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ABSTRACT
Similarity search methods are widely used as kernels in var-
ious data mining and machine learning applications includ-
ing those in computational biology, web search/clustering.
Nearest neighbor search (NNS) algorithms are often used
to retrieve similar entries, given a query. While there exist
efficient techniques for exact query lookup using hashing,
similarity search using exact nearest neighbors suffers from
a ”curse of dimensionality”, i.e. for high dimensional spaces,
best known solutions offer little improvement over brute
force search and thus are unsuitable for large scale streaming
applications. Fast solutions to the approximate NNS prob-
lem include Locality Sensitive Hashing (LSH) based tech-
niques, which need storage polynomial in n with exponent
greater than 1, and query time sublinear, but still polyno-
mial in n, where n is the size of the database. In this work
we present a new technique of solving the approximate NNS
problem in Euclidean space using a Ternary Content Ad-
dressable Memory (TCAM), which needs near linear space
and has O(1) query time. In fact, this method also works
around the best known lower bounds in the cell probe model
for the query time using a data structure near linear in the
size of the data base.

TCAMs are high performance associative memories widely
used in networking applications such as address lookups and
access control lists. A TCAM can query for a bit vector
within a database of ternary vectors, where every bit posi-
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tion represents 0, 1 or ∗. The ∗ is a wild card representing
either a 0 or a 1. We leverage TCAMs to design a variant
of LSH, called Ternary Locality Sensitive Hashing (TLSH)
wherein we hash database entries represented by vectors in
the Euclidean space into {0, 1, ∗}. By using the added func-
tionality of a TLSH scheme with respect to the ∗ character,
we solve an instance of the approximate nearest neighbor
problem with 1 TCAM access and storage nearly linear in
the size of the database. We validate our claims with exten-
sive simulations using both real world (Wikipedia) as well as
synthetic (but illustrative) datasets. We observe that using
a TCAM of width 288 bits, it is possible to solve the approx-
imate NNS problem on a database of size 1 million points
with high accuracy. Finally, we design an experiment with
TCAMs within an enterprise ethernet switch (Cisco Cata-
lyst 4500) to validate that TLSH can be used to perform
1.5 million queries per second per 1Gb/s port. We believe
that this work can open new avenues in very high speed data
mining.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods

General Terms
Algorithms, Theory

Keywords
Locality Sensitive Hashing, Nearest Neighbor Search, Simi-
larity Search, TCAM

1. INTRODUCTION
Due to the explosion in the size of datasets and the in-

creased availability of high speed data streams, it is has be-
come necessary to speed up similarity search (SS), i.e. to
look for objects within a database similar to a query ob-
ject, which is a critical component of most data mining and
machine learning tasks. For example, consider searching for
similar images within a corpus of billions of images and re-
peating this for a query set consisting of millions of images
using as little power and computation time as possible. One
could use the streaming model and stream the corpus over



the latter set. In order to do this, one would typically deploy
very fast computing devices or distribute it over several com-
pute devices. In this paper, we show how this goal can be
achieved with just an associative memory module, ternary
content addressable memory (TCAM) [31], commonly used
in networking for route lookups and access control list (ACL)
filtering, to perform a specific variant of SS, i.e. determine
the approximate nearest neighbor for the L2 or Euclidean
space.

Common tasks in mining and learning depend heavily on
SS. For example, clustering algorithms are designed to max-
imize intra cluster similarity and minimize inter cluster sim-
ilarity. In classification, the label of a new query object is
determined based on its similarity to trained (labeled) data
and their labels. In several applications of SS such as in con-
tent based search, pattern recognition and computational bi-
ology, objects are represented by a large number of features
in a high dimensional (metric) space, and SS is typically im-
plemented using nearest neighbor search routines. Given a
set consisting of n points, the nearest neighbor search prob-
lem[29] builds a data structure which, given a query point,
reports the data point nearest to the query. For example,
nearest neighbor methods and their variants have been used
for classification purposes [15], stream classification [2] and
clustering heuristics [9]. Applications of SS range from con-
tent search, lazy classifiers, to genomics, proteomics, image
search, and NLP [38, 34, 17, 11, 14, 26, 24].

Existing solutions to the exact nearest neighbor problem
offer little improvement over brute force linear search. The
best known solutions to exact nearest neighbor include those
which use space partitioning techniques like k-d trees [8],
cover trees [10], navigating nets [23]. However these tech-
niques do not scale well with dimensions. In fact an ex-
perimental study[39] indicates when number of dimensions
is more than 10, space partitioning techniques are in fact
slower than brute force linear scan.

A class of solutions that have shown to scale well are those
that are based on locality sensitive hashing (LSH) [4] which
solve the approximate nearest neighbor problem. The c-
Approximate Nearest Neighbor problem (c-ANNS) allows
the solutions to return a point whose distance to the query
is at most c times the distance from the query to its nearest
neighbor. A family of hash functions is said to be locality-
sensitive if it hashes nearby points to the same bin with high
probability and hashes far-off points to the same bin with
low probability. To solve the approximate nearest neighbor
problem on a set of n points in d dimensional Euclidean
space, the data points are hashed to a number of buckets
using locality-sensitive hash functions in the pre-processing
step. To perform a similarity search, the query is hashed us-
ing the same hash functions and the similarity search is per-
formed on the data points retrieved from the corresponding
buckets. In the last few years LSH has been extensively used
for SS in diverse applications including bioinformatics [11,
17], kernelized LSH in computer vision [24], clustering [20],
time series analysis [21]. For the Euclidean space, the opti-
mal LSH based algorithm which solves the c-ANNS problem

has a space requirement of O(n(1+1/c2)) and a query time

of O(n(1/c2)). For c ≈ 1, this near quadratic space require-
ment of LSH and query time sub-linear(but still polynomial)
in n, make it difficult to use LSH in streaming applications,
especially at extremely high speeds, which are beyond the

Figure 1: A comparison of LSH and TLSH: We
choose a random direction ûi and consider a family
of hyperplanes orthonormal to it, adjacent hyper-
planes being separated by δ. The LSH family hashes
regions between the hyperplanes to 0, 1, 0, 1 . . ., while
the TLSH family hashes the regions between the hy-
perplanes to 0, ∗, 1, ∗, 0, ∗ . . .

capability of a CPU. In such a scenario, we look for hardware
primitives to accelerate c-ANNS.

In this paper, we develop a variant of LSH, Ternary Lo-
cality Sensitive Hashing (TLSH), for solving nearest neigh-
bor problem in large dimensions using TCAMs and we show
that it is possible to formulate an almost ’ideal’ solution to
the c-ANNS problem with a space requirement near linear
in the size of the data base and a query time of O(1). A
TCAM is an associative memory where each data “bit” is
capable of storing one of three states: 0,1,* which we denote
as ternions. where * is a wildcard that matches both 0 and
1 [31]. Thus a TCAM can be considered to be a memory
of n vectors of w ternions wide.The presence of wildcards
in TCAM entries implies that more than one entry could
match a search key. When this happens, the index of the
highest matching entry (i.e. appearing at the lowest physi-
cal address) is typically returned. Access speeds for TCAMs
are comparable to the fastest, most-expensive RAMs. For
almost a decade, TCAMs have been used in switches and
routers, primarily for the purposes of route lookup (longest
prefix matching) [28, 37] and packet classification [28, 25].
In this paper, we present one application in which c-ANNS
problem can be solved using a single TCAM lookup using
a TCAM with width poly(logn) where n is the size of the
database by using the TLSH family.

