
Similarity Search on Time Series based on
Threshold Queries

Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey
Pryakhin, Matthias Renz

Institute for Computer Science, University of Munich
{assfalg,kriegel,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de

Abstract. Similarity search in time series data is required in many
application fields. The most prominent work has focused on similarity
search considering either complete time series or similarity according
to subsequences of time series. For many domains like financial analy-
sis, medicine, environmental meteorology, or environmental observation,
the detection of temporal dependencies between different time series is
very important. In contrast to traditional approaches which consider the
course of the time series for the purpose of matching, coarse trend in-
formation about the time series could be sufficient to solve the above
mentioned problem. In particular, temporal dependencies in time se-
ries can be detected by determining the points of time at which the
time series exceeds a specific threshold. In this paper, we introduce the
novel concept of threshold queries in time series databases which report
those time series exceeding a user-defined query threshold at similar time
frames compared to the query time series. We present a new efficient ac-
cess method which uses the fact that only partial information of the
time series is required at query time. The performance of our solution
is demonstrated by an extensive experimental evaluation on real world
and artificial time series data.

1 Introduction

Similarity search in time series data is required in many application fields, includ-
ing financial analysis, medicine, meteorology, analysis of customer behavior, or
environmental observation. As a consequence, a lot of research work has focused
on similarity search in time series databases recently.

In this paper, we introduce a novel type of similarity queries on time series
databases called threshold queries. A threshold query specifies a query time series
Q and a threshold τ . The database time series as well as the query sequence Q
are decomposed into time intervals of subsequent elements where the values are
(strictly) above τ . Now, the threshold query returns these time series objects of
the database which have a similar interval sequence of values above τ . Note, that
the entire set of absolute values are irrelevant for the query. The time intervals
of a time series t only indicate that the values of t within the intervals are above
a given threshold τ .

The novel concept of threshold queries is an important technique useful in
many practical application areas.

brecheis
Y. Ioannidis et al. (eds.): EDBT 2006, LNCS 3896, pp. 276-294, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Application 1 For the pharma industry it is interesting which drugs cause
similar effects in the blood values of a patient at the same time after drug
treatment. Obviously, effects such as a certain blood parameter exceeding a
critical level τ are of particular interest. A threshold query can return for a
given patient all patients in a database who show a similar reaction to a medical
treatment w.r.t. a certain blood parameter exceeding the threshold τ .
Application 2 The analysis of environmental air pollution becomes more and
more important and has been performed by many European research projects in
the recent years. The amount of time series data derived from environmental ob-
servation centers, increases drastically with elapsed time. Furthermore, modern
sensor stations record many attributes of the observed location simultaneously.
For example, German state offices for environmental protection maintain about
127 million time series each representing the daily course of several air pollution
parameters. An effective and efficient processing of queries like ”return all ozone
time series which exceed the threshold τ1 = 50µg/m3 at a similar time as the
temperature reaches the threshold τ2 = 25◦C” may be very useful. Obviously,
the increasing amount of data to be analyzed poses a big challenge for methods
supporting threshold queries efficiently.
Application 3 In molecular biology the analysis of gene expression data is
important for understanding gene regulation and cellular mechanisms. Gene ex-
pression data contains the expression level of thousands of genes, indicating how
active one gene is over a set of time slots. The expression level of a gene can be
up (indicated by a positive value) or down (negative value). From a biologist’s
point of view, it is interesting to find genes that have a similar up and down pat-
tern because this indicates a functional relationship among the particular genes.
Since the absolute up/down-value is irrelevant, this problem can be represented
by a threshold query. Each gene provides its own interval sequence, indicating
the time slots of being up. Genes with similar interval sequence thus have a
similar up and down pattern.

Time series (sometimes also denoted as time sequences) are usually very large
containing several thousands of values per sequence. Consequently, the compar-
ison of two time series can be very expensive, particularly when considering
the entire sequence of values of the compared objects. However, the application
examples above do not need the entire course of the time series, rather ”qual-
itative” course information with respect to a certain threshold is sufficient to
determine the correct query results. Consider again the query example of the
second application. Let us assume, that we have the information when the ozone
values are above 50µg/m3 for all ozone sequences in form of time intervals. Then,
the processing of this query is reduced to compare sequences of time intervals.
Usually, the number of intervals is much less than the number of ozone values
per ozone sequence. With this aggregated information, obviously the query can
be answered more efficiently compared to the approach where the time intervals
are not given in advance.

As mentioned above, this is the first contribution to the novel concept of
threshold queries for time series databases.

In summary, our contributions are the following:

– We introduce and formalize the novel concept of threshold queries on time
series databases.

– We present a novel data representation of time series which support such
threshold queries efficiently.

– We propose an efficient algorithm for threshold queries based on this new
representation.

– We present a broad experimental evaluation including performance tests of
our proposed algorithms and the evidence that the new type of query yields
important information and is thus required in several application fields.

The remainder is organized as follows. We give a short overview of the field
of similarity search in time series databases in Section 2. Section 3 formally
introduces the notion of threshold queries. In Section 4, we show how time series
can be represented in order to support threshold queries for arbitrary threshold
values efficiently. Section 5 describes an efficient query algorithm based on the
proposed representation. The effectiveness and efficiency of our algorithm are
evaluated in Section 6. Section 7 concludes the paper with a summary of our
findings and an outlook to future extensions.

2 Related Work

In the last decades, time series have become an increasingly prevalent type of
data. As a result, a lot of work on similarity search in time series databases has
been published. The proposed methods mainly differ in the representation of the
time series; a survey is given in [1].

