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A class of nonlinear convection-di�usion equation is studied in this paper. 
e partial di�erential equation is converted into
nonlinear ordinary di�erential equation by introducing a similarity transformation. 
e asymptotic analytical solutions are
obtained by using double-parameter transformation perturbation expansion method (DPTPEM). 
e in�uences of convection
functional coecient �(�) and power law index � on the heat transport characteristics are discussed and shown graphically. 
e
comparison with the numerical results is presented and it is found to be in excellent agreement. 
e method and technique used
in this paper have the signi�cance in studying other engineering problems.

1. Introduction

Convection-di�usion equations arose from various �elds
of applied sciences such as heat transfer problems in a
draining �lm [1] or a nano�uid �lled enclosure [2], radial
transport in a porousmedium [3], andwater transport in soils
[4] and have received extensive attentions during the past
several decades. For convection-di�usion equations, only few
cases with special initial or boundary value conditions have
analytical solutions. 
erefore, most of the main concerns
were the study of the qualitative properties of the solutions
[5–13] and numerical study [14–23] for convection-di�usion
equations.However, the very important approximate solution
of convection-di�usion equation has not been well solved.
In this paper we present similarity solutions for a class
of convection-di�usion equation, which are then solved by
DPTPEM. 
e method was �rst proposed by Yan Zhang et
al. [24, 25]. In this paper, we can �nd that the DPTPEM
can be successfully used to solve the studied problem, and
the approximate solutions obtained by DPTPEM agree very
well the numerical solutions obtained by bvp4c with Matlab
[26].

2. Mathematical Formulation

In this paper, we consider a class of nonlinear convection-
di�usion equation as follows [20]:
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(1)

subject to the following initial value conditions:

� (0, �) = 0, � > 0;
� (�, 0) = 1, � > 0. (2)

where  = {(�, �); � > 0, � > 0}, � is positive power law
exponent. Convection functional coecient �(�) is assumed
to be a real-valued continuous di�erential function de�ned
on [0, 1], �(0) = 0, �(�) > 0 for � > 0.�(�) = −��|��|�−1�� is
the heat density per unit area.
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3. Converting into Nonlinear
Ordinary Differential Equation
Boundary Value Problems

Introduce the following similarity variables [20]:

� (�, �) = � (�) ,
� = ��−1/(�+1). (3)


e transformed convection-di�usion equation together
with the initial value conditions given by (1)-(2) can be
written as

((� (�))� 




�� (�)




�−1 �� (�))
�

+ ( �
� + 1 + � (� (�))) �� (�) = 0

(4)

� (0) = 0,
� (+∞) = 1. (5)

Conversely, if �(�) is a solution of (4)-(5), then �(�, �)
must be a similarity solution to (1)-(2).

Let � = �(�) be a solution to (4)-(5). If �(�) is strictly
increasing in [0, +∞), then the function � = �(�) inverse to
� = �(�) exists. Here ��(�) = (��(�))−1 holds on (0, 1). 
en
(4) can be changed into the following nonlinear ordinary
di�erential equation:

(�� (�� (�))−�)� = −( 1
� + 1� (�) + � (�)) , (6)

and integration from � to 1 yields
�� (�) = �(∫1

�
( 1
� + 1� (�) + � (�)) ��)

−1/� . (7)

Set

ℎ (�) = ∫1
�
( 1
� + 1� (�) + � (�)) ��. (8)

Combine (7) and (8) to get

ℎ�� (�) = − 1
� + 1�ℎ−1/� (�) − �� (�) . (9)


e corresponding boundary conditions are

ℎ� (0) = 0,
ℎ (1) = 0. (10)

where ℎ(�) is heat di�usion �ux. 
e derivation process
indicates that only the positive solutions of (9)-(10) are
physically signi�cant.

4. A Brief Introduction to DPTPEM


e method was �rst proposed by Yan Zhang and Liancun
Zheng [24, 25].

We consider a class of ordinary di�erential equation
initial or boundary value problem without small parameter� as follows:
 : {{{

$ [� (�)] = % (�) , � = (�1, �2, . . . , ��) ∈ Ω,
�(�) (�) = '�, * = 0, 1, . . . , � − 1, � ∈ (�Ω ∩ Ω) . (11)

where $ is � order di�erential operator without small
parameter �, '� is a constant, and Ω is the region containing
the origin.

Introduce an embedded parameter transformation as
follows:

� (�) = �	/ (2) + �−1∑

=0

�(
) (0)
�! �
, � = ��2, (12)

where � is an arti�cial small parameter, 2 is independent
variable parameter, / is dependent variable parameter, and '
and 5 are undetermined constants. Substituting this transfor-
mation (12) into (11), we can obtain the following nonlinear
initial value problem:

 0 : {{{
$� [/ (�, 2)] = ℎ (2) , 2 = (21, 22, . . . , 2�) ∈ Ω1,
/(�) (0) = 0, * = 0, 1, . . . , � − 1. (13)

where ℎ(2) is a function of 2, Ω1 is the region containing
the origin. 
e solution of  0 is expressed in form of power
series by applying perturbation expansion method

