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Similarity search in time series data is an area of active interest in the data mining community. In this 
paper we introduce a novel approach for performing similarity search in time series data. This 
technique is based on the intuition that similar time sequences will have similar variations in their 
slopes and consequently in their time weighted slopes. The proposed technique is capable of handling 
variable length queries and also works irrespective of different baselines and scaling factors. 
Povzetek: Opisana je nova metoda rudarjenja podatkov časovnih vrst z iskanjem podobnosti. 

1 Introduction 
A large portion of scientific and business data stored on 
computers is comprised of time series data. Some typical 
examples include stock indices, biomedical data, retail 
data and atmospheric data. During the past few years, 
there has been an explosion of research in the area of 
time series data mining. This includes attempts to model 
time series data, to design languages to query such data, 
and to develop access structures to efficiently process 
queries on such data. The problem of similarity search in 
time series data is important and non-trivial.  
 
To perform similarity search on time series data, 
indexing methods that are capable of supporting efficient 
retrieval and matching of time series data are required. 
Most of the indexing methods available today for multi-
dimensional data such as the R-tree [1] and the R*-tree 
[2] degrade performance at dimensionalities greater than 
8-10 [3] and eventually perform almost like sequential 
scanning algorithms at high dimensionalities. Thus, to 
utilize multi-dimensional indexing techniques, it is 
essential to first perform dimension reduction on time 
series data. This helps to map the high-dimensional data 
to a lower dimension space. Then some distance measure 
such as the Euclidean Distance may be used to calculate 
the distance and hence the similarity between any two 
time sequences. 
 
Most of the approaches developed so far for performing 
similarity search in time series data are based on 
dimension reduction. Dimension reduction can be 
performed by several ways.  Some commonly used 
methods for performing dimension reduction include 
Discrete Fourier Transform (DFT) [4, 5, 6, 7], Discrete 
Wavelet Transform (DWT) [8, 9, 10, 11, 12], Singular 
Value Decomposition (SVD) [13] and Piecewise 
Aggregate Approximation (PAA) [14].  
 

The most frequently used method for dimension 
reduction is based on the DFT. The DFT is quite suited 
for naturally occurring sinusoidal signals but it is ill-
suited for representing signals having discontinuities.  
 
The Haar wavelet transform is the most commonly used 
wavelet transform for dimension reduction. But the basis 
function for Haar is not smooth. Thus the Haar wavelet 
transform approximates any signal by a ladder like 
structure. Hence the Haar wavelet transform is not likely 
to approximate a smooth function using only a few 
coefficients. So the number of coefficients to be added 
must be high. Finding wavelets having more continuous 
derivatives is still an active area of research.  
 
The SVD technique is a data dependent dimension 
reduction technique. It uses the KL transform for 
performing dimension reduction. The given data is used 
to compute basis vectors. So whenever the database is 
updated, the basis vectors need to be recomputed. The 
recomputation time may become infeasible for practical 
purposes especially when the database is very large.  
 
The PAA performs dimension reduction by dividing the 
time sequences into equal length segments. The 
corresponding feature sequence comprises of mean 
values of each segment.  But the means representing each 
segment give only a rough approximation of each time 
sequence. 
 
In this paper, we introduce a new approach for similarity 
search in time series databases. We assume that a time 
series comprises of samples of a single measured 
variable against time. The proposed approach is based on 
the observation that similar time sequences will have 
similar variations in their slopes and hence time weighted 
slopes. By time weighted slopes we mean that the slope 
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is assigned a weight depending upon its location along 
the time axis. The technique being proposed involves 
some data pre-processing that enables it to handle 
variable length queries. It is also capable of handling 
global scaling and shrinking of the data and works 
irrespective of vertical shifts that may exist between the 
given time sequences. Further, it does not rely on any 
kind of dimension reduction.   

The rest of the paper is organized as follows. Section 2 
gives related work. Section 3 describes the proposed 
approach. In Section 4, we give experimental results to 
demonstrate the proposed approach by using test data 
and a case study is included in Section 5. Finally, 
conclusions and directions for future work are covered in 
Section 6. 