A time series X can be considered as a point in n-dimensional space. This
suggests that time series could be indexed by spatial access methods such as the
R-tree and its variants [2]. However, most spatial access methods degrade rapidly
with increasing data dimensionality due to the “curse of dimensionality”. In or-
der to utilize spatial access methods, it is necessary to perform dimensionality
reduction and/or to perform multi-step query processing. Standard techniques
for dimensionality reduction have been applied successfully to similarity search
in time series databases, including Discrete Fourier Transform (DFT) (e.g. [3]),
Discrete Wavelet Transform (DWT) (e.g. [4]), Piecewise Aggregate Approxima-
tion (PAA) (e.g. [5]), Singular Value Decomposition (SVD) (e.g. [6]), Adaptive
Piecewise Constant Approximation (APCA) [1], and Chebyshev Polynomials [7].
In [8], the authors propose the GEMINI framework, that allows to incorporate
any dimensionality reduction method into efficient indexing, as long as the dis-
tance function on the reduced feature space fulfills the lower bounding property.

However, all techniques which are based on dimensionality reduction cannot
be applied to threshold queries because necessary temporal information is lost.
Usually, in a reduced feature space, the original intervals indicating that the
time series is above a given threshold cannot be generated. In addition, the
approximation generated by dimensionality reduction techniques cannot be used

time

timeseries A

Threshold-Crossing Time Interval Sequence (TCT) A

time series A

A

time

A

Fig. 1. Threshold-Crossing Time Intervals

for our purposes directly because they still represent the exact course of the time
series rather than intervals of values above a threshold.

For many applications, the Euclidean distance may be too sensitive to minor
distortions in the time axis. It has been shown, that Dynamic Time Warping
(DTW) can fix this problem [1]. Using DTW to measure the distance between
two time series t1 and t2, each value of t1 may be matched with any value of
t2. However, DTW is not applicable to threshold queries because it considers
the absolute values of the time series rather than the intervals of values above a
given threshold.

In [9], a novel bit level approximation of time series for similarity search and
clustering is proposed. Each value of the time series is represented by a bit.
The bit is set to 1 if the value of the time represented by the bit is strictly
above the mean value of the entire time series, otherwise it is set to 0. Then, a
distance function is defined on this bit level representation that lower bounds the
Euclidean distance and, by using a slight variant, lower bounds DTW. However,
since this representation is restricted to a certain predetermined threshold, this
approach is not applicable for threshold queries where the threshold is not known
until query time.

To the best of our knowledge, there does neither exist any access method
for time series, nor any similarity search technique which efficiently supports
threshold queries.

3 Threshold Queries on Time Series

In this section, we introduce the novel concept of threshold queries and present
techniques allowing for an efficient query processing. We define a time series X as
a sequence of pairs (xi, ti) ∈ R× T : (i = 1..N), where T denotes the domain of
time and xi denotes the measurement corresponding to time ti. Furthermore, we
assume that the time series entities are given in such a way that ∀i ∈ 1, .., N − 1 :
ti < ti+1. Let us note, that in most applications the time series derive from
discrete measurements of continuously varying attributes. However, commonly
time series are depicted as continuous curves, where the missing curve values (i.e.
values between two measurements) are estimated by means of interpolation.
From the large range of appropriate solutions for time series interpolation, in
this paper we assume that the time series curves are supplemented by linear
interpolation which is the most prevalent interpolation method. In the rest of
this paper, if not stated otherwise, x(t) ∈ R denotes the (interpolated) time
series value of time series X at time t ∈ T .

Definition 1 (Threshold-Crossing Time Interval Sequence). Let X =
〈(xi, ti) ∈ R×T : i = 1..N〉 be a time series with N measurements and τ ∈ R be
a threshold. Then the threshold-crossing time interval sequence of X with respect
to τ is a sequence TCTτ (X) = 〈(lj , uj) ∈ T ×T : j ∈ {1, ..,M},M ≤ N〉 of time
intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

An interval tctτ,j = (lj , uj) of TCTτ (X) is called threshold-crossing time inter-
val.

The example shown in Figure 1 depicts the threshold-crossing time interval
sequence of the time series A which corresponds to threshold τA.

Definition 2 (Distance between Time Intervals). Let t1 = (t1l, t1u) ∈
T × T and t2 = (t2l, t2u) ∈ T × T be two time intervals. Then the distance
function dint : (T × T)× (T × T) → R between two time intervals is defined as:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2

Intuitively, two time intervals are defined to be similar if they have ”similar”
starting and end points, i.e. they are starting at similar times and ending at
similar times.

Since for a certain threshold τ a time series object is represented by a sequence
or a set of time intervals, we need a distance/similarity measure for sets of
intervals. Let us note, that intervals correspond to points in a two-dimensional
space, where the starting point corresponds to the first dimension and the ending
point corresponds to the second dimension. This transformation is explained in
more detail in the next section. Several distance measures for point sets have
been introduced in the literature [10]. The Sum of Minimum Distances (SMD)
most adequately reflects the intuitive notion of similarity between two threshold-
crossing time interval sequences. According to the SMD we define the threshold-
distance dTS as follows:

Definition 3 (Threshold-Distance). Let X and Y be two time series and
SX = TCTτ (X) and SY = TCTτ (Y) be the corresponding threshold-crossing
time interval sequences.

dTS(SX , SY) =
1

|SX |
·

∑
s∈SX

min
t∈SY

dint(s, t) +
1

|SY |
·

∑
t∈SY

min
s∈SX

dint(t, s),

The idea of this distance function is to map every interval from one sequence
to the closest (most similar) interval of the other sequence and vice versa. Time
series having similar shapes, i.e. showing a similar behavior, may be transformed
into threshold-crossing time interval sequences of different cardinalities. Since
the above distance measure does not consider the cardinalities of the interval
sequences, this distance measure is quite adequate for time interval sequences.
Another advantage is that the distance measure only considers local similarity.

