24 �<5 � = 4 � � = 4 � 	
(3)

Pearson Chi Square The probability that two unnormal-
ized frequency vectors of length 4 are selected from the
same multinomial distribution can be described by the ? -
value of the ����� contingency table as seen in Table 1.

A C G T
X ����� � �"! � �"# � ��$ % �
Y � &'� ��&�! � &�# � &'$ % &

%(� %�! %)# %($ N

Table 1. *,+.- Contingency table used for column comparison, with margins.

The chi square statistic of Equation 4 can be used to
test the hypothesis that the columns are samples from the
same multinomial distribution, where =0/1 4 is the observed
number of base @ at position 2 , and =031 4 is the expected

number of base @ at position 2 , calculated as = 31 4 � �54&� ��
(Fleiss et al. (2003)). The ? -value is calculated from this6 ( value with 3 degrees of freedom, and the ? -value
for multiple columns is the product of the ? -values of
the individual columns. In our discussion we use the
geometric mean of the column ? -values, which allows
for comparing different size matrices and setting column-
based ? -value thresholds.

6 ( � �
1 � �07 � 2�4 �65

� =)/1 4 � =)31 4 	 (= 31 4 (4)

Fisher-Irwin Exact Test The chi square test is an approxi-
mation of Fisher-Irwin exact test. The approximation does
not hold when the marginal frequencies are small, specif-
ically when at least one of the marginals is smaller than
five – a condition that occurs often in PFMs of TFBSs
(Fleiss et al. (2003)). The fixed marginal contingency ta-
ble ? -value follows the multiple hypergeometric distribu-
tion given in Equation 5 (Agresti (1992)). The two-sided? -value for the table is the sum of the probabilities of all
tables that are at least as extreme. As in the 6 ( test, the ? -
value for multiple columns is the product of the ? -values
of the individual columns.

. �98 �;:< :'= 7 < :�> 7 < :'? 7 < :'@�A 8 �5B< BC= 7 < BC> 7 < BC? 7 < BC@DA
8 ��E= 7 �E> 7 �E? 7 �E@�A (5)
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Fig. 1. Power of the methods to recognize PFMs generated from
the same product multinomial distribution. Selectivity of ALLR and
PCC is poor on low information PFMs.

Distance Measure Comparisons
We generated PFM libraries from product multinomial
distributions of a given information content range, and
tested the effectiveness of the four methods in separating
PFM pairs generated from the same distribution and PFM
pairs generated from different distributions; see Figure 1.
Each library contains 20 PFMs generated from each of
10 distributions with 6 independent vectors with total
information content ranging from 1.9 to 10.4 bits. Each
PFM was generated by sampling from a Dirichlet distri-
bution with sample size 30. We generated 220 libraries
for each sample in order to achieve suitable power. We
chose distributions with 6 vectors, and PFMs with 30
sequences to match with the average characteristics of
the extended-core libraries of TRANSFAC and JASPAR.
We controlled the false positive rate and compared the
power (selectivity) of the four methods. When the false
positive rate is set to 0.001, and information content is 3.5
or lower, the hypothesis that the power of the Pearson chi
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square test and the Fisher-Irwin exact test is no greater
than the power of the other two tests can be rejected
with error probability � �������  and 99% power. Our
experiments suggest that the chi square method is as good
as the exact test method in detecting PFM similarity for
the majority of PFMs in TRANSFAC, as can be seen in
Figure 1.

PFM-family Construction
Two of the most widely used databases of transcription
factor binding site matrices are the Transcription Factor
Database (TRANSFAC) and the JASPAR database. JAS-
PAR has a much smaller data set, and is manually curated
with the goal of eliminating redundancy (Sandelin et al.
(2004); Lenhard and Wasserman (2002)).

We describe the clustering of TRANSFAC; the cluster-
ing of JASPAR follows in similar lines. TRANSFAC ver-
sion 7.2 includes 636 matrices, a small subset of which
lack sufficient information for PFM construction. We se-
lected all matrices for which we could estimate the correct
frequency of each base at each position. This set consisted
of 609 matrices.

A matrix core is identified in each PFM by TRANSFAC
as the five most conserved contiguous columns (highest
confidence) (Knuppel et al. (1994)). Extended cores were
constructed to include columns that are adjacent to the
cores and whose information content is greater than the
information content of the highest entropy column in the
core. We used matrix cores and extended cores to measure
distances between PFMs.