For TLSH, we use ternary hash functions that hash any
point in Rd to the set 0,1,*. Analogous to LSH, TLSH has
property that nearby points are hashed to matching ternions
with high probability. We obtain a TLSH family by par-
titioning Rd using randomly oriented randomly translated
parallel hyperplanes. Alternate regions between the hyper-
planes are hashed to a *, while the remaining regions are
hashed to 0,1,0,1.. alternately.

In order to compare the TLSH family to the LSH fam-
ily, we consider an example in which we choose a random
direction ûi (say) and consider a family of hyperplanes or-
thonormal to it with adjacent hyperplanes separated by δ
(say). The family of hyperplanes partitions Rd as shown
in figure 1. We consider a LSH family which hashes the
region between the hyperplanes to 0, 1, 0, 1 . . . and a TLSH
family which hashes the region between the hyperplanes to



0, ∗, 1, ∗, 0, ∗ . . . as shown in figure 1. Note that both LSH
and TLSH project points in Rd on to the random direction
û. Consider any two points s,q ∈ Rd (as shown in figure
1), which are a distance cl apart and whose projections on
û are separated by t (say) and another point q′ ∈ Rd at
a distance of l from s, whose projection on û is separated
from that of s by t/c (say). Ideally the notion of locality-
sensitive hashing is aimed achieving the twin objectives of
separating far-off points (hash them to opposite bits ) and
hashing nearby points to matching bits with high probabil-
ity. However, in this example we see that using a ”binary”
hash function from the LSH family, if the probability of sepa-
rating s and q (hashing them to opposite bits) is ψ(t) (say),
then informally, the probability of separating s and q′ is
at least ψ(t)/c. Thus the ”binary” hash function does not
achieve both objectives simultaneously. On the other hand,
if we set the distance between the hyperplanes of the TLSH
family to value more than t/c, any function from the TLSH
family will not separate s and q′. This is because, any choice
of translated hyperplanes will ensure that one of the follow-
ing always happens:

1. either s and q′ are both hashed to 0 or both to 1.

2. One of s and q′ is hashed to a *.

Thus the ternary hash representations of s and q′ always
match. In this manner, the regions hashed to a * ”fuzz” the
boundaries between regions hashed to 0’s and 1’s such that
ternary hashed representation of nearby points match with
high probability.

We leverage the ability of a TCAM to represent the wild-
card character (*) in order to implement TLSH and store
the ternary hash signatures generated by it. Also, using
the property of the TCAM of returning the highest match-
ing entry, it is possible to configure this TCAM so that it
solves a sequence of the (1, c)-Near Neighbor problem, which
is a decision version of the c-ANNS problem, thus leading
to a solution of the c-ANNS problem itself (details in sec-
tion 4.2). Hence, using the TLSH family of hash functions
along with a TCAM of width poly(log n) where n is the
size of the database, the c-ANNS problem can be solved
in a single TCAM lookup [details in Sec 4.2]. We believe
this observation is very promising with regard to solving
similarity search problems in streaming environments. Also
we note here that Tao et al. [43] describe the reduction
of c-ANNS problem to O(

√
n) longest common prefix prob-

lems. It would be interesting to know if their method can
be adapted for use with TCAMs in order to avoid solving a
sequence of the (1, c)-Near Neighbor problems.

We note that this method beats the lower bounds for c-
ANNs in the cell probe model according to which, any data
structure nearly linear in n needs Ω(log n/ log log n) probes
in the data base in order to answer approximate nearest
neighbors accurately [33]. This is because the TCAM im-
plicitly implements highly parallel operations which do not
conform to the cell probe model of computation.

We also present simulations which explore the space of
design parameters and establish the trade-off involved be-
tween the size of the TCAM used and the performance of
our algorithm. We use a combination of real world and
artificially generated data sets each containing one million
points in a 64 dimensional Euclidean space. The first data
set contains randomly generated points (from a suitably cho-

sen localized region), the second one contains simHash sig-
natures of web pages belonging to the English Wikipedia
(from a snapshot of the English Wikipedia in 2005), and the
third one is again artificially generated in order to maximize
the number of false positives and false negatives, by having
many data points on the threshold of being similar or dis-
similar to a query. From our simulations we observe that a
TCAM of width 288 bits solves the decision version of the
2-Approximate Nearest Neighbor problem accurately for the
aforementioned databases.

In order to validate our simulations, we design a novel ex-
periment using TCAMs within a CISCO Catalyst 4500 Eth-
ernet switch and high speed traffic generators. We demon-
strate how one can process approximately 1.5M approximate
nearest neighbor queries per second for each port. Thus,
it is technically feasible to build devices with TCAMs that
could serve as high speed similarity engines, in a vein similar
to using GPUs to accelerate certain classes of application.
Note that in our case, a TCAM is much more suitable due to
the combined implicit memory access (lookup) and wildcard
search done in parallel.

1.1 Organization
In section 2, we define the the c-Approximate Nearest

Neighbor problem, the (l, c)-Near Neighbor problem, and
a (l, u, pl, pu)-TLSH family. In section 3 we describe the
construction and analysis of a (1, c, p1(δ), p2(δ/c))-TLSH
family for any δ ≥ 0. Section 4 describes the use of a
(1, c, p1(δ), p2(δ/c))-TLSH family in solving the (1, c)-Near
Neighbor problem, (1, c)-Similarity Search problem and c-
Approximate Nearest Neighbor problem. Section 5 describes
simulations using a combination of real life and synthetic
data sets containing a million points in 64 dimensional space,
which explore the trade-off between the width (size) of the
TCAM and the performance of the method, along with ex-
periments which validate our results. Section 6 summarizes
the related work. We summarize the findings of this paper
in section 7.

2. PRELIMINARIES
First we define the c-Approximate Nearest Neighbor

Search problem .

Definition 1. c-Approximate Nearest Neighbor Search or
the c-ANNS problem:
Given a set S of n points in Rd, construct a data structure
which, given a query q ∈ Rd returns a point s ∈ S whose
distance from q is at most c times the distance between q
and the nearest neighbor of q in S.

Next, we define the TCAM match operation ”=T ” which
declares that two sides match if both are equal or one of
them is a ∗.

Definition 2. If A,B ∈ {0, 1, ∗}, then A=TB if and only
if A = B or A = ∗ or B = ∗. The complementary relation
is referred to as �=T .

Definition 3. (l, c)-Near Neighbor problem or the (l, c)-
NN problem:
Given a set S of n points in Rd, construct a data structure
which, given a query point q ∈ Rd, if there exists a point
sl ∈ S such that ‖sl − q‖2 ≤ l, then reports “Yes” and a
point s such that ‖s− q‖2 ≤ cl and if there exists no point
su such that ‖su − q‖2 ≤ cl then reports “No”.