This means, that for each time interval only its nearest neighbor (i.e. closest
point) of the other sequence is taken into account. Other intervals of the coun-
terpart sequence have no influence on the result.

Let us note that the threshold-distance between two time series according to
a certain threshold τ is also called τ -similarity.

Definition 4 (Threshold Query). Let TS be the domain of time series ob-
jects. The threshold query consists of a query time series Q ∈ TS and a query
threshold τ ∈ R. The threshold query reports the smallest set TSQk(Q, τ) ⊆ TS
of time series objects that contains at least k objects from TS such that

∀X ∈ TSQk(Q, τ),∀Y ∈ TS − TSQk(Q, τ) :

dTS(TCTτ (X), TCTτ (Q)) < dTS(TCTτ (Y), TCTτ (Q)).

Let us note, that if not stated otherwise we assume k = 1 throughout the
rest of this paper.

4 Efficient Management of Threshold-Crossing Time
Intervals

The simplest way to execute a threshold query TSQk(Q, τ) is to sequentially
read each time series X from the database, to compute the threshold-crossing
time interval sequence SX = TCTτ (X) and to compute the threshold-similarity
function dTS(SX , TCTτ (Q)). Finally, we report the time series which yields the
smallest distance dTS(SX , TCTτ (Q)). However, if the time series database con-
tains a large number of objects and the time series are reasonably large, then
obviously this type of performing the query becomes unacceptably expensive.
For this reason we use a convenient access method on the time series data.

In this section, we present two approaches for the management of time series
data, both of which efficiently support threshold queries. The key point is that
we do not need to access the complete time series data at query time. Instead
only partial information of the time series objects is required. At query time
we only need the information at which time frames the time series is above the
specified threshold. We can save a lot of I/O cost if we are able to access only the
relevant parts of the time series at query time. The basic idea of our approach is
to pre-compute the TCTτ (X) for each time series object X and store it on disk
in such a way it can be accessed efficiently.

For the sake of clarity, we first present a simple approach with constant
threshold value τ for all queries. Afterwards, we present the general approach
which supports arbitrary choice τ .

4.1 Representing Threshold-Crossing Time Intervals with Fixed τ

Let us assume that the query threshold τ is fixed for all queries. Then, we can
compute the corresponding TCTτ (X) for each time series X. Consequently, each

start time

time

e
n
d
 t
im

e

time interval plane

interval space
b c

b

c

time series

space

time

Fig. 2. Mapping of Time Intervals to the Time Interval Plane

time series object is represented by a sequence of intervals. There are several
methods to store intervals efficiently, e.g. the RI-Tree [11]. However, they only
support intersection queries on interval data but do not efficiently support simi-
larity queries on interval sequences. Besides, they cannot be used for the general
approach when τ is not fixed. We propose a solution which supports similarity
queries on intervals and which can be easily extended to support queries with
arbitrary τ .

Time intervals can also be considered as points in a 2-dimensional plane[12].
In the following we will refer to this plane as time interval plane. The 1-dimensional
intervals (native space) are mapped to the time interval plane by taking their
start and end points as two dimensional coordinates. This representations has
some advantages for the efficient management of intervals. First, the distances
between intervals are preserved. Second, the position of large intervals, which
are located within the upper-left region, substantially differs from the position
of small intervals (located near the diagonal). However, the most important
advantage is that this plane preserves the similarity of intervals according to
Definition 2. Let t1 = (x1, y1) and t2 = (x2, y2) be two time intervals, then the
distance between t1 and t2 is equal to dint(t1, t2) =

√
(x1 − x2)2 + (y1 − y2)2

which corresponds to the Euclidean distance in the time interval plane.
The complete threshold-crossing time interval sequence is represented by a

set of 2-dimensional points in the time interval plane. The transformation chain
from the original time series to the point set in the time interval plane is depicted
in Figure 2. In order to efficiently manage the point sets of all time series objects,
we can use a spatial index structure as for instance the R*-tree [13]. In particular,
the R*-tree is very suitable for managing points in low-dimensional space which
are not equally distributed. Additionally, it supports the nearest neighbor query
which will be required to perform the threshold queries efficiently (more details
for the query process will be presented in Section 5). Let us note, that each
object is represented by several points in the time interval plane. Consequently,
each object is referenced by the index structure multiple times.

1

2

t2

t1

t
x

parameter space

start time

e
n
d
tim
e

th
re
s
h
o
ld

1

2

t1

t2

x t
x

native space

time

th
re
s
h
o
ld

tx.start(x) = t1.start + (t2.start - t1.start) (x - 1) / (2 - 1)

tx.end(x) = t1.end + (t2.end – t1.end) (x - 1) / (2 - 1)

sl = tx.start(x)

su = tx.end(x)

Fig. 3. Interval Ranges in Parameter Space

4.2 Representing Threshold-Crossing Time Intervals for Arbitrary τ

In contrast to the first approach presented above we will now describe how to
manage threshold queries for arbitrary threshold values τ efficiently. First, we
have to extend the transformation task of the simple approach, in such a way
that the time interval plane representations of the TCTτ s of the time series
are available for all possible threshold values τ . Therefore, we extend the time
interval plane by one additional dimension which indicates the corresponding
threshold values. In the following, we will call this space parameter space. A
2-dimensional plane along the threshold axis parallel to the (lower,upper)-plane
at a certain threshold τ in the parameter space is called time interval plane of
threshold τ .