2 Related Work 
In this section we discuss some key approaches for 
performing similarity search in time series data. 

 
Agrawal et al. [4] used the Discrete Fourier Transform to 
perform dimension reduction. The DFT was used to map 
the time sequences to the frequency domain and the 
index so built was called the F-index. For most 
sequences of practical interest, the low frequency 
coefficients are strong. Thus the first few Fourier 
coefficients are used to represent the time sequence in 
frequency domain. These coefficients were indexed using 
the R*-tree [2] for fast retrieval. The basis for this 
indexing technique is Parseval’s theorem. The Parseval’s 
theorem guarantees that the distance between two 
sequences in the frequency domain is the same as the 
distance between them in the time domain. For a range 
query the F-index returns a set of sequences that are at a 
Euclidean Distance ∈ from the query sequence. 
 
The F-index may raise false alarms but does not 
introduce false dismissals. The actual matches are 
obtained in a post-processing step wherein the distance 
between the sequences are calculated in the time domain 
and those sequences which are within ∈ distance are 
retained and the others are dismissed. The F-index 
typically handles ‘whole matching’ queries. 
 
Faloutsos et al. generalized the F-index method in [15] 
and called it the ST-index. In this technique, subsequence 
queries are handled by mapping data sequences into a 
small set of multidimensional rectangles in feature space. 
These rectangles are indexed using spatial access 
methods like the R*-tree [2].  
 
A sliding window is used to extract features from the 
data sequence resulting in a trail in the feature space. 
These trails are divided into sub-trails which can be 
represented by their Minimum Bounding Rectangles 
(MBR). Thus, in place of storing all the points in a trail, 
only a few MBRs are stored. When a query is presented 
to the database, all the MBRs intersecting the query 
region are retrieved. This guarantees no false dismissals 
but also raises some false alarms as sub-trails that do not 
intersect the query region but their MBRs are also 
retrieved.  
 
Chan et al. [8] have proposed to use the DWT in place of 
DFT for performing dimension reduction in time series 
data.  Unlike the DFT which misses the time localization 
of sequences, the DWT allows time as well as frequency 

localization concurrently. The DWT thus bears more 
information of signals in contrast to DFT in which only 
frequencies are considered. The approach in [8] 
employed the Haar Wavelet Transform for mapping 
high-dimensional time series data to lower dimensions. 
 
A data dependent indexing scheme was proposed in [13] 
and is known as the SVD method for dimension 
reduction. The database consists of n-dimensional points. 
We map them on a k-dimensional subspace, where k < n, 
maximizing the variations in the chosen dimensions. An 
important drawback of this approach is the deterioration 
of performance upon incremental update of the index. 
Therefore the new projection matrix should be calculated 
and the index tree has to be reorganized periodically to 
keep up the search performance. 
 
In PAA [14], each time sequence say of length k is 
segmented into m equal length segments such that m is a 
multiple of k. If that is not the case, then the sequence is 
padded with zeros in order to perform the segmentation. 
The averages of segments together form the new feature 
vector for the sequence. The correct selection of m is 
very important because if m is very large, the 
approximation becomes very rough but if m is very 
small, the performance deteriorates. 

 
Mostly similarity search methods utilize the Euclidean 
distance model for calculating the similarity between the 
query and candidate sequence. According to this model, 
if the Euclidean Distance D (X, Y) between two time 
sequences X and Y of length n is less than a threshold ∈, 
then the two sequences are said to be similar. The 
Euclidean Distance is given as: 

 

D (X, Y) = ∑
=

−
n

i
ii yx

1

2)(                                   (1)                   

 
A major shortcoming in the Euclidean distance model is 
that it is not able to handle vertical shifts existing 
between the time sequences under comparison. 

 
Toshniwal et al. [16] have used the cumulative variation 
of slopes for computing the similarity in the given time 
series data. In this technique the data is first pre- 
processed. Next, each of the time sequence is divided 
into same number of small, equi-width strips as shown in 
Figure 1. The cumulative variation in slopes is then 
computed as the parameter S (Q, C) where Q and C are 
the two time sequences under comparison. 
Mathematically: 
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S (Q, C)   =  ( )2
cjqj SS −∑                               (2)  

 
Scj and Sqj  are the slopes for the jth  strip in the candidate 
time sequence C and the query time sequence Q 
respectively.  