Note that we can scale down all the coordinates of points by
l in which case the above problem needs to be solved only
for l = 1. Accordingly we discuss the solution of (1, c)-NN
problem in section 4. Also, note that the (l, c)-NN problem
is the decision version of the c-ANNS problem. The c-ANNS
problem can be reduced to O(log n

c−1
) instances of (1, c)-NN

problems [19]. Next analogous to [22], we define a ternary
locality sensitive hashing family.

Definition 4. Ternary locality sensitive hashing family
(TLSH):
A distribution Ω on a family G of ternary hash functions
(i.e. functions which map Rd → {0, 1, ∗}) is said to be an
(l, u, pl, pu)-TLSH if ∀ x, y ∈ Rd

if ‖x− y‖2 ≤ l then PrΩ [g(x) =T g(y)] ≥ pl,
if ‖x− y‖2 ≥ u then PrΩ [g(x) =T g(y)] ≤ pu.

where g is drawn from the distribution Ω.

3. DESIGN AND ANALYSIS OF A TLSH
FAMILY

In this section we describe the construction and analysis
of a TLSH family. We will show its application in solving the
(1, c)-NN problem in section 4. Let δ > 0 be any constant.
Next, we describe the construction of a family of ternary
hash functions Gδ = {gδ : Rd → {0, 1, ∗}}.

Each hash function in the family Gδ is indexed by a ran-
dom choice of a and b where a ∈ Rd, individual components
ai of a, i = 1 . . . d are chosen independently from the normal
distribution N (0, 1) where N (μ, σ) denotes a normal distri-
bution of mean μ and variance σ2, and b is a real number
chosen uniformly from (0, 2δ). We represent each hash func-
tion in the family Gδ as gδ,a,b : Rd → {0, 1, ∗} and gδ,a,b

maps a d dimensional vector onto the set {0, 1, ∗}. For sake
of convenience, we drop the subscript δ from g and refer
to it as ga,b which is defined as follows. Given a, b, for any
x ∈ Rd, let j = �x.a+b

δ
mod(4) where mod denotes the mod-

ulus function.

if j = 0 ga,b(x) = 0
if j = 2 ga,b(x) = 1
if j = 1 or 3 ga,b(x) = ∗

Having given a formal definition, we give an intuitive de-
scription this family of hash functions. Consider a parti-
tion of the space Rd due to the family of hyperplanes or-
thonormal to a, adjacent planes separated by δ and ran-
domly shifted from the origin by −b. Then the function
ga,b(x) : Rd → {0, 1, ∗} hashes alternate regions to ∗ and the
remaining regions are hashed to 0, 1 alternately. We show in
this section that Gδ is a TLSH family with parameters that
are exponentially better than LSH. We show applications of
this scheme in section 4.

Next, we state the following theorem which is the main
technical contribution of this paper.

Theorem 1. For all δ ≥ 2c the family of ternary hash
functions Gδ is a (1, c, p1(δ), p2(

δ
c
))-TLSH family where

p1(z) = 1 − 1

z3
√

2π
e−

z2
2 , and p2(z) = 1 − 1

5z3
√

2π
e−

z2
2 .

Before proving this theorem, we comment on the im-
provement that an (1, c, p1(δ), p2(δ/c))-TLSH family offers
over a (1, c, pl, pu)-LSH family. One way to compare the
two hashing schemes is to compare the values of ρ :=

log pl/ log pu. We note that when δ is large, both pl and
pu are close to 1. In fact, for applications in section 4 we
set δ = O(

√
log log n). Hence in this regime we can use the

the approximations log 1/pl ≈ 1 − pl, log 1/pu ≈ 1 − pu.

We get log pl/ log pu ≈ (1/c3)e−δ2(c2−1)/(2c2). If we set
δ = O(

√
log log n) then ρ decreases to 0 unbounded as a

function of n. On the other hand, Motwani et al. have
proved that log pl/ log pu ≥ 0.5/c2 for any LSH family [30].
Hence we get an unbounded improvement in the parameter
ρ of a locality sensitive hashing family by using TLSH in the
range of parameter δ which is of interest.

In order to prove Theorem 3.1 we first introduce some
notation and prove some subsidiary lemmas. The applica-
tions in section 4 use the statement of the theorem but are
independent of the proof.

Consider two points s, q in Rd. Let x = s − q, x = ‖x‖2.
Let Ψ(x) denote the “collision probability” of s and q, i.e.
Ψ(x) = PrΩ [g(s) =T g(q) | s − q = x] and ψ(t) denote the
collision probability conditioned on the fact that |a · x| = t,
i.e. ψ(t) = Pr [g(s) =T g(q) | |a · x| = t]. We have Ψ(x) =R ∞
0
ψ(t)πx(t)dt where πx(t) is the density of the random

variable |a · x|. Let Ψ̄(x) = 1 − Ψ(x) and ψ̄(t) = 1 − ψ(t).
Let F̄ denote the complementary cumulative distribution

function of N (0, 1). Let φ(y) = e−(y2/2)/(y
√

2π) − F̄ (y).
The following lemma proves lower and upper bounds on the
collision probability Ψ.

Lemma 2. For all δ > 0, φ( δ
x
) − φ( 2δ

x
) ≤ Ψ̄(x) ≤ φ( δ

x
).

Proof. First we recall the definition of stability of ran-
dom variables. A distribution D over R is called p-stable
if there exists p ≥ 0 such that for any n real numbers
v1, v2 . . . vn and i.i.d. random variables X1, X2, . . .Xn with
distribution D, the random variable

P
i viXi has the same

distribution as the variable (
P

i |vi|p)1/pX, whereX is a ran-
dom varible with distribution D. Using the well known fact
that the Normal distribution N (0, 1) is 2-stable, we conclude
that the random variable |a · x| is distributed as x · |N (0, 1)|
which implies πx(t) =

√
2

x
√

π
e
− t2

2x2 .

If two points s, q, are such that |a · x| ≤ δ then they
are hashed to matching TCAM values, i.e. ga,b(s) =T

ga,b(q), since the adjacent hyperplanes are at a distance
of δ from each other and alternate regions are hashed to
∗ and 0, 1, 0, 1 . . .. Hence ψ̄(t) = 0 if t ∈ (0, δ). In fact, if
t ∈ (0, 2δ), then ψ̄(t) = t−δ

2δ
1t>δ, where 1t>δ is the indica-

tor function (1 if t > δ, 0 otherwise). Symmetry about 2δ
implies that if t ∈ (2δ, 4δ), then ψ̄(t) =

`
3δ−t

δ

´
1t≤3δ. Also

note that the function ψ(t) is periodic with period 4δ. So
ψ̄(t+ 4kδ) = ψ̄(t), for all positive integers k.