We compared all PFM core pairs and all extended-
core pairs using a sliding window of five columns. The
comparisons were ranked according to ? -value and a
similarity threshold was set so that two PFMs with a ? -
value below threshold are deemed incompatible, and ? -
value above threshold are considered similar. We chose
the threshold by estimating the associated rate of false
positives and false negatives, where the expected number
of false positives is the sum of the ? -values of the
incompatible pairs and the expected number of false
negatives is the sum of the � -values ( � �  � ? ) of the
similar pairs.

We set the rate of false positive comparisons to 0.05
and used this to set a ? -value threshold. The comparisons
with similarity above threshold were then used as input
for the partitioning around medoids (PAM) clustering
algorithm of Kaufman and Rousseeuw (1990) in the S-
PLUS software package.

Some of the clusters produced by PAM include pairs
with similarity ? -value lower than the threshold. These
clusters were modified to eliminate pairs with probabilities
below the similarity threshold, a process generally result-
ing in the breaking of a cluster into two or more smaller
clusters. For the TRANSFAC cores, this process increased

the number of clusters from 135 to 156. The resulting clus-
ters can be described as cliques in the subgraph induced
by edges with ? -value greater than the threshold. PFM-
families are given in the Supplementary Information.

Matrices in the JASPAR database are not annotated
with a core section as the TRANSFAC matrices. In
order to search in an unbiased manner for JASPAR
matrices in TRANSFAC, we defined cores and extended
cores in JASPAR matrices in a manner consistent with
TRANSFAC. Statistics about these matrix sets are given
in the Supplementary Information.

IMPLEMENTATION
In this section we describe the construction of PFM-
families using core and extended core sections from
matrices in both the TRANSFAC and JASPAR databases.
A representative matrix is constructed for each PFM-
family. We conclude with a study of the PFMs given by
Wasserman and Fickett (1998), describing the similarities
and differences between the collected muscle-specific
PFMs and independently selected PFMs, and comparing
these to TRANSFAC and JASPAR PFMs and PFM-
families.

PFM-family Construction
The clustering procedure described above was used to
group PFMs into families of matrix similarity. We orga-
nized PFMs into PFM-families for the TRANSFAC core,
TRANSFAC extended core, JASPAR core and JASPAR
extended core PFM sets. We outline the implementation
for each of the sets. Statistics and a complete list of
the PFM-families in each PFM set are available in the
Supplementary Information.

We generate a representative matrix for each PFM-
family by first aligning the matrices using a comparison
window of five bases, and then summing all the elements
across the aligned columns. The summing operation is
consistent with the product multinomial model, where
each column is a set of observations and the representative
column is the combination of the categorical data sets (Liu
et al. (1995)).

TRANSFAC Cores The largest PFM-family with high
internal similarity is given in Table 2. This PFM-family
contains 12 matrices that have an average similarity of
0.94. The ATF, CREB, bZIP910, and bZIP911 factors
present in this PFM-family are all members of the
bZIP family of proteins. Other CREB matrices exist
in TRANSFAC, but are sufficiently distinct and do not
appear in this cluster. Relaxed constraints leads to the
inclusion of additional bZIP PFMs.

Another interesting result from the clustering of the
TRANSFAC core matrices is the presence of multiple
E2F binding site PFM-families, as shown in Table 3.
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Fig. 2. Sequence Logos PFM-families that include matrices for
binding sites of E2F transcription factors corresponding to Table 3.

PFM-families 124, 141 and 156 have identical consensus
sequences, but there are differences in the relative strength
of the signal at various positions. This can be seen from the
sequence logos in Figure 2; the logos program is described
in Schneider and Stephens (1990).

Matrix Id Transcription Factor

M00017 ATF
M00338 ATF
M00483 ATF6
M00039 CREB
M00177 CREB
M00178 CREB
M00801 CREB
M00356 bZIP910
M00357 bZIP910
M00358 bZIP911
M00359 bZIP911
M00036 v-Jun

Table 2. The PFMs in this PFM-family have an extremely high average
similarity. The binding site matrix for v-Jun is strongly similar to the other
matrices, and is the only binding site matrix in the family for a transcription
factor that is not annotated as a bZIP protein.

TRANSFAC Extended Cores We grouped the extended-
core PFMs into 145 PFM-families. An example of PFM-
families that are formed when using the extended cores
and not formed when using the cores is given in Table 4.
The factors MyoD, E47, E12, E2A, and myogenin belong
to the bHLH (basic region + helix-loop-helix) factor class.
MyoD, E47, E12, E2A, and myogenin are known to
interact, and the Lmo2 complex transcription factor is
known to bind to E2A and E47 (Mitsui et al. (1993)).