 
Ideally, for exactly similar time sequences, the parameter 
S (Q, C) would be zero. Practically, the smaller the value 
of S (Q, C), the more is the similarity between the time 
sequences under comparison. For range queries and 
nearest-neighbour queries we may choose to have S (Q, 
C) ≤ / where / specifies some degree of tolerance 
allowed while performing similarity search in the time-
series database. 

 
In this paper, we present an approach for similarity 
search in time series data which is an improvement over 
[16]. The technique proposed in this paper is also based 
on the concept that similar sequences will have similar 
variations in their slopes. In [16], the cumulative 
difference between the slopes of the query and the 
candidate time sequences has been computed as given by 
(2). In the present study, weights have been given to the 
locations of the slopes along the time axis. In [16] the 
square of the differences in the slopes has been used for 
computing the parameter for similarity S (Q, C). 
However, in this paper, the sign of the slopes have also 
been accounted for while computing the cumulative 
variation in slopes by using a cubic function as in (4).  

3 Proposed Approach 
The cumulative variation in time weighted slopes has 
been used in this paper for performing similarity search 
in time series data. Here, we assume that a time series 
consists of a sequence of real numbers which represent 
the values of a measured parameter at equal intervals of 
time. Let the time series database consist of p time 
sequences designated by X1, X2… Xp. Each time sequence 
Xi in turn can be represented as < (ti1, yi1), (ti2, yi2)… (tin, 
yin) > where n is the number of samples in the time 
sequence. 

 

 
 

Figure 1: Query and candidate time sequences 
divided into strips. 

 
In the proposed approach, each of the candidates Xi in the 
time series database is first scaled along the time axis so 
that their time axes become equal to some desired time td. 
The selection of td is done by the user and may depend on 

the domain of application of the data. In our technique, 
scaling along the time axis is done to equalize the time 
durations of candidates and query. This helps to compare 
variable length time sequences. For example, a 5-year 
sales pattern of a Product A can be compared to a 10-
year sales pattern of Product B. Another example where 
scaling can play a crucial role is the comparison of the 
growth of a tumour for the past 10-months versus the 
growth of the tumour for past 10-days. In order to avoid 
any distortions that may arise due to time scaling, the 
values along the y-axis for each Xi are also scaled 
proportionately. Thus each transformed Xi denoted by Xi

‘ 

may be represented as < (ti1
’, yi1

’), (ti2
’, yi2

’)… (tin
’, yin

’) > 
where: 

 
tij

’ =  tij  *  ( td / tin ) 
and  yij

’ = yij * ( td / tin )                                                  (3) 
 
This is followed by dividing each of the candidate time 
sequences in the database into same number of small, 
equi-width strips along the time-axis as shown in Figure 
1. Thus each candidate time sequence is divided into say 
m number of strips. 

 
The same procedure is repeated for any query Q for 
similarity search. Or in other words, the query is first 
time scaled to td and then scaled proportionately along 
the y-axis. The resulting sequence is divided into m 
number of small, equi-width strips. The strips have 
different heights but same widths along the time-axis as 
shown in Figure 1. 
 
Finally, we compute the cumulative variation in time 
weighted slopes between any two sequences Q and C as: 
 

WS (Q, C) = 3 jcjqj
 3m

1i

d   /    ttS S  )   (    
 

    *   ∑ −
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    (4) 

            
where Scj and Sqj  are the slopes for the jth  strip (Fig. 1) in 
the candidate time sequence C and the query time 
sequence Q respectively : 
 
Scj   =  { yic

”
(j +1)  -  yicj

 “} / ∆ t                         (5)             
and  Sqj  =  { yq

”
(j +1)  -  yqj

 “} /  ∆ t                                  (6) 
 
We assume in (5) and (6) that the starting and ending 
coordinates for the jth strip of the candidate are given by     
(  t ’icj, yicj

 ”)and  ( t’ic(j +1), yic
”

(j +1)).  Similarly, the starting 
and ending coordinates for the jth strip of the query time 
sequence are given by (  t’qj, yqj

 ”)   and  ( t’q(j +1) , yq
”

(j+1)). 
And ∆t is the width of each of the strips and is a constant. 
The choice of ∆t may be user specified or domain 
specific. 
 