Now Ψ̄(x) =
R ∞

δ
ψ̄(t)πx(t)dt >

R 2δ

δ
ψ̄(t)πx(t)dt. Using

ψ̄(t) = t−δ
2δ

when t ∈ (δ, 2δ), we get

Ψ̄(x) >

r
2

π

Z 2δ

δ

t− δ

2δ

e
− t2

2x2

x
dt = φ(

δ

x
) − φ(

2δ

x
).

To prove the latter inequality, we use the fact that ψ̄(t) ≤
t−δ
2δ

, ∀t > δ. Hence we have that

Ψ̄(x) =
R ∞

δ
ψ̄(t)πx(t)dt

Ψ̄(x) ≤
√

2√
π

R ∞
δ

`
t−δ
2δ

´
1
x
e
− t2

2x2 dt

= 1√
2π

e
− δ2

2x2
δ
x

− F̄
`

δ
x

´
= φ

`
δ
x

´
.



The lemma 3 specifies appropriate bounds for the function
φ.

Lemma 3. The function φ is bounded above and below as
follows:

1

4
√

2π

e−
y2
2

y3
≤ φ(y) ≤ 1√

2π

e−
y2
2

y3
, (1)

where the first inequality holds if y ≥ 2. Hence for all y ≥ 2,

φ(y) − φ(2y) ≥ 1

5
√

2π

e−
y2
2

y3
. (2)

Proof. The expansion of the error function using inte-
gration by parts [1] proves (1). Using (1) we get φ(y) −
φ(2y) ≥ ( 1

4
− 1

8
e−

3y2
2 ) 1

y3
√

2π
e−

y2
2 . Using y ≥ 2 proves the

lemma.

Now we return to the proof of the main theorem.

Proof of Theorem 3.1:
Using lemma 2 and (1), ∀x ≤ 1, we have

Ψ̄(x) ≤ φ

„
δ

x

«
≤ 1√

2π

x3

δ3
e
− δ2

2x2 ≤ 1√
2π

e−
δ2
2

δ3
. (3)

Also using lemma 2 and (2), ∀x ≥ c and δ ≥ 2c, we have

Ψ̄(x) ≥ φ
`

δ
x

´ − φ
`

2δ
x

´
≥ φ

`
δ
c

´ − φ
`

2δ
c

´
≥ 1

5
√

2π

c3

δ3 e
− δ2

2c2 .

(4)

This proves the theorem 1.

Note that using standard bounds on the complimentary
cumulative distribution function of the standard normal ran-
dom variable N (0, 1) [1], the bounds on φ can be improved
as follows: ∀y, we have„

4
π

y2+y
√

y2+ 8
π

+ 4
π

«
e
− y2

2

y
√

2π
≤ φ(y) ≤

„
2

y2+y
√

y2+4+2

«
e
− y2

2

y
√

2π
.

(5)
It can be verified using standard plotting packages like
Maple or Matlab that for small values of n and 1/ε these
bounds are in fact tighter than the bounds presented in (1).
However it is not clear how these stronger bounds can be
used to obtain an improvement in Theorem 3.1. Analysis
using these bounds is complicated and moreover, asymptot-
ically these bounds have the same behaviour as the bounds
in (1). Hence we present the analysis using simpler bounds
as presented in the lemma’s above but we recommend the
use of tighter bounds for parameter tuning and experiments
as illustrated in section 5.

4. APPROXIMATE SIMILARITY SEARCH
In this section we demonstrate the use of Gδ to solve the

(1, c)-NN problem and the c-ANNS problem on a set S con-
sisting of n points in Rd using a TCAM of width w for some
appropriate choice of parameters δ and w. We note that the
results of this section can be extended to solve the (1, c)-
SS problem by requiring the TCAM to output all matching
data points to a query point.

4.1 The (1, c)-NN Problem
In this section we formulate an algorithm to solve the

(1, c)-NN problem. The choice of parameters δ and w is
specified later.

Algorithm A

• Pre-processing (TCAM Setup): Choose w inde-
pendent hash functions g1, g2, . . . gw ∈ Gδ where Gδ is a
(1, c, p1(δ), p2(δ/c))-TLSH family as defined in section
3. For every si ∈ S, find its TCAM representation
T (si) := (g1(si), g2(si), . . . gw(si)).

• Query lookup: Given a query q find its TCAM rep-
resentation T (q) (using the same hash functions). Per-
form a TCAM lookup of T (q). If the TCAM returns
a point sT such that ‖q− sT‖2 ≤ c, return “YES” and
sT, otherwise return “NO”.

Intuitively choosing a large w (i.e. a large no. of hash func-
tions) reduces the possibility of having false positives in the
output but at the same time increases the chances of a false
negative occurring because any one (or more than one) of the
w TCAM ternions can produce a false negative. Choosing
a large value of δ reduces the false negative probability but
increases the likelihood of having false positives. We show
in the following theorem that it is possible to tune these
parameters simultaneously to ensure that the false negative
probability is small and the expected number of false posi-
tives is also small.

Theorem 4. Consider a set S consisting of n points in
Rd.

1. One TCAM lookup: The (1, c)-NN problem can
be solved by using a TCAM of width w where w =

O(
`

1
ε

log n
ε

´ c2

c2−1
`
log

`
1
ε
log n

ε

´´ 3
2 (c2 − 1)−

3
2 )with error

probability at most ε using exactly 1 TCAM lookup and
1 distance computation in Rd.

2. O(log (1/ε)) TCAM lookups: The (1, c)-NN prob-
lem can be solved by a TCAM of width w =

O((log n)
c2

c2−1 (log log n)
3
2 (c2 − 1)−

3
2 ) with error prob-

ability at most ε using O
`
log 1

ε

´
TCAM lookups and

O
`
log 1

ε

´
distance computations in Rd.

3. Word size O(log n): If c2 ≥ log
`

k
ε

log n
ε

´
where k ≥

1/(1−p2(2)), a constant, the (1, c)-NN problem can be
solved with error probability at most ε using a TCAM
of width k log (n/ε).

Before proving Theorem 4, we discuss the improvements it
provides over existing methods to solve the (1, c)-NN prob-
lem.