Family Matrix Id Transcription Factor

40 M00430 E2F-1
40 M00426 E2F
40 M00425 E2F

94 M00024 E2F
94 M00062 IRF-1
94 M00063 IRF-2
94 M00120 d1

124 M00431 E2F-1
124 M00427 E2F
124 M00428 E2F

141 M00736 E2F-1/DP-1
141 M00739 E2F-4/DP-2
141 M00737 E2F-1/DP-2

156 M00050 E2F
156 M00516 E2F
156 M00738 E2F-4/DP-1
156 M00740 Rb/E2F-1/DP-1

Table 3. PFM-families that include matrices for binding sites of E2F
transcription factors. Logos for the PFM cores are given in Figure 2.

Family Matrix Id Transcription Factor

108 M00001 MyoD
108 M00002 E47
108 M00071 E47
108 M00693 E12
108 M00412 AREB6
108 M00414 AREB6

109 M00184 MyoD
109 M00804 E2A
109 M00712 myogenin
109 M00277 Lmo2 complex

Table 4. PFM-families that include matrices for the binding sites of MyoD
in the TRANSFAC extended core set. The relationship between the members
of family 108 are lost when considering TRANSFAC cores only. Family 109
is represented by M00184 and M00804 in the TRANSFAC cores set. MyoD,
E47, E12, E2A and myogenin are bHLH class factors (Mitsui et al. (1993)).

JASPAR Cores and Extended Cores We identified 61
similar JASPAR PFM core pairs and 80 similar JASPAR
PFM extended-core pairs out of the 6431 possible pairs,
and produced 23 and 36 PFM-families respectively. The
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average similarity within clusters and the size of clusters is
considerably smaller for the JASPAR database than for the
TRANSFAC database. The clustering statistics are given
in the Supplementary Information.

Representative Matrices
Through increasing the number of observations for each
high information column and decreasing the number of
PFMs in the initial search, representative matrices are used
to increase the accuracy and the efficiency of similarity
searches. An example of this is given in the following
section.

Similarity designations are often difficult to make for
TRANSFAC PFMs because PFMs are often constructed
from the alignment of few sequences. PFM-family repre-
sentatives allow for increased accuracy since they repre-
sent richer alignments.

Representative matrices can also be used to validate
PFM-families. The representatives can be used to search
the original database for related matrices. When doing
this, matrices of the PFM-family corresponding to the
representative matrix should be found with high similarity,
followed by members of related families. The result
of a query using the representative of the bZIP family
introduced in Table 2 is shown in Table 5. Results
for the other representative matrices created from the
TRANSFAC extended cores are in the Supplementary
Information.

Novel PFM Comparison
Wasserman and Fickett (1998) curated a set of PFMs
for skeletal muscle-specific TFBSs and compared them
to PFMs from independently selected promoter segments.
They wanted to know if the two resulting PFMs in each
pair differ substantially, and they offered observations
about the differences. We describe the difference in
quantifiable terms, and compare the PFMs to general
PFMs from TRANSFAC.

The reader is referred to Wasserman and Fickett (1998)
for the PFMs classified as muscle-specific and indepen-
dent. We compared the analogous PFMs from the muscle-
specific and independent set. A summary of the results fol-
lows.

� Mef-2 PFMs – the muscle-specific and independent
PFMs match well from position 4 to 11 (with simi-
larity 0.21), and match weakly from position 1 to 4
(0.05).

� Myf PFMs – match well in 7 positions starting at
position 4 of the muscle-specific PFM and 5 of the
independent PFM.

� SRF PFMs – match weakly in 10 positions starting at
position 3 of the muscle-specific PFM and 5 of the
independent PFM (0.06).

Matrix ID Factor Score

M00483 ATF6 1
M00359 bZIP911 1
M00358 bZIP911 1
M00357 bZIP910 1
M00356 bZIP910 1
M00338 ATF 1
M00036 v-Jun 1
M00017 ATF 1
M00694 E4F1 1
M00179 CREB-BP1 1
M00115 Tax/CREB 1
M00694 E4F1 1
M00178 CREB 0.921834
M00177 CREB 0.891643
M00039 CREB 0.644119
M00697 HBP-1b 0.563122
M00113 CREB 0.376415
M00114 Tax/CREB 0.231502
M00513 ATF3 0.132264
M00514 ATF4 0.119509
M00801 CREB 0.0887971

Table 5. PFMs whose similarity with the representative of the PFM-family
given in Table 2 is above threshold. PFMs with similarity lower than 0.64
are not family members.

� Sp-1 PFMs – match well in 10 positions starting at
position 1 of the muscle-specific PFM and 2 of the
independent PFM (0.49). However, the power of the
comparison is lower than 90%.