The important thing to note about the selection of ∆t is 
that its value should be optimally selected so that it is 
neither too small (because that may lead to excessive 
computations) nor too large (loss of details). The number 
of equi width strips in the query as well as the candidate 

Q 
Sqj Query (Qi) 

Candidate(C) 

Time  t 

C 

Scj 
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time sequences is equal (Fig. 1). As the width of the 
strips in the query as well as the candidate time 
sequences are equal, ∆t is given as: 

 
∆ t =  t’ic(j +1)   -   t ’icj   

Or   ∆ t =  t’q(j +1)  -  t’qj                                                    (7) 
 

The weight associated with the location of the strip along 
the time axis is given by the factor tj / td . As the number 
of the strips in the query as well as the candidate 
sequences is equal, tj is given as: 

 
tj  = t’ic(j +1)  = t’q(j +1)                                                   (8) 

 
Ideally for two exactly similar time sequences, the value 
of the parameter WS (Q, C) must be zero. Practically, the 
smaller the value of WS (Q, C), the more is the similarity 
between the time sequences under comparison. For range 
queries and nearest-neighbour queries we may choose to 
have WS (Q, C) ≤ / where / specifies some degree of 
tolerance allowed while performing similarity search in 
the time-series database.  

 
The cube root of time weighted variations in slopes has 
been specially chosen to account for the positive or 
negative sign of the differences between the slopes of the 
query as well as the candidate time sequences at 
corresponding time locations while calculating the 
cumulative variation in slopes. We feel that the inclusion 
of the sign plays a key role while computing the 
cumulative variation in slopes between the query as well 
the candidate time sequences. 

 
The overall strategy thus involves the following steps: 
Step 1: Scaling of data along the time-axis to allow 
variable length queries. 
Step 2: Scaling the values of y-ordinates proportionately 
to avoid any possibility of data distortions arising from 
step 1. 
Step 3: Dividing each time sequences into same number 
of small, equi-width strips. 
Step 4: Computing the parameter WS (Q, C) for 
cumulative variations in time weighted slopes of the two 
time sequences under comparison. Ideally, it should be 
zero. 

4 Experimental Results 
We have evaluated the performance of the proposed 
technique by considering synthetically generated sample 
time sequences as the test data. The test data has been 
designed specially for this purpose so as to include a 
variety of curves and reverse curves to demonstrate the 
effectiveness of the proposed approach.  
 
The first set of sample data considered are shown in 
Figure 2. It comprises of A1, A2, A3 and A4. The dataset 
has been scaled both along the x-axis and 
correspondingly along the y-axis taking td  =  5 and ∆ t =  
0.385 (taken randomly) and the results are shown in 
Figure 3. Table 1 summarizes the results obtained by 

computing the parameter WS (Q, C), S (Q, C) and D (Q, 
C) taking A1t as the query and the others as the 
candidates. To graphically illustrate the similarity 
between A1t, A2t, A3t and A4t, we have shifted A1t, A2t 
and A4t vertically so that all of the time sequences have 
the same initial y-values. This is shown in Figure 4. It is 
clear from Figure 4 and also from the parameter WS (Q, 
C) computed in Table 1 that A1t is most similar to A2t 
and is most dissimilar to A4t. Or in other words, A1 is 
most similar to A2 and is very dissimilar to A4. In this 
case, the results of the Euclidean Distance computations 
and S (Q, C) also give the same results as can be seen 
from Table 1. 
 
Next we have considered a set of reverse curves - A1R, 
A2R, A3R and A4R as the sample data as shown in Figure 
5. The dataset has been scaled both along the x-axis and 
correspondingly along the y-axis taking td  =  5 and the 
results are shown in Figure 6. Table 2 shows the results 
obtained by computing the parameter WS (Q, C) and D 
(Q, C) taking A1Rt as the query and the others as the 
candidates. To bring out the similarity between A1Rt, 
A2Rt, A3Rt and A4Rt, we have shifted A1Rt, A3Rt and 
A4Rt vertically so that all of the time sequences have the 
same initial y-values. This is shown in Figure 7. It is 
clear from Figure 7 and also from the parameter WS (Q, 
C) computed in Table 2 that A1Rt is most similar to A3Rt 
and is most dissimilar to A4Rt. Or in other words, A1R is 
most similar to A3R and is very dissimilar to A4R. As 
seen from Table 2, the results of the parameter S (Q, C) 
also indicate the same order of similarity for this dataset. 
But the Euclidean Distance computations do not give 
correct results. 
 