1. Constant separation c: Existing approaches to
solve the (1, c)-NN problem can be broadly classi-
fied into three categories depending on their space
requirements as a function of n: polynomial, sub
quadratic, and near linear. Using the dimensionality
reduction approach proposed by Ailon and Chazelle
[3] and ignoring the dependence on ε, it is possible
to solve the (1, c)-NN problem with a query time of
O(d log d + (c − 1)−3 log2 n) using a data structure of



size d2nO(1/(c−1)2) i.e. polynomial in n. The space

requirement of nO(1/(c−1)2) is optimal in the sense
that any data structure which solves (1, c)-NN problem

with a constant number of probes must use nΩ(1/(c−1)2)

space [5]. However, the extremely large space require-
ment when c is close to 1 seems to render this approach
impractical. An alternative approach based on the op-
timal LSH family [5] proposed by Andoni and Indyk
can be used to solve the (1, c)-NN Problem using a
data structure with sub quadratic space requirement
and a constant probability of success. Their approach

has a query time of O(dn1/c2) and space requirement

of O(dn1+1/c2 log n) where the dependence on ε has
been ignored. To the best of our knowledge, their al-
gorithm minimizes the query time when the size of the
data structure is limited to be sub quadratic in n. The
optimal LSH family [5] can also be used to formulate
an algorithm which solves the (1, c)-NN problem with
a data structure which is near linear in size and has
a query time of dnO(1/c2), using the algorithm pro-
posed by Panigrahy [32]. These upper bounds reveal
the trade off involved between the space requirement
and the query time while solving the (1, c)-NN problem
using LSH. In contrast with these results using [Theo-
rem 4,1], we can formulate a TCAM based data struc-

ture which has O(
`

1
ε
log n

ε

´ c2

c2−1
`
log

`
1
ε
log n

ε

´´ 3
2 (c2 −

1)−
3
2 ) word size and solves the (1, c)-NN problem in

just one TCAM lookup and one distance computa-
tion in Rd. Ignoring the dependence on ε, we con-
clude that a TCAM based data structure requires

word size O(log nc2/(c2−1)(log log n)3/2(c2 − 1)−3/2) to
solve the (1, c)-NN problem with query time O(1).

The width of the TCAM varies with ε as ε−c2/(c2−1)

which leads to large values of the width when ε is
small. One work around is to use a TCAM of width
O((log n)c2/(c2−1)(log log n)3/2(c2−1)−3/2) and repeat
the algorithm O(log (1/ε)) times [Theorem 4,2]. For in-
stance, n = 106 and c = 2 requires a TCAM of width
3.3K bits and 1 lookup per query to succeed with prob-
ability 90% using the tight bounds in (5). But allowing
4 lookups per query, the width of the TCAM required
can be brought down to 1.7K bits. We explore the
trade-off between the width of the TCAM and accu-
racy of algorithm A while using data sets consisting of
a n = 106 points in a practical setting in section 5.

In fact, Panigrahy et al. [33] showed that any data
structure in the cell probe model [42] which uses a sin-
gle probe to solve the (1, c)-NN problem with constant

probability has a space requirement of n1+Ω(1/c2).
Hence a data structure which uses near linear space
needs to be probed Ω (log n/ log log n) times. Clearly,

the TCAM based scheme which uses space Õ(n)) and
query time O(1) beats this lower bound by implement-
ing parallel operations which do not conform with the
cell probe model of computation.

2. Word size O(log n): Consider solving the (1, c)-NN
problem using a RAM of word size w = O(log n) which
uses w independent hash functions from the optimal
(1, c, pl, pu)-LSH family [5]. To solve the (1, c)-NN
problem with error probability at most ε, we need

the probability of a false negative to be at most ε,
i.e. 1 − pw

l ≤ ε and the probability of a false posi-
tive to be at most ε i.e. pw

u ≤ ε/n (since there are at
most n points with respect to which a false positive
can occur). This implies that log pu

log pl
≥ ( 1

ε
− 1) log n

ε
.

Hence log pu
log pl

≥ Ω
`

1
ε

´
log (n/ε). Using the fact that

log pu
log pl

≥ 0.46
c2

[30] for any (l, u, pl, pu)-LSH family, we

get c2 = Ω
`

1
ε

log n
ε

´
. Hence “granularity” achieved by

LSH (ignoring ε) in this case Ω(
√

log n). On the other
hand using [Theorem 4,3] using a word size of O(log n),
algorithm A can solve the (1, c)-NN problem with er-

ror probability at most ε if c = Ω
“q

log
`

1
ε
log n

ε

´”
.

Thus, ignoring ε, the granularity achieved by TCAM
based scheme is Ω(

√
log log n). Hence we see that use

of TLSH family brings about an exponential improve-
ment in the “granularity” of a (1, c)-NN problem.

Again, we note that these huge improvements are brought
about by the use of a TCAM which has a lot of inherent
parallelism and hence the lower bounds mentioned before
do not apply. Next we proceed to prove Theorem 4.

Proof of Theorem 4: First we make the following claims
regarding the choice of parameters δ, w which prove the the-
orem.

1. One TCAM lookup: If we choose

δ =
“

2c2

c2−1
log

`
10
c3ε

log
`

2n
ε

´´”1/2

and w =
1

1−p2(δ/c)
log

`
2n
ε

´
, then algorithm A solves the

(1, c)-NN problem with error probability at most ε.

2. O(log (1/ε)) TCAM lookups: Choosing δ and w as
in [Theorem 4,1] with error probability at most 1/2 and
repeating algorithm A log (1/ε) times solves the (1, c)-
NN problem with error probability at most ε. This can
in fact be implemented using a single TCAM by using
the first O(log (log (1/ε))) bits of the TCAM to code
the version number of the O(log (1/ε)) different data-
structures to be used to solve the (1, c)-NN problem.

3. Word size O(log n): Choosing δ = αc and w =
k log

`
2n
ε

´
where α is such k = 1

1−p2(α)
implies algo-

rithm A solves the (1, c)-NN problem with error prob-
ability at most ε when c2 ≥ log

`
k
ε

log n
ε

´
.

Next we prove these claims sequentially. Let S(q, c) de-
note the set of points {s ∈ S, ‖s − q‖2 > c}. We prove the
theorem by analyzing the false positive and false negative
cases. For any query point q ∈ Rd, note that algorithm A
will solve the (1, c)-NN problem correctly if the following
two properties hold:

P1: (No false negative matches) If there exists a sL such
that ‖sL − q‖2 ≤ 1 then TCAM representations of sL

and q match. i.e. T (sL) =T T (q).

P2: (No false positive matches) For any sU ∈ S(q, c), TCAM
representations of sU and q do not match, i.e. T (sU) �=T

T (q).

1. We will show in the following analysis that it is pos-
sible to choose the parameters δ and w, such that

w = O(
`

1
ε

log n
ε

´ c2

c2−1
`
log

`
1
ε
log n

ε

´´ 3
2 (c2 − 1)−

3
2 ) and



both properties P1 and P2 hold with probability at
least 1 − ε. This implies that algorithm A succeeds
with probability at least 1−2ε. Rescaling ε by 1/2, we
can conclude that algorithm A succeeds with proba-
bility at least 1 − ε.

Choose1 δ and w such that

1−p2(δ/c)
1−p1(δ)

= c3

5
e

δ2

2c2
(c2−1)

= 1
ε
log

`
n
ε

´
w = k log (n/ε), where k = 1

1−p2(δ/c)

(6)

• The choice of k is such that p2(
δ
c
) = 1 − 1

k
. This

implies that the false positive probability with re-
spect to any particular point in S(q, c) is at most`
p2(

δ
c
)
´w

=
`
1 − 1

k

´k log (n/ε) ≤ ε
n
. Hence the ex-

pected number of false positives in the output of
Algorithm A is at most ε. By Markov inequality,
the probability that the output of the TCAM is
a false positive match is at most ε. Hence the
property P2 holds with probability atleast 1 − ε.