In the parameter space sets of threshold-crossing time intervals can be effi-
ciently represented as follows. As shown in the example depicted in Figure 3, the
set of all possible threshold-crossing time intervals of one time series which are
left-bounded by the segment sl and right-bounded by the segment su and whose
threshold value is between τ1 and τ2 can be represented by the segment t1, t2 in
the parameter space. The management of all threshold-crossing time intervals of
a time series can be efficiently handled, as follows: We first identify all groups
of tct-intervals which start and end at the same time series segment. Then, each
group is represented by one segment in the parameter space, which can be ef-
ficiently organized by means of a spatial index structure, e.g. the R*-tree. At
query time, the time interval plane coordinates of the threshold-crossing time
intervals corresponding to the query threshold τq can be easily determined by
computing the intersection of all segments of the parameter space with the time
interval plane P of threshold τq.

4.3 Trapezoid Decomposition of Time Series

The set of all time intervals which start and end at the same time series segment
can be described by a single trapezoid whose left and right bounds are each
congruent with one single time series segment. Let sl = ((xl1, tl1), (xl2, tl2))
denote the segment of the left bound and sr = ((xr1, tr1), (xr2, tr2)) denote
the segment of the right bound. The top-bottom bounds correspond to the two
threshold-crossing time intervals tctτtop

and tctτbottom
whose threshold values are

time series (native space)

th
re

sh
ol

d

time

decomposed time series

Fig. 4. Time Series Decomposition

computed as follows:

τtop = min(max(xl1, xl2),max(xr1, xr2));

τbottom = max(min(xl1, xl2),min(xr1, xr2));

For our decomposition algorithm we can use the following property

Lemma 1. Threshold-crossing time intervals always start at increasing time se-
ries segments (positive segment slope) and end at decreasing time series segments
(negative segment slope).

Proof. Due to Definition 1, all values of X within the threshold-crossing time
interval tctτ (X) are greater than the corresponding threshold value τ . Let us
assume that the time series segment sl which lower-bounds the time interval at
time tl has a negative slope. Then, all x(t) on sl with t > tl are lower than τ
which contradicts the definition of threshold-crossing time intervals. The validity
of Lemma 1 w.r.t. the right bounding segment can be shown analogously.

Let us note that time series objects can be considered as half-open uni-
monotone polygons in the time-amplitude plane. In the area of computational
geometry there are known several sweep-line based polygon-to-trapezoid decom-
position algorithms [14] which can be processed in O(n · logn) time w.r.t. the
number of vertices. For this work we adopted one of these decomposition algo-
rithms. Since the time series values are chronologically ordered, our decompo-
sition algorithm can be processed in linear time w.r.t. the length of the sequence.

Figure 4 shows an example of how a time series is decomposed into the set of
trapezoids. This algorithm works similar to polygon-to-trapezoid decomposition
algorithms known from the area of computational geometry. As we can assume
that the time series consist of chronologically ordered pairs (x, t), our decompo-
sition algorithm can be performed in linear time (linear w.r.t. the length of the
time series).

4.4 Indexing Segments in the Parameter Space

We apply the R*-tree for the efficient management of the three-dimensional
segments representing the time series objects in the parameter space. As the R*-
tree index can only manage rectangles, we represent the 3-dimensional segments

by rectangles where the segments correspond to one of the diagonals of the
rectangles.

For all trapezoids which result from the time series decomposition, the lower
bound time interval contains the upper bound time interval. Furthermore, inter-
vals which are contained in another interval are located in the lower-right area of
this interval representation in the time interval plane. Consequently, the locations
of the segments within the rectangles in the parameter space are fixed. Therefore,
in the parameter space the bounds of the rectangle which represents a segment
suffice to uniquely identify the covered segment. Let ((xl, yl, zl), (xu, yu, zu)) be
the coordinates of a rectangle in the parameter space, then the coordinates of
the corresponding segment are ((xl, yu, zl), (xu, yl, zu)).

5 Query Algorithm

The query consists of a query time series Q and a query threshold τ (cf. Definition
4). The first step of the query process is to determine the threshold-crossing
time interval sequence TCTτ (Q). Obviously, this can be done by one single scan
through the query object Q. Next, we have to find those time series objects from
the database which are most τ -similar to Q according to Definition 3.

5.1 Preliminaries

In this section, we assume that Q denotes the query time series which is rep-
resented by its threshold-crossing time interval sequence SQ = TCTτ (Q). Fur-
thermore, SX = v1, .., vn denotes the threshold-crossing time interval sequence
TCTτ (X) from any database time series X. Since the similarity query is per-
formed in the parameter space (or time interval plane for a certain threshold τ),
SX denotes a set1 of two-dimensional points.

5.2 Computation of the τ -Similarity

At first, we will consider the computation of the τ -similarities between time
series objects in the time interval plane. As mentioned above, the threshold-
crossing time interval sequence of a time series object corresponds to a set of
points in the time interval plane. In the following, the point set of a time series
denotes the time interval plane point representation which corresponds to the
threshold-crossing time interval sequence of the time series object.

Given a threshold-crossing time interval, the most similar threshold-crossing
time interval in the time space (native space) (w.r.t. Definition 2) corresponds
to the nearest-neighbor in the time interval plane.