The dataset considered next comprises of B1, B2, B3 and 
B4 as shown in Figure 8. The dataset has been scaled 
taking td  =  5 and the results are shown in Figure 9. 
Table 3 shows the results obtained by taking B1t as the 
query and the others as the candidates. To show 
graphically the similarity between B1t, B2t, B3t and B4t, 
we have shifted B2t, B3t and B4t vertically so that all of 
time sequences have the same initial y-values. This is 
shown in Figure 10. It can be clearly seen from Figure 10 
and also from the parameter WS (Q, C) computed in 
Table 3 that B1t is most similar to B2t and is most 
dissimilar to B4t. Or in other words, B1 and B2 are very 
similar to each other whereas B1 is most dissimilar to B4. 
As seen from Table 3, in this case the results of the 
Euclidean Distance computations as well as the 
parameter S (Q, C) do not provide appropriate similarity 
comparisions. 
 
The next dataset for similarity search comprises of 
reverse time sequences B1R, B2R, B3R and B4R as 
shown in Figure 11. After scaling, the resulting time 
sequences are shown in Figure 12 and are denoted by 
B1Rt, B2Rt, B3Rt and B4Rt. To graphically show the 
similarity, we have shifted vertically, B1Rt, B2Rt and 
B3Rt so that all of them lie at the same initial y-value as 
that of B4Rt and shown it in Figure 13. The WS (Q, C), S 
(Q, C) and D (Q, C) computations are shown in Table 4 
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taking B1R as the query and all others as the candidates. 
It can be seen clearly from Table 4 and Figure 13 that 
both the WS as well as the S parameters indicate that 
B1Rt is most similar to B3Rt and is very dissimilar to 
B4Rt. Or in other words, B1R is very similar to B3R and 
is dissimilar to B4R. The Euclidean Distance is not able 
to assess the similarity correctly in this case. 

 
The dataset studied next consists of the time sequences 
C1, C2, C3 and C4 and is shown in Figure 14. The pre-
processed data C1t, C2t, C3t and C4t are shown in Figure 
15. The results of the computations of WS (Q, C), S (Q, 
C) and D (Q, C) are summarized in Table 5. To 
graphically show the similarity, we have shifted 
vertically, C1t, C2t and C3t so that all of them lie at the 
same initial y-value as that of C4t and shown it in Figure 
16. 
 

 
Figure 2: Time series dataset A. 
 

 
Figure 3: Scaled sequences designated by A1t, A2t, 

A3t and A4t. 
 

TABLE 1 
PARAMETER  WS (Q, C), S (Q, C) VERSUS EUCLIDEAN 

DISTANCE D (Q, C) 
 

Sequence 
Pairs 

Parameter 
WS 

Euclidean  
Distance D 

Parameter 
S 

A1t, A2t 0.274 1.60 0.809 

A1t, A3t 0.611 5.53 1.241 
A1t, A4t 2.058 7.66 4.853 

 
Figure 4: The sequences A1t, A2t and A4t shifted 

vertically. 
 

 

 
Figure 5: Time series dataset AR. 
 
 

 
Figure 6: Scaled sequences designated by A1Rt, 

A2Rt, A3Rt and A4Rt. 
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TABLE 2 
PARAMETER  WS (Q, C),  S (Q, C) VERSUS EUCLIDEAN 

DISTANCE D (Q, C) 
 

Sequence  
Pairs 

Parameter  
WS 

Euclidean  
Distance D 

Parameter  
S 

A1Rt, A2Rt 0.566 9.59 0.813 
A1Rt, A3Rt 0.151 3.30 0.432 
A1Rt, A4Rt 1.359 3.87 1.830 

. 
 

 
Figure 7: The sequences A1Rt, A3Rt and A4Rt 

shifted vertically. 
 
 

 
Figure 8: Time series dataset B. 

 
 
It can be concluded from Table 5 and Figure 16 that the 
query C1t is similar to the candidates C3t, C2t and C4t in 
that order.  While the parameter S (Q, C) also indicate the 
same results, but the Euclidean Distance model gives 
results which are incorrect. Thus the sequence C1 is most 
similar to C2 and least similar to C4. 