/ (2, �) = ∞∑

=0
�
/
2
. (14)

Combine (12) and (14) to get the solution � of (11) in
terms of power series. 
e undetermined parameters are
determined according to the boundary conditions of the
original problem.


e basic idea of the DPTPEM consists of three steps.
Firstly, introducing an arti�cial small parameter �, the inde-
pendent variable � and the unknown function �(�) are
transformed simultaneously, and the problem is transformed
into a new one related to small parameter �. Secondly, the
transformed new di�erential equation is expanded in the
form of power series of � and decomposed into the sum of
several solution components. 
en, by using known initial
or boundary value conditions, we try to �nd out the solution
components of each order separately and combine them to get
the solution /(2) of the new problem.
irdly, by substituting
the solution of the new equation into the transformation
equation (12), the small parameter � is eliminated and the
solution of the original problem is obtained.

5. Approximate Analytical Results of
(9)-(10) and Discussion


e initial condition is assumed as follows:

ℎ (0) = 8. (15)
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In order to solve (9), we transform the dependent variable and
independent variable as follows according to formula (12):

ℎ (�) = �2/ (2) + 8,
� = �2, (16)

where � is an arti�cial small parameter.
Let �(�) = � and substituting this transformation (16) into

(9)-(10), we can obtain the following nonlinear initial value
problems:

/�� (2) + 1
� + 1�2 [�2/ (2) + 8]

−1/� + 1 = 0, (17)

/ (0) = 0,
/� (0) = 0. (18)

Expanding [�2/(2)+8]−1/� in a power series development, we
can get

/�� (2) + 1
� + 1�2 [

1
81/� −

1
�8(1/�)+1 �2/ (2)

+ � + 1
2�281/�+2 �4/2 (2) −

(� + 1) (2� + 1)
6�381/�+3 �6/3 (2)

+ (� + 1) (2� + 1) (3� + 1)
24�481/�+4 �8/4 (2) + ⋅ ⋅ ⋅] + 1 = 0

(19)


e solution of (19) can be obtained by expanding /(2) in a
power series development near � = 0 as follows:

/ (2) = /0 (2) + �/1 (2) + �2/2 (2) + �3/3 (2)
+ �4/4 (2) + �5/5 (2) + �6/6 (2) + �7/7 (2)
+ �8/8 (2) + �9/9 (2) + �10/10 (2) + ⋅ ⋅ ⋅

(20)

Substituting (20) into (19) and equating the coecients of ��,
we can get the following expressions:

�0 : /��0 (2) + 1 = 0,
�1 : /��1 (2) + 2

(� + 1) 81/� = 0,
�2 : /��2 (2) = 0,
�3 : /��3 (2) − 2/0 (2)� (� + 1) 81/�+1 = 0,

�4 : /��4 (2) − 2/1 (2)� (� + 1) 81/�+1 = 0,

�5 : /��5 (2) − 2/2 (2)� (� + 1) 81/�+1 +
2/20 (2)2�281/�+2 = 0,

�6 : /��6 (2) − 2/3 (2)� (� + 1) 81/�+1 +
2/0 (2) /1 (2)�281/�+2 = 0,

�7 : /��7 (2) − 2/4 (2)� (� + 1) 81/�+1 +
2 [2/0 (2) /2 (2) + /21 (2)]

2�281/�+2
− (2� + 1) 2/30 (2)6�381/�+3 = 0,

�8 : /��8 (2) − 2/5 (2)� (� + 1) 81/�+1
+ 2 [/0 (2) /3 (2) + /1 (2) /2 (2)]�281/�+2
− (2� + 1) 2/20 (2) /1 (2)2�381/�+3 = 0,

�9 : /��9 (2) − 2/6 (2)� (� + 1) 81/�+1

+ 2 [2/0 (2) /4 (2) + 2/1 (2) /3 (2) + /22 (2)]
2�281/�+2

− (2� + 1) 2 [/20 (2) /2 (2) + /0 (2) /21 (2)]
2�381/�+3

+ (2� + 1) (3� + 1) 2/40 (2)24�481/�+4 = 0,
�10 : /��10 (2) − 2/7 (2)� (� + 1) 81/�+1
+ 2 [/0 (2) /5 (2) + /1 (2) /4 (2) + /2 (2) /3 (2)]�281/�+2
− (2� + 1) 2 [3/20 (2) /3 (2) + 6/0 (2) /1 (2) /2 (2) + /31 (2)]

6�381/�+3
+ (2� + 1) (3� + 1) 2/30 (2) /1 (2)6�481/�+4 = 0,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .
(21)


en, we can obtain /�(2) (F = 0, 1, 2, . . .) in the following.