1 In our approach it does not make any difference whether SX = TCTτ (X) denotes a
sequence or a set of intervals or points, thus for simplicity we consider SX as a set
of intervals or points.

Definition 5 (k-Nearest Neighbor). Let q be a point in the time interval
plane and SX = {v1, ..., vn} be a set of points in the time interval plane. The
k-nearest-neighbor NNk,SX

(q) (k < n) of q in the set SX is defined as follows:

v = NNk,SX
(q) ∈ SX ⇔

∀v′ ∈ SX − {NNl,SX
(q) : l ≤ k} : dint(q, v) ≤ dint(q, v′).

The distance dint(q, NNk,SX
(q)) is called k-nearest-neighbor distance. For k = 1,

we simply call NN1,SX
(q) ≡ NNX(q) the nearest-neighbor of q in SX . NNl,.(q)

denotes the overall k-nearest neighbor of q, i.e. NNl,.(q) = NNl,
S

X∈DB X(q).
The set k −NNX(q) = {NNl,SX

(q) : ∀l ≤ k} is called k-nearest-neighbors of q.

In the time interval plane, the τ -similarity between two time series objects Q
and X can be determined by computing for all points of SQ the nearest neighbor
points in SX and, vice versa, for all points in SX the nearest neighbor points in
SQ.

5.3 Efficient Query Processing

Let us assume that we are given any query threshold τ and the point set of
the query object Q in the time interval plane of τ . A straightforward approach
for the query process would be the following: First, we identify all parameter
space segments of the database objects which intersect the time interval plane of
threshold τ . Then we determine the time interval plane point sets of all database
objects by computing the intersection between the parameter space segments
and the plane of τ . For each database object, we compute the τ -similarity to the
query object. Finally, we report the object having the smallest τ -distance to Q.
Obviously, this is not a very efficient method since the respective parameter space
segments of all time series objects have to be accessed. We can achieve a better
query performance by using an R*-Tree index on the parameter space segments
to filter out those segments which cannot satisfy the query. For this purpose, we
require a lower bound criterion for the τ -distance between two objects.

Lower Distance Bound In the following, we will introduce a lower bound
criterion for the threshold-distance dTS on the basis of partial distance compu-
tations between the query object and the database objects. This lower bound
criterion enables the detection of false candidates very early, i.e. only partial in-
formation of the false candidates suffices to prune this object from the candidate
list. The amount of information necessary for the pruning of an object depends
on the location of the query object and the other candidates.

Let SQ = {q1, ..., qn} be the point set corresponding to the query object
and SX = {v1, ..., vm} be the point set of any object X from the database.
Furthermore, we reformulate the τ -distance dTS(SQ, SX) between SQ and SX

of Definition 3 as follows:

dTS(SQ, SX) =
1

|SQ|
·D1(SQ, SX) +

1
|SX |

·D2(SQ, SX),

where D1(SQ, SX) =
∑

i=1..n dint(qi, NNX(qi))
and D2(SQ, SX) =

∑
i=1..m dint(vi, NNQ(vi)).

In the following, we use two auxiliary variables Kl(qi) and K̄l(SQ) which
help to distinguish two classes of our objects. Kl(qi) ⊆ DB denotes the set of
all objects SX which has at least one entity x ∈ SX within the set k−NNX(qi).
Furthermore, K̄l(SQ) ⊆ DB denotes the set of all objects which are not in any
set Kl(qi) i.e. K̄l(SQ) = DB − (

⋃
i=1..n Kl(qi)).

Lemma 2. The following inequality holds for any object SX ∈ K̄l(SQ):

D1(SQ, SX) ≥
∑

i=1..n

dint(qi, NNl,.(qi)).

Proof. According to Definition 5 the following statement holds:

∀i ∈ {1, .., n} : dint(qi, NNl,.(qi)) ≤ dint(qi, NNX(qi)).

Therefore,∑
i=1..n

dint(qi, NNl,.(qi)) ≤
∑

i=1..n

dint(qi, NNX(qi)) = D1(SQ, SX).

The following lemma is a generalization of Lemma 2 and defines a lower
bound of D1(SQ, SX) for all database objects SX ∈ DB for any l ∈ N.

Lemma 3. Let SX ∈ DB be any database object and let SQ be the query object.
The distance D1(SQ, SX) can be estimated by the following formula:

dmin(SQ, SX) =
1
n

∑
i=1..n

{
dint(qi, NNX(qi)), if SX ∈ Kl(qi)
dint(qi, NNl,.(qi)), else

}
≤ D1(SQ, SX).

Proof. Let SX ∈ DB be any database object and SQ be the query object.
According to Definition 5 the following holds:

dint(qi, NNl,.(qi)) ≤ dint(qi, NNX(qi)) ⇔ X /∈ Kl(qi).

Consequently, dmin(Q,X) ≤ 1
n

∑
i=1..n dint(qi, NNX(qi)) = D1(SQ, SX).

Pruning Strategy By iteratively computing the l-nearest neighbors NNl,.(q)
for all q ∈ SQ with increasing l ∈ N, we can determine the lower bound distances
for all objects. The maximal lower bound distance dmin(SQ, SX) of an object
SX has been achieved as soon as SX ∈ Kl(qi) : ∀i ∈ 1, ..., n. Then, we refine the
distance dTS(SQ, SX) by accessing the complete object SX in order to compute
the distance D2(SQ, SX). The resulting distance dTS(SQ, SX) is then used as
new pruning distance dprun for the remaining query process. All objects Y ∈
DB−{X} whose current lower bound distance dmin(SQ, SY) exceeds dprun can
be omitted from the remaining search steps. The search proceeds by continuing
the iterative computations of the next nearest neighbors NNl+1,..