 
 
 
 

 
Finally, we have considered the reverse dataset CR as 
shown in Figure 17. The pre-processed dataset is shown 
in Figure 18. The results have been computed in Table 6. 
To graphically show the similarity, we have shifted 
vertically, C1Rt, C2Rt and C3Rt so that all of them lie at 
the same initial y-value as that of C4Rt and shown it in 
Figure 19. It is clear from the parameters WS (Q, C) and 
S (Q, C) that C1R is most similar to C3R and least similar 
to C4R. 

 

 
. Figure 9: Scaled sequences designated by B1t, B2t, B3t 
and B4t. 

 
TABLE 3 

PARAMETER  WS (Q, C),  S (Q, C) VERSUS EUCLIDEAN 
DISTANCE D (Q, C) 

 
Sequence 

Pairs 
Parameter   

WS 
Euclidean  
Distance D 

Parameter  
S 

B1t, B2t 0.398 2.06 1.017 
B1t, B3t 0.466 14.51 0.886 
B1t, B4t 1.243 3.03 2.531 

 

 
Figure 10: The sequences B2t, B3t and B4t shifted 

vertically. 
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Figure 11: Time series dataset BR. 
 
 

 
Figure 12: Scaled sequences designated by B1Rt, 

B2Rt, B3Rt and B4Rt. 
 
 

TABLE 4 
PARAMETER  WS (Q, C),  S (Q, C) VERSUS EUCLIDEAN 

DISTANCE D (Q, C) 
 

Sequence  
Pairs 

Parameter  
WS 

Euclidean  
Distance D 

Parameter  
S 

B1Rt, B2Rt 0.535 1.00 1.132 
B1Rt, B3Rt 0.445 9.43 1.027 
B1Rt, B4Rt 1.009 6.65 3.027 

 

 
Figure 13: The sequences B1Rt, B2Rt and B3Rt 

shifted vertically. 
 

 
Figure 14: Time series dataset C. 
 

 
Figure 15: Scaled sequences designated by C1t, C2t, 

C3t and C4t. 
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TABLE 5 
PARAMETER  WS (Q, C),  S (Q, C) VERSUS EUCLIDEAN 

DISTANCE D (Q, C) 
 

Sequence  
Pairs 

Parameter  
WS 

Euclidean  
Distance D 

Parameter  
S 

C1t, C2t 1.346 7.22 2.046 
C1t, C3t 0.354 1.17 0.876 
C1t, C4t 2.571 4.07 4.784 

 
 

 
Figure 16: The sequences C1R, C2R and C3R shifted 

vertically. 
 
  

 
Figure 17: Time series dataset CR. 
 

 
Figure 18: Scaled sequences designated by C1Rt, 

C2Rt, C3Rt and C4Rt. 
 

TABLE 6 
PARAMETER  WS (Q, C),  S (Q, C) VERSUS EUCLIDEAN 

DISTANCE D (Q, C) 
 

Sequence  
Pairs 

Parameter   
WS 

Euclidean  
Distance D 

Parameter  
S 

C1Rt, C2Rt 0.816 4.04 1.231 
C1Rt, C3Rt 0.372 2.46 0.977 
C1Rt, C4Rt 1.544 3.99 4.812 

 

 
Figure 19: The sequences C1Rt, C2Rt and C3Rt 

shifted vertically. 

5 Case Study 
The case study undertaken in this paper consists of 
similarity analysis of retail sales data (in millions of 
dollars) collected on a monthly basis over a period of 11 
years (from 01/1992 to 12/2002) for chain retail stores in 
USA [17]. The length of each time sequence in the retail 
sales time series database thus consists of 132 datapoints 
(for each item under sales). We considered sales data of 
several types of retail businesses as listed in Table 7.  
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The results of computing the parameter for cumulative 
variation in time weighted slopes denoted by WS (Q, C) 
given by (4) as compared to the Euclidean Distance 
given by (1) are shown in Table 8. The Sales at Health 
and Personal Care Stores has been taken as the query and 
all others have been taken as the candidate time 
sequences.  
 
Some of the most similar sequences as evaluated using 
(4) are shown in Figure 20. It can be concluded from 
Table 8 that the sales at Health and Personal Care Stores 
recorded on a monthly basis for a period of 11 years is 
found to be most similar to the sales at Pharmacies and 
Drug stores recorded during the same period of time and 
is found to be the most dissimilar to the sales at New Car 
Dealers collected during the same period of time. 