• Using (6), we get p1(δ) = 1− ε
w

. Hence the prob-
ability of making a false negative error on any
ternions is at most ε/w. Using the union bound
implies that probability of a false negative in the
output of the TCAM is at most ε. i.e. P1 holds
with probability at least 1 − ε.

Now using (6), we get

δ2

c2
= 2

c2−1
log

`
5

c3ε
log

`
n
ε

´´
.

k =

O(
`

1
ε
log

`
n
ε

´´ 1
c2−1

`
log

`
1
ε
log

`
n
ε

´´´ 3
2 (c2 − 1)−

3
2 )

w =

O(
`

1
ε
log

`
n
ε

´´ c2

c2−1
`
log

`
1
ε
log

`
n
ε

´´´ 3
2 (c2 − 1)−

3
2 ).

(7)

2. Using error probability 1/4 in the analysis of [Theorem
4,1], we get that the algorithm succeeds with probabil-
ity at least 1/2 and the width of the TCAM required is

given by w = O((log n)
c2

c2−1 (log log n)
3
2 ). If this pro-

cess is repeated O(log2 (1/ε)) times, the probability of
success can be amplified to 1 − ε.

3. Choose δ = αc and w = k log (n/ε) where α is such
that k = 1

1−p2(α)
. The condition k ≥ 1

1−p2(2)
ensures

that α ≥ 2 and thus δ ≥ 2c.

• Again, the choice of k is such that p2(
δ
c
) = 1− 1

k
.

Repeating the analysis of [Theorem 4, 1] we get
that the property P2 holds with probability at
least 1 − ε.

• Now p1(δ) = p1(αc) = 1 − e−2c2

8c3
√

2π
≥ 1 − e−c2 .

Now if c2 ≥ log (k/ε) log(n/ε) i.e. then we have
p1(δ) ≥ 1 − ε/w. Again, similar to [Theorem 4,
1], this implies that P1 holds with probability
atleast 1− ε. Hence algorithm A solves the (1, c)-
Near Neighbor problem with an error probability
of at most ε using a TCAM of width k log n when
c2 ≥ log

`
k
ε

log n
ε

´
.

1Note that 1−p2(δ/c)
1−p1(δ)

is an increasing function of δ for a fixed

c and hence for any n, ε,∃δ which satisfies this condition

4.2 The c-ANNS problem
Consider a data set S consisting of n points and a query

point q. Let r0 and rmax denote the smallest and largest
possible distances from q to its nearest neighbor in S and
let m = �2 log rmax/r0�. To solve the c-ANNS problem we
use a simple (but weak2) reduction [22, 18] from c-ANNS to
m instances of (1,

√
c)-NN problem. Next, we describe the

pre-processing step. Let the parameters δ,w be chosen as in
the analysis of [Theorem 4,1] such that the error probability
in solving a (1,

√
c)-NN problem on S is at most ε/m.

For each i in 1 . . .m:

1. Let li = r0c
i−1
2 , ui = r0c

i
2 .

2. Scale down the coordinates of the data points by li and
find ternary hash representations of the data points
using a (1,

√
c, p1(δ), p2(δ/

√
c))-TLSH family.

3. Store the hash representations in the TCAM of width
w, in order of increasing i.

The TCAM lookup of the hash representation of q, i.e.
T (q) (using the same hash functions) is output as the c-
approximate nearest neighbor. Let l∗ denote the distance of
q to its nearest neighbor in S, i.e. l∗ = argmins∈S‖s − q‖2

and i∗ denote the first i in 1 . . .m for which li ≥ l∗. Then the
correct solution (li∗ , ui∗)-NN problem yields the c-approximate
nearest neighbor of q. This is because l∗ > li∗−1 and the
output is at a distance of at most ui∗ = cli∗−1 < cl∗ from q.
The choice of parameters δ and w is such that each (li, ui)-
NN problem is solved with an error probability of at most
ε/m. Hence the probability of making an error in solving
any one of the m the (li, ui)-NN problems is at most ε. This
approach can be generalized to using TCAMs with smaller
widths but O(m log (1/ε)) lookups per query point in a man-
ner similar to [Theorem 4.1,2]. As mentioned before, Tao et
al. [43] describe a method to reduce the c-ANNS problem
to O(

√
n) longest common prefix problems. It would be in-

teresting to find out if their approach can be adapted for
use with TCAMs in order to avoid solving a sequence of
(li, ui)-NN problems.

5. SIMULATIONS AND EXPERIMENTS
In this section we explore the trade-off between the width

of the TCAM and the performance of the algorithm A. In
particular we show via simulations that a TCAM of width
288 bits solves the (1, 2)-NN problem on practical and ar-
tificially generated (but illustrative) data sets consisting of
1M points in 64 dimensional Euclidean space. Finally, we
also design an experiment with TCAMs inside an enterprise
ethernet switch (Cisco Catalyst 4500) to show that TLSH
can be used to configure a TCAM to perform 1.488 million
queries per second per 1Gbps port.

5.1 Simulations:
We evaluate our algorithm on 3 specific data sets with

query points generated artificially. Each data set contains a
million points chosen from a 64 dimensional Euclidean space
(n = 106, d = 64). The corresponding query set contains

2The weakness of this reduction is because of the possibil-
ity that m might be large or unbounded. We remark that
the approach in 4.2 cannot be trivially modified to use the
“adaptive” reduction of c-ANNS to O(log n

c−1
) instances of

(l, c)-NN problem proposed by Har-Peled [19]
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Figure 2: Variation of performance measures observed for the Wikipedia data set with δ and the corresponding
model predictions as described in section 5.2, using a TCAM of width w = 288 bits. As we can see in this
figure, increasing δ decreases the false negatives but increases the false positives. Thus there exists an optimal
choice of δ which minimizes false positives when false negative rate is below some threshold and maximizes
the F-score. This figure also shows the comparison between the Wikipedia data set and its corresponding
model, using a TCAM of width w = 288 bits.

1K points generated from a 64 dimensional Euclidean space.
We list the data sets we used ordered from the most ”benign”
to the ”hardest” as follows.

”Random” data: We chose data points generated uni-
formly at random from the d-dimensional cube Cd =

{−2/
√
d, 2/

√
d}d

for this data set. We chose half of
the query points by selecting a random data point s
(say) and choosing a point uniformly at random from
the surface of a sphere of radius l centered at s. We
generated remaining half of the query points uniformly
at random from Cd. The size of the cube as well as
the choice of the query points ensured that a signifi-
cant fraction of the query point - data point pairs were
separated by a distance either at most l or at least cl.
(Note that query point - data point pairs such that
distance between them lies in between l and cl do not
contribute to either false positives or false negatives
and can safely be ignored. )

Wikipedia data set: The second data set we used is the
semantically annotated snapshot of the English Wikipedia
(SW v.2) data set, obtained from Yahoo!. It contained
a snapshot of the English Wikipedia (from 2005) pro-
cessed with publicly available NLP tools. We com-
puted the ”simHash” signatures [12, 27], and embed-
ded the signatures in a Euclidean space3. The query
points were generated by randomly choosing 1K data
points of the data set and flipping a few (at most 3)4

randomly chosen bits of their simHash signatures.