Let SX be the object with the lowest exact distance to SQ, i.e. dprun =
dTS(SQ, SX). The pruning distance can be updated as soon as the next object
SY which has to be refined is found. In doing so, we have to consider two cases:

threshold-query(SQ, DB, τ) {
nn := ARRAY[1..—SQ—]; /*array of current nn-objects*/
dmin − tab := LIST of point ARRAY[1..|SQ|]; /*dmin table*/
objbest := null;
dprune := +∞
k := 0;
LOOP

k := k + 1;
nn = fetch-next-nn(SQ,DB,τ ,dprune);
dmin − tab.update(nn);
if ((o := dmin − tab.object complete()) ! = null) then {

load complete object o and compute dTS(SQ, o); /*refinement-step*/
if (dTS(SQ, o) ≥ dprune) then {

objbest := o;
dprune := dTS(SQ, o);

} else { remove o from the candidate list in dmin − tab; }}
for all objects obj ∈ dmin − tab do {

if (D1(SQ, obj) ≥ dprune) then {
remove obj from the candidate list in dmin − tab; }}

if (
P

qi∈SQ
NNk,.(qi) ≥ dprune) then {

report obest;
break; }

end LOOP; }

Fig. 5. The threshold query algorithm.

case 1: dTS(SQ, SY) ≥ dprune → remove object SY from the candidate set,
case 2: dTS(SQ, SY) < dprune → set dprune := dTS(SQ, SY) and remove object

SX from the candidate set.

The search algorithm terminates as soon as all object candidates, except for the
best one, have been pruned.

5.4 Query Algorithm

The query algorithm is depicted in Figure 5. The function threshold-query(SQ,DB,τ)
computes for a given query object SQ the database object objbest having the
smallest τ -distance dTS(SQ, SX). The function fetch-next-nn(SQ,DB) is an it-
erator function which retrieves the next nearest neighbor for each qi ∈ SQ in
each iteration. The nearest neighbors can be efficiently computed by applying
the nearest neighbor ranking method as proposed in [15]. Thereby, we maintain
for each q ∈ SQ a priority queue, each storing the accessed R*-tree nodes in
ascending order of their distances to the corresponding query point q.

In this section, we treated the objects as sets of points in the time interval
plane. In fact, the database objects are organized within the three-dimensional
parameter space (cf. Section 4.4). For the distance computation between the
query point q = (li, ui, τ) and an R*-tree rectangle r = ((xl, yl, zl), (xu, yu, zu)),
we consider the horizontal distance at threshold τ only, i.e. dint(qi, r) = dint((li, ui), ((xl, yl), (xu, yu))).

q1 q2 q3

NN1,DB(qi)
NN2,DB(qi)
NN3,DB(qi)

a3 f1 b1

c4 b2 d2

b2 b3 e1

Dmin(A)

NN1,DB(qi)
d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,f1)+
d(q3,b1)

d(q1,a3)+
d(q2,b2)+
d(q3,d2)

d(q1,c4)+
d(q2,b2)+
d(q3,b1)

d(q1,c4)+
d(q2,b2)+
d(q3,d2)

d(q1,c4)+
d(q2,b2)+
d(q3,d2)

d(q1,c4)+
d(q2,b2)+
d(q3,d2)

d(q1,c4)+
d(q2,f1)+
d(q3,d2)

d(q1,a3)+
d(q2,b3)+
d(q3,e1)

d(q1,b2)+
d(q2,b2)+
d(q3,b1)

d(q1,c4)+
d(q2,b3)+
d(q3,e1)

d(q1,b2)+
d(q2,b3)+
d(q3,d2)

d(q1,b2)+
d(q2,b3)+
d(q3,e1)

d(q1,b2)+
d(q2,f1)+
d(q3,e1)

Dmin(B) Dmin(C) Dmin(D) Dmin(E) Dmin(F)

NN1,DB(qi)

NN1,DB(qi)

af
te

rt
he

co
m

pu
ta

tio
n

of

all entries are marked update pruning distance

interative
computation
of NNj,DB(qi)

Table dmin-tab:

Fig. 6. Example of the query processing

The basic functionality of the query algorithm can be explained by the fol-
lowing example which is depicted in Figure 6. In our example, the query consists
of three time interval plane points SQ = {q1, q2, q3}. The upper table shows
the results of the first three states of the incremental nearest-neighbor queries
NN1,.(qi), NN2,.(qi) and NN3,.(qi). The state of the corresponding dmin-table
after each iteration is shown in the table below. The first iteration retrieves the
points a3, f1 and b1 of the time series objects A, F , and B, respectively. Con-
sequently, the threshold-distance between q and all objects SX ∈ DB can be
restricted by the lower bound dmin = 1

3 (d(q1, a3) + d(q2, f1) + d(q3, b1)). Next,
we insert the actual nearest neighbor distances into the dmin-table and mark the
corresponding entries (marked entries are underlined in the figure). Let us note,
that all unmarked distance entries correspond to the currently retrieved nearest
neighbor distances, and thus, need not to be stored for each object separately.
After the third query iteration, all nearest neighbor counterparts from SQ to
SB are found. Consequently, we can update the pruning distance by computing
the exact τ -similarity dprune = dTS(SQ, SB). We can now remove the column
Dmin(B) from the dmin-table.