� TEF PFMs – match well in 8 positions starting at
position 2 of the muscle-specific PFM and 1 of the
independent PFM (0.43). However, the power of the
comparison is lower than 85%.

We compared the skeletal muscle-specific PFMs to the
representative PFMs of TRANSFAC extended-core PFM-
families. A summary of the results follows.

� Mef-2 PFM – matches best with the representative
of the sixth PFM-family (M06), with a similarity
of 0.45 for window of size 7 starting at position
4. M06 includes binding site matrices for aMEF-
2, MADS-B and MEF-2. The PFM also matches
M00006 (MEF2) in 10 positions, starting at its second
position. However, M00006 is constructed from the
alignment of five sequences and the similarity has
considerably lower power than the similarity of the
PFM with the representative of M06.

� Myf PFM – Myf PFMs in TRANSFAC did not meet
our requirements and were removed from all analysis.
The Myf PFM did not match any PFM-families.
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� SRF PFM – matches the representative of PFM-family
75 (M075) with window of size 7 and similarity
0.14. The PFM-family includes a binding site matrix
for BR-C Z2 and two binding site matrices for SRF.
The PFM matches, with window size 7, M00186
(SRF) with similarity 0.323518, M00404 (MADS-B)
with similarity 0.249068, and M00810 (SRF) with
similarity 0.248197. The match with M00404 is most
likely false. M00404 is constructed from the alignment
of seven sequences and its match with the SRF PFM
begins at position 5 instead of position 3. Interestingly,
the muscle-independent SRF PFM strongly matches
M00152 (SRF) with a window size 10 and similarity
0.75. Thus, the muscle-specific and independent SRF
PFMs match different SRF binding site matrices in
TRANSFAC.

� Sp-1 PFM – matches the representative of PFM-family
28 (M028) with a window of size 6 and similarity
0.31. The PFM-family includes a binding site matrix
for Muscle initiator sequences-19 and Muscle initiator
sequences-20. The PFM matches, with window size
7, M00221 with similarity 0.30 and M00749 with
similarity 0.24. Both these matches are likely to be
false. M00221 is constructed from the alignment of
seven sequences and M00749 from six sequences.
Their alignments with the Sp-1 PFM start at different
positions.

� TEF PFM – does not match any PFM-family.

DISCUSSION AND CONCLUSION
We present a technique to identify similarity between
position frequency matrix profiles for transcription factor
binding sites. This similarity method is deeply rooted
in the theory of PFMs and is experimentally shown to
outperform existing methods. It allows for a statistical
quantification of errors, and is used to facilitate PFM
queries in TFBS PFM libraries.

We used our technique to classify PFMs in TRANSFAC
and JASPAR into PFM-families, which were then used to
increase the accuracy of PFM queries. An examination
of these families reveals a strong correlation between
PFM similarity and the function of the corresponding
transcription factors, but there are examples of similar
PFMs that profile binding sites of transcription factors that
are not likely to be related functionally.

The analysis of the TRANSFAC and JASPAR databases
reveals that the JASPAR database is less redundant, but
almost all of the JASPAR matrices are represented in
TRANSFAC. By grouping the TRANSFAC PFMs into
PFM-families we build a higher quality PFM set that is
also less redundant.

We also show that the cores in the TRANSFAC database
do not always capture the whole signal. For example,

the JASPAR PFM MA0003 is strongly related to the
TRANSFAC M00075 and both are binding sites of an
E2F transcription factor. However, the similarity between
the PFMs cannot be detected when using the M00075
core alone. Another example is the similarities between
the bHLH factors listed in Table 4. These PFMs only
group together as similar when the extended cores are
considered.

Sandelin and Wasserman (2004) use Needleman-
Wunch (Needleman and Wunsch (1970)) to align matrices
before comparing them. This method is attractive for
comparing binding site PFMs that are composed of
strongly conserved position clusters that are separated by
non-conserved positions, such as binding sites for dimers
like the leucine zippers. We chose to concentrate on the
simpler configuration of adjacent, conserved positions
as advocated by TRANSFAC. However, the extension to
allow for gapped PFM alignments is possible and would
be useful.

We compared the skeletal muscle-specific PFMs curated
by Wasserman and Fickett (1998) to their corresponding
independently curated PFMs. We show that the muscle-
specific SRF binding site matrix is different from the
independent SRF binding site matrix; these matrices
match different binding site matrices in TRANSFAC.
All other muscle-specific binding site matrices in the
Wasserman and Fickett study are similar.

Finally, our major contribution is a methodology for
comparing PFMs and for searching for PFMs in a PFM
library. Our techniques can be used for classifying PFM-
families, and for investigating novel PFM binding site
matrices.
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