”Threshold” data: The third data set we used was artifi-
cially designed to maximize the number of false pos-
itives and false negatives. A single query point was
generated uniformly at random from Cd. In order max-
imize the number of false negatives and the number of
false positives seen, half of the data points were chosen

3We used an appropriate scaling in order to ensure that a
significant fraction of the query point - data point pairs are
such that the distance between the query point and the data
point was either at most l or at least cl
4The perturbation was chosen according to the experimental
study of near duplicate detection in web documents[27].

to lie on the surface of a sphere S1(q) (say) of radius
l centered at q and the remaining half are chosen to
lie on the surface of a sphere S2(q) (say) of radius cl
centered at q (The data points were on the ”threshold”
of being similar and dissimilar to q). This setup was
repeated for each of the 1K query points and the av-
erage values of the false negatives and false positives
observed are reported.

Apart from presenting the number of false positives ob-
served per query and the false negative rate (fraction of false
negatives observed) as a measure of accuracy, we also report
the F-score or the F1-measure [35] of our algorithm which
is just the harmonic mean of precision and recall. Precision
is defined as the fraction of retrieved documents that are
relevant. Recall is the fraction of relevant documents that
are retrieved. Similar to precision and recall, the Fscore lies
in the range [0, 1] and a intuitively a high value of F-score
implies high values of precision and recall.

To explore the trade-off between accuracy and TCAM
width, we choose the TCAM widths in the range w =
32, 64, 96, 128, 144, 160, 192, 224, 256, 288, 320 bits. (Note
that commercially available TCAMs have 72,144,288 bit
configurations). As we are interested in an accurate algo-
rithm, as a design choice we set the the tolerance of the
false negative rate at εn = 5% and minimize the number of
false positives generated under this constraint. For each w,
we choose δ for which the least number of false positives are
observed while ensuring that the false negative rate is below
5%. For F-score, we chose the δ which maximizes the F-
score using a binary search. We illustrate this procedure for
a TCAM of width w = 288 bits as shown in Figure 5.1. As
expected, increasing δ decreases the false negative rate but
increases the number of false positives and thus generates
a bell shaped curve for the Fscore. The figure shows that
there exists an optimal choice of δ which minimizes the false
positives or maximizes the Fscore. We refer to this choice
of δ as δopt.

5.2 Model
The process just described for arriving at the optimal

choice of δ involves the use of the query points. Hence, the
optimal value of δ can not be precomputed given just the



database. However, it turns out that only an estimate of the
distribution of query points gives a good approximation to
choosing the optimal δ. Let n1 denote an estimate of the no.
of data points which are ”similar” to the query. Let n2 de-
note an estimate of the number of data points ”dissimilar” to
the query. Consider a model containing a single query point
q with n1 points on S1(q) and n2 points on S2(q). Then
for a TCAM of width w using the expressions for p1(δ) and
p2(δ/c) it is possible to theoretically calculate the expected
values of the false negative rate, no. of false positives per
query and the expected f-score for this model and use them
as a predictions for choosing δ. For each data set, we use the
average number of similar and dissimilar points to a single
query (by averaging over the 1K queries) as n1 and n2 in the
model. The observed values of the false negative rate, num-
ber of false positives per query, and the f-score as δ is varied
were found to closely match those predicted by the model.
For example, a comparison of these quantities observed for
the Wikipedia data set as δ is varied with those predicted
by a model for this data set is shown in figure 5.1.

5.3 Results and discussion
We observe that performance of our algorithm i.e. the F-

score and the number of false positives generated, improves
as the width (size) of the TCAM is increased as seen in fig-
ures 5.3 and 5.3. As seen in the figure, the improvements in
the F-score follow the law of diminishing returns for increas-
ing TCAM widths and a F-score better than 0.95 is obtained
using a TCAM of width 288 bits for all the data sets con-
sidered which intuitively indicates high values of precision
and recall. Secondly, we note that while tolerating a false
negative rate of 5%, only 1 false positive was observed per
query for the ”Random” data set. For the Wikipedia data
set, the number of false positives observed per query was
14 while for the threshold dataset 51 false positives were ob-
served, while the false negative rate was below the threshold
of εn = 5%. These simulation results suggest that a TCAM
of width 288 bits can be used to solve the 1, 2-NN problem
on data sets consisting of a million points.

We seek solutions in which false negative rate is at most
5% and the number of false positives generated per query
by the method is at most 10. For the ”Random” data set,
the use of a 288 bit TCAM actually satisfies these demands,
while for the Wikipedia data set, the use of a 288 bit TCAM
comes very close to matching these requirements. Since 288
bit wide TCAMs containing 0.5M entries are available in the
market, our method represents a novel yet easy solution to
the problem of similarity search in high dimensions. Even
though a larger number of false positives are generated (51)
by using a 288 bit wide TCAM on the ”Threshold” data
set, we note that this data set was artificially constructed to
maximize the number of false positives and false negatives
and we conjecture the property of all the similar points to
a query being on the ”threshold” of being similar and dis-
similar points being on the ”threshold” of being dissimilar
is unlikely to be observed in practical data sets. We would
also like to mention here that it is also possible to generate a
worst case input distribution for the F-score which has just
a single point similar to a given query point (on the sphere
S1(q)) and all the remaining data points are dissimilar to
the query (on the sphere S2(q)). Running the simulations
on this data set we observed that the performance was not
too worse than the results presented in this section, even

though this property (of having a single similar data point
to a query) is unlikely to be observed in real data sets.

5.4 Preliminary experimental validation
In this section, we demonstrate that the simulations of

TLSH are realistic, and that the TLSH algorithm can be
made to work with existing TCAM based products at very
high speeds. For this, we need to choose an appropriate plat-
form. Although it is possible to use a standalone TCAM
platform, managing the TCAM in software is non trivial.
For a preliminary validation, we leverage a Cisco Catalyst
4500 (Cat4K) series enterprise switch [13] which uses TCAMs
for a variety of purposes including implementing access con-
trol lists (ACLs). In one second, it can support up to a
billion TCAM lookups and switch 250 million packets.

Our simple observation is as follows. For validating a
64-bit TCAM lookup, we map it to an IP address lookup
in a 64-bit IPv4 access control list. For example, a 64-bit
lookup key could be represented as a 32-bit IPv4 source and
a 32-bit IPv4 destination address. This query is embedded
within an IPv4 source and destination address fields of an
IP packet and injected into the Cisco switch. Access control
lists involve TCAM lookups. The TCAM database is sim-
ilarly represented as entries of an ACL with permit action
for matches, i.e. if the TCAM matches a given query, the
action would be to permit the IP packet and if there is no
match, the action would be to drop the packet. Thus, all
egress packets represent queries that had a TCAM hit as
shown in figure 5.4.