The runtime complexity of our threshold query algorithm is O(nq ·nk ·lognp),
where nq denotes the size of the threshold-crossing time interval sequence SQ,
nk denotes the number of nearest-neighbor search iterations and np denotes
the overall number of segments in the parameter space. In the experiments (cf.
Section 6) we will show that in average nq is very very small in comparison to
the length of the time sequences. Furthermore, we will show that the number of
required nearest-neighbor query iterations nk is very small, i.e. the query process
terminates very early. The number np of segments in the parameter space is quite
similar to the sum ns of length of all time sequences in the database, but it is
slightly smaller than ns which is also shown in the experiments.

6 Experimental Evaluation

In this section, we present the results of a large number of experiments performed
on a selection of different time series datasets. In particular, we compared the
efficiency of our proposed approach (in the following denoted by ‘RPar’) for
answering threshold queries using one of the following techniques.

The first competing approach works on native time series. At query time the
threshold-crossing time intervals (TCT) are computed for the query threshold
and afterwards the distance between the query time series and each database
object can be derived. In the following this method will be denoted by ‘SeqNat’
as it corresponds to a sequential processing of the native data.

The second competitor works on the parameter space rather than on the
native data. It stores all TCTs without using any index structures. As this
storage leads to a sequential scan over the elements of the parameter space we
will refer to this technique as the ‘SeqPar’ method.

All experiments were performed on a workstation featuring a 1.8 GHz Opteron
CPU and 8GB RAM. We used a disk with a transfer rate of 100 MB/s, a seek
time of 3 ms and a latency delay of 2 ms. Performance is presented in terms of
the elapsed time including I/O and CPU-time.

6.1 Datasets

We used several real-world and synthetic datasets for our evaluation, one audio
dataset and two scientific datasets. The audio dataset contains time sequences
expressing the temporal behavior of the energy and frequency in music sequences.
It contains up to 700000 time series objects with a length of up to 300 values
per sequence. If not otherwise stated, the database size was set to 50000 objects
and the length of the objects was set to 50. This dataset is used to evaluate the
performance of our approach (cf. Section 6.2). In Section 6.3, we will show the
effectiveness of threshold queries for the two scientific datasets. The scientific
datasets are derived from two different applications: the analysis of environmen-
tal air pollution (cf. Application 2 in Section 1) and gene expression data analysis
(cf. Application 3 in Section 1). The data on environmental air pollution is de-
rived from the Bavarian State Office for Environmental Protection, Augsburg,
Germany 2 and contains the daily measurements of 8 sensor stations distributed
in and around the city of Munich from the year 2000 to 2004. One time series
represents the measurement of one station at a given day containing 48 values
for one of 10 different parameters such as temperature, ozone concentration,
etc. A typical time series of this dataset contains 48 measurements of station S
during day D of parameter P . The gene expression data from [16] contains the
expression level of approximately 6,000 genes measured at only 24 different time
slots.

6.2 Performance Results

To obtain more reliable and significant results, in the following experiments we
used 5 randomly chosen query objects. Furthermore, these query objects were
used in conjunction with 5 different thresholds, so that we obtained 25 different
threshold queries. The presented results are the average results of these queries.

First, we performed threshold queries against database instances of different
sizes to measure the influence of the database size to the overall query time. The
2 www.bayern.de/lfu

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000 500000 600000 700000 800000

Number of Objects in the Database

E
la

p
s

e
d

 T
im

e
 [

s
e

c
]

R-Par

Seq-Par

Seq-Nat

Fig. 7. Scalability against database
size.

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Length of Time Series in the Database

E
la

p
s

e
d

 T
im

e
 [

s
e

c
] R-Par

Seq-Par

Seq-Nat

Fig. 8. Scalability against time se-
ries length.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 100000 200000 300000 400000 500000 600000 700000

Number of Objects in the Database

R
e

la
ti

v
e

 N
u

m
b

e
r

o
f

O
b

je
c

ts
 [

%
]

Filter Refinement

Fig. 9. Pruning power for varying
database size.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

Length of Time Series in Database

R
e

la
ti

v
e

 N
u

m
b

e
r

o
f

O
b

je
c

ts
 [

%
]

Filter Refinement

Fig. 10. Pruning power for varying
time series length.

elements of the databases are time series of fixed length l = 50. Figure 7 exhibits
the performance results for each database. It is shown that the performance
of both approaches SeqNat and SeqPar significantly decreases with increasing
database size, whereas our approach scales very well even for large databases.
Second, we explored the impact of the length of the query object and the time
series in the database. The results are shown in Figure 8. Again, our technique
outperforms the competing approaches whose cost increase very fast due to the
expensive distance computations. In contrast our approach is hardly influenced
by the size of the time series objects.

In the next experiment we present the speed-up of the query process caused
by our pruning strategy. We measured the considered number of result candi-
dates during the query processes and the number of finally refined objects. Figure
9 and Figure 10 show the results relatively to the database size and object size.
Only a very small portion of the candidates has to be refined to report the result.
An interesting point is that very large time series lead to lower pruning power
than smaller time series.

Furthermore, we examined the number of nearest-neighbor search iterations
which were required for the query process for varying length of the time series
and varying size of the database. We observed, that the number of iterations was
between 5 and 62. The number of iterations increases linear to the length of the
time series and remains nearly constant w.r.t. the database size. Nevertheless,
only a few iterations are required to report the result.