 
The results of computing the parameter for cumulative 
variation in time weighted slopes denoted by S (Q, C) 
given by (2) as compared to the Euclidean Distance 
given by (1) are shown in Table 9.  
 

TABLE 7 
BUSINESSES FOR WHICH RETAIL TIME SERIES DATA HAS 

BEEN CONSIDERED 
 

S. No. Description 
1 Health and Personal Care Stores (Query) 
2 Pharmacies and Drug stores 
3 Furniture Stores 
4 Jewellery stores 
5 Sporting goods, Hobby and Music Stores 
6 Household Appliances Stores 
7 Men’s Clothing Stores 
8 Women’s Clothing Stores 
9 Shoe Stores 
10 New Car Dealers 
11 Used Car Dealers 

 
TABLE 8 

PARAMETER  WS (Q, C) VERSUS D (Q, C) 
 

S. No. Description Parameter   
WS 

Euclidean 
Distance D    

( * 10 3 ) 
1 Health and Personal 

Care Stores (Query) 
0 0 

2 Pharmacies and Drug 
stores 

362.27 19.86 

3 Used Car Dealers 1947.97 79.48 
4 Women’s Clothing 

Stores 
2409.69 95.92 

5 Shoe Stores 3086.38 105.35 
6 Men’s Clothing Stores 3090.50 115.27 
7 Furniture Stores 3185.23 52.05 
8 Household Appliances 

Stores 
3226.95 114.76 

9 Jewellery Stores 3264.25 104.55 
10 Sporting goods, Hobby 

and Music Stores 
5341.22 61.52 

11 New Car Dealers 7938.09 390.38 
 
 

 
 
 
 

The Sales at Health and Personal Care Stores has again 
been taken as the query and all others have been taken as 
the candidate time sequences. Some of the most similar 
sequences evaluated using (2) are shown in Figure 21. 
 
It can be concluded from Table 9 that the sales at Health 
and Personal Care Stores recorded on a monthly basis for 
a period of 11 years is found to be most similar to the 
sales at Pharmacies and Drug stores and the least similar 
to the sales at New Car Dealers collected during the same 
period of time. From Table 9 it can be seen that the order 
of some of the candidate time sequences has changed. 

 

 
 
Figure 20:  The most similar sequences as indicated 

by Table 8. 
 

TABLE 9 
PARAMETER  S (Q, C) VERSUS D (Q, C) 

 
S. No. Description Parameter   

S 
( * 10 2 ) 

Euclidean 
Distance D    

( * 10 3 ) 
1 Health and Personal 

Care Stores (Query) 
0 0 

2 Pharmacies and Drug 
stores 

17.42 19.86 

3 Women’s Clothing 
Stores 

57.53 95.92 

4 Furniture Stores 71.27 52.05 
5 Jewellery Stores 79.03 104.55 
6 Shoe Stores 83.32 105.35 
7 Men’s Clothing Stores 88.49 115.27 
8 Household Appliances 

Stores 
106.22 114.76 

9 Used Cars Dealers 126.40 79.48 
10 Sporting goods, Hobby 

and Music Stores 
144.22 61.52 

11 New Car Dealers 426.39 390.38 
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Figure 21:  The most similar sequences as indicated 

by Table 9. 

6 Conclusions and Future Work 
In this paper, a simple approach for performing similarity 
search in time series data has been proposed. The given 
time sequences are pre-processed and brought to the 
same time range. The y-values are also proportionately 
scaled to avoid any data distortions that may arise due to 
scaling along the time axis. The computation of the 
parameter for cumulative variations in time weighted 
slopes is done on the pre-processed data. It has been 
verified by the help of test data that the proposed 
technique can handle vertical shifts in the time sequence 
data, global scaling or shrinking of the data as well as 
variable length queries. No dimension reduction is 
required in this technique. Euclidean distance model has 
also been used to compare the test data considered. A 
case study on retail sales data from stores in USA has 
been undertaken. 

 
In this approach we have assumed that a time series 
comprises of samples of a single measured variable 
against time. In future work, we intend to broaden its 
scope so that it can handle multivariable time sequences. 
We also intend to develop alternate parameters using the 
concept of slopes and time weights for assessing 
similarity in time series data which may be used 
individually or in conjunction with each other. 
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