We use a high speed commercial traffic generator (from
IXIA). Though the Cat4K switch can support up to 384
1Gb/s ports, we use two 1Gb/s ports for this experiment,
and connect these to two ports of IXIA, which are pro-
grammable and can inject traffic with specified IP addresses.
We pass packets from one port and detect egress packets on
the other via the switch. A switch learns the source and
the destination for the given hardware MAC addresses of a
packet (that we set manually) and switches these packets in
hardware. We inspect the egress packets’ IP addresses to de-
termine which queries hit the TCAM. To ensure the speed,
we send IP packets (representing queries) at wire speed (i.e.
1.5 million packets per 1Gb/s port).

We validated several randomly generated data sets, for
32 and 64 bit TLSH lookups. For each data set, we ran-
domly generate negative, positive and false positive queries
and the inspect the egress packets’ IP addresses. We observe
that for every positive or false positive query (according to
TLSH), we do indeed have an egress packet with the cor-
responding IP address. For every negative query, we never
detect the corresponding IP packet at egress. We believe
that this simple experimental setup is novel as it allows us
to rapidly demonstrate the performance argument without
the overheads of managing TCAMs!

6. RELATED WORK
Early methods to solve similarity search problems in high

dimensions used the space partitioning approach in order to
solve the exact nearest neighbor problem by reducing the
candidate set of data points for a given query, using branch
and bound techniques. They includes the famous k-d tree
approach [8], cover trees [10], navigating nets [23]. How-
ever an experimental study [39] has showed that approaches
based on space partitioning scale poorly with the number
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Figure 3: Variation of the F-score vs the width of the TCAM: As we can observe from this figure, F-score of
our algorithm increases with the width of the TCAM used for different data sets. This figure also shows that
on range of data sets, use of a TCAM of width 288 bits results in a method with the F-score approximately
0.95. Finally, this figure also shows there is only a slight loss in performance if δ is precomputed according to
the model, as opposed to being chosen optimally.

0.1

1

10

100

1000

0 50 100 150 200 250 300 350

TCAM Width (in bits)

Fa
ls

e 
po

si
tiv

es
 p

er
 q

ue
ry Model

"Random" Data

(a) ”Random” data set

1

10

100

1000

10000

100000

0 50 100 150 200 250 300 350

Wikipedia Data
Model

TCAM Width (in bits)

Fa
ls

e 
po

si
tiv

es
 p

er
 q

ue
ry

(b) Wikipedia data set

1

10

100

1000

10000

100000

0 50 100 150 200 250 300 350
TCAM Width (in bits)

Fa
ls

e 
po

si
tiv

es
 p

er
 q

ue
ry

"Threshold" data
Model

(c) ”Threshold” data set

Figure 4: Number of false positives per query vs the width of the TCAM with false negative rate capped at
5%. This figure shows that the number of false positives per query drops rapidly as the width of the TCAM
is increased with the false negative rate capped at 5%. This suggests that on practical data sets, use of a
TCAM of width 288 bits generates few false positives
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Figure 5: Block diagram of the experimental setup. Queries are inserted in the ipv4 header and pumped into
the switch using a IXIA traffic generator. ACLs are programmed using the TLSH algorithm and are applied
to ingress packets. For a ACL match we forward the packet and drop otherwise. Egress packets are collected
at another IXIA port and they correspond to the matched queries



of dimensions d and in fact when d > 10, they performed
worse than a brute force linear scan for some specific data
sets (curse of dimensionality).

Locality sensitive hash (LSH) family was proposed by In-
dyk and Motwani [22] to solve the c-ANN problem with
space requirement and query time polynomial in the size
of the database and the number of dimensions. Given pa-
rameters l, u, pl and pu, a (l, u, pl, pu)-LSH family of hash
functions has the following property: The probability that
two points separated by a distance atmost l are hashed to
the same value is at least pl and probability that two points
separated by a distance at least u are hashed to the same
value is at most pu. Gionis et al. [18] showed a framework
based on a (l, u, pl, pu)-LSH family (where u = cl), to solve
the (l, c)-Near Neighbor problem in time O(dnρ log n) using
space O(dn+ n1+ρ log n) where ρ = log pl/ log pu. Their al-
gorithm used a LSH family with ρ = 1/c. For the case of
Euclidean space, the exponent 1/c was improved to β/c for
some fixed constant β < 1 by Datar et al. [16]. A near lin-
ear storage space solution was proposed by Panigrahy [32]

which has space requirement of Õ(n) and but a larger query

time Õ(n2.09/c) using entropy based techniques along with
using the LSH family. Building on this work, Lv et al. [26]
suggested the use of multi-probe LSH methods to reduce the
number of hash tables required for solving the c-approximate
nearest neighbor problem [26]. Andoni and Indyk [5] further
improved the value of ρ (for Euclidean space) to 1/c2 +o(1).
This value of ρ is near-optimal since it matches the lower
bound for LSH proved by Motwani et al. [30].

For c ≈ 1, the near quadratic space requirement of the
optimal LSH could be a hindrance in solving large prob-
lems like image similarity with millions of images in the
data set[41]. In fact recent studies have shown that machine
learning techniques like restricted Boltzmann machines and
boosting, out perform LSH when the number of bits avail-
able is small and fixed [36, 40]. Also the query time of

O(dn1/c2 ) makes the application of LSH for proximity based
methods like clustering and classification difficult in a stream-
ing environment. Hence, in this paper, we consider the
use hardware primitives like TCAMs in order to formulate
fast, space efficient and accurate methods to solve similarity
search problems.

While TCAMs have been used previously in order to ob-
tain efficient solutions to the problem of finding frequent
elements in data streams[7], we are not aware of any other
work which uses TCAMs for solving similarity search and
nearest neighbor problems.

In parallel, there has been significant progress in proving
lower bounds for the approximate nearest neighbor problem
using the cell probe model [12, 6, 33, 42]. In particular Pani-
grahy, et al. [33] show that a data structure which solves the

c-ANNS problem using t probes must use space n1+Ω(1/(c2t)).
This implies that any data structure that uses Õ(n) space
with poly-logarithmic word size, and with constant proba-
bility, gives a constant approximation to nearest neighbor
problem must be probed Ω(log n/ log log n) times. We note
that the use of hardware primitives like TCAMs which im-
plement highly parallel operations (not conforming to the
cell probe model of computation) enables us to circumvent
these lower bounds.

7. CONCLUSION
In this paper we have proposed a new method to solve

the approximate nearest neighbor problem which yields an
exponential improvement over existing methods. This im-
provement is brought about by using a hashing scheme which
does not conform to lower bounds for standard binary hash-
ing schemes. This hashing scheme (TLSH) is supported by
a TCAM. In fact using a TCAM of width poly-logarithmic
in the size of the database, the approximate nearest neigh-
bor problem can be solved in a single TCAM lookup. Using
simulations we have shown that off the shelf TCAMs with
width 288 bits can be used to solve similarity search prob-
lems on various databases containing a million points in 64
dimensional Euclidean space. We also design an experiment
to demonstrate that even existing TCAMs within enterprise
ethernet switches can perform 1.5M ANN queries per 1Gbps
port. Thus, we believe that TCAM based similarity search
might open new vistas in ultra high speed data mining and
learning applications.
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