6.3 Results on Scientific Datasets

The results on the air pollution dataset were very useful. We performed 10-
nearest neighbor threshold queries with randomly chosen query objects. Inter-
estingly, when we choose time series as query objects, that were derived from
rural sensor stations representing particulate matter parameters (M10), we ob-
tained only time series representing the same parameters measured also at rural
stations. This confirms that the pollution by particle components in the city
differs considerably from the pollution in rural regions. A second interesting re-
sult was produced when we used M10 time series of working days as queries.
The resulting time series were also derived from working days representing M10

values.
The results on the gene expression dataset were also very interesting. The

task was to find the most similar gene with τ = 0 to a given query gene. The
intuition is to find a gene that is functionally related to the query gene. We
posed several randomized queries to this dataset with τ = 0 and evaluated the
results w.r.t. biological interestingness using the SGD database 3. Indeed, we
retrieved functionally related genes for most of the query genes. For example, for
query gene CDC25 we obtained the gene CIK3. Both genes play an important
role during the mitotic cell cycle. For the query gene DOM34 and MRPL17
we obtained two genes that are not yet labeled (ORF-names: YOR182C and
YGR220C, respectively). However all four genes are participating in the protein
biosynthesis. In particular, threshold queries can be used to predict the function
of genes whose biological role is not resolved yet.

To sum up, the results on the real-world datasets suggest the practical rele-
vance of threshold queries for important real-world applications.

7 Conclusions

In this paper, we motivated and proposed a novel query type on time series
databases called threshold query. Given a query object Q and a threshold τ , a
threshold query returns time series in a database that exhibit the most similar
threshold-crossing time interval sequence. The threshold-crossing time interval
sequence of a time series represents the interval sequence of elements that have a
value above the threshold τ . We mentioned several practical application domains
for such a query type. In addition, we presented a novel approach for managing
time series data to efficiently support such threshold queries. Furthermore, we
developed a scalable algorithm to answer threshold queries for arbitrary thresh-
olds τ . A broad experimental evaluation demonstrates the importance of the new
query type for several applications and shows the scalability of our proposed al-
gorithms in comparison to straightforward approaches.

For future work, we plan to develop suitable approximations which represent
the novel time series data in a compressed form in order to apply efficient filter
steps during the query process. Furthermore, we plan to extend our approaches
to data mining tasks, such as clustering.
3 http://www.yeastgenome.org/

References

1. Keogh, E., Chakrabati, K., Mehrotra, S., Pazzani, M.: ”Locally Adaptive Dimen-
sionality Reduction for Indexing Large Time Series Databases”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’01), Santa Barbara, CA.
(2001)

2. Guttman, A.: “R-Trees: A Dynamic Index Structure for Spatial Searching”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’84). (1984)

3. Agrawal, R., Faloutsos, C., Swami, A.: ”Efficient Similarity Search in Sequence
Databases”. In: Proc. 4th Conf. on Foundations of Data Organization and Algo-
rithms. (1993)

4. Chan, K., Fu, W.: ”Efficient Time Series Matching by Wavelets”. In: Proc. 15th
Int. Conf. on Data Engineering (ICDE’99), Sydney, Australia. (1999)

5. Yi, B.K., Faloutsos, C.: ”Fast Time Sequence Indexing for Arbitrary Lp Norms”.
In: Proc. 26th Int. Conf. on Very Large Databases (VLDB’00), Cairo, Egypt. (2000)

6. Korn, F., Jagadish, H., Faloutsos, C.: ”Efficiently Supporting Ad Hoc Queries
in Large Datasets of Time Sequences”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’97), Tucson, AZ. (1997)

7. Cai, Y., Ng, R.: ”Index Spatio-Temporal Trajectories with Chebyshev Polynomi-
als”. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’04),
Paris, France). (2004)

8. Faloutsos, C., Ranganathan, M., Maolopoulos, Y.: ”Fast Subsequence Matching
in Time-series Databases”. In: Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’94), Minneapolis, MN. (1994)

9. Ratanamahatana, C.A., Keogh, E., Bagnall, A.J., Lonardi, S.: ”A Novel Bit Level
Time Series Representation with Implication for Similarity Search and Clustering”.
In: Proc. 9th Pacific-Asian Int. Conf. on Knowledge Discovery and Data Mining
(PAKDD’05), Hanoi, Vietnam. (2005)

10. Eiter, T., Mannila, H.: ”Distance Measure for Point Sets and Their Computation”.
In: Acta Informatica, 34. (1997) 103–133

11. Kriegel, H.P., Pötke, M., Seidl, T.: ”Object-Relational Indexing for General In-
terval Relationships”. In: Proc. Symposium on Spatial and Temporal Databases
(SSTD’01), Redondo Beach, CA. (2001)

12. Gaede, V., Günther, O.: “Multidimensional Access Methods”. Computing Surveys
30 (1984)

13. Beckmann, N., Kriegel, H.P., Seeger, B., Schneider, R.: ”The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles”. In: Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’90), Atlantic City, NJ. (1990)

14. Fournier, A., Moniwno, D.Y.: ”Triangulating simple polygons and equivalent prob-
lems”. In: ACM Trans. Graph., 3, 2. (1984) 153–174

15. Hjaltason, G., Samet, H.: “Ranking in Spatial Databases”. In: Proc. Int. Symp.
on Large Spatial Databases (SSD’95), Portland, OR. (1995)

16. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P.,
Botstein, D., Futcher, B.: ”Comprehensive Identification of Cell Cycle-Regulated
Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.”.
Molecular Biolology of the Cell 9 (1998) 3273–3297

	Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin, Matthias Renz