/0 (2) = −1222,
/1 (2) = − 1

6 (� + 1) 81/� 23,
/2 (2) = 0,
/3 (2) = − 1

40� (� + 1) 81/�+1 25,
/4 (2) = − 1

180� (� + 1)2 82/�+1 2
6,

/5 (2) = − 1
336�281/�+2 27,

/6 (2) = − 10� + 13
6720�2 (� + 1)2 82/�+2 2

8,

/7 (2) = − [ 5� + 7
25920�2 (� + 1)3 83/�+2
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+ 2� + 1
3456�381/�+3 ] 29,

/8 (2) = − 70� + 61
151200 (� + 1) �382/�+3 210,

/9 (2) = −[ 280�2 + 590� + 319
2217600�3 (� + 1)3 83/�+3

+ 6�2 + 5� + 1
42240�481/�+4] 211,

/10 (2) = − [15120�
2 + 18636� + 6078

95800320 (� + 1) �482/�+4
+ 1200�2 + 2670� + 1530
102643200�3 (� + 1)4 84/�+3] 2

12,
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .

(22)

Combine (16), (20), and the above /�(2) (F = 0, 1, 2,. . .) to
get solution ℎ(�) of (9)-(10).

ℎ = 8 − 1
2�2 −

1
6 (� + 1) 81/� �3 −

1
40� (� + 1) 81/�+1

⋅ �5 − 1
180� (� + 1)2 82/�+1 �

6 − 1
336�281/�+2 �7

− 10� + 13
6720�2 (� + 1)2 82/�+2 �

8

− [ 5� + 7
25920�2 (� + 1)3 83/�+2 +

2� + 1
3456�381/�+3 ] �9

− 70� + 61
151200 (� + 1) �382/�+3 �10

− [ 280�2 + 590� + 319
2217600�3 (� + 1)3 83/�+3 +

6�2 + 5� + 1
42240�481/�+4]

⋅ �11 − [15120�2 + 18636� + 607895800320 (� + 1) �482/�+4
+ 1200�2 + 2670� + 1530
102643200�3 (� + 1)4 84/�+3] �

12 + ⋅ ⋅ ⋅

(23)

Similarly, let �(�) = �2; we obtain approximate analytical
solution of (9)-(10) as follows:

ℎ = 8 − [13 +
1

6 (� + 1) 81/� ] �3

− [ 1
90� (� + 1) 81/�+1 +

1
180� (� + 1)2 82/�+1 ] �

6

Table 1: Values of 8 for � = 0.2, 0.6, 1.0, 2.5, 5.0, 10.0, and �(�) = �.
� �(�) 8
0.2 � 1.013

0.6 � 0.7815

1.0 � 0.6792

2.5 � 0.5701

5.0 � 0.5342

10.0 � 0.5169

− [ 1
1296�281/�+2 +

5� + 6
6480�2 (� + 1)2 82/�+2

+ 5� + 7
25920�2 (� + 1)3 83/�+2 ] �

9 − [ 2� + 1
21384�381/�+3

+ 120� + 89
855360 (� + 1) �382/�+3

+ 60�2 + 119� + 60
855360�3 (� + 1)3 83/�+3

+ 40�2 + 89� + 51
3421440�3 (� + 1)4 84/�+3] �

12 + ⋅ ⋅ ⋅
(24)

Let �(�) = �3; approximate analytical solution of (9)-(10)
is presented as follows:

ℎ = 8 − 1
6 (� + 1) 81/� �3 −

1
4�4

− 1
180� (� + 1)2 82/�+1 �

6

− 1
168� (� + 1) 81/�+1 �7

− 5� + 7
25920�2 (� + 1)3 83/�+2 �

9

− 7� + 8
15120�2 (� + 1)2 82/�+2 �

10 − 1
3520�281/�+2 �11

− 40�2 + 89� + 51
3421440�3 (� + 1)4 84/�+3 �

12 + ⋅ ⋅ ⋅

(25)

It is obvious that we can promptly obtain the value of 8 by
applying ℎ(1) = 0 in (23)-(25) for each �xed �. Based on (23)-
(25) and the corresponding 8 we can easily obtain the graph
of the heat di�usion �ux distribution for di�erent � and �(�).

e results are presented in Tables 1–5 and Figures 1–5.

It can be seen from Figures 1–3 that the heat di�usion �uxℎ(�) decreases with increase of � for speci�c �(�), the physical
meaning is that heat di�usion �ux ℎ(�) is a decreasing
function of �, which means that the pro�les exhibited by a
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Figure 1: Flux distribution for � = 0.2, 0.6, 1.0, 2.5 5.0, 10.0, �(�) = �.

Table 2: Values of 8 for � = 0.2, 0.6, 1.0, 2.5, 5.0, 10.0, and �(�) = �2.
� �(�) 8
0.2 �2 0.9122

0.6 �2 0.6532

1.0 �2 0.5352

2.5 �2 0.4090

5.0 �2 0.3691

10.0 �2 0.3506

Table 3: Values of 8 for � = 0.2, 0.6, 1.0, 2.5, 5.0, 10.0, and �(�) = �3.
� �(�) 8
0.2 �3 0.8643

0.6 �3 0.5927

1.0 �3 0.4670

2.5 �3 0.3300

5.0 �3 0.2870

10.0 �3 0.2676

Table 4: Values of 8 for � = 2.0 and �(�) = �, �2, �3.
� �(�) 8
2.0 � 0.5885

2.0 �2 0.4300

2.0 �3 0.3529

big power law index � possess a smaller di�usion. Figures 4
and 5 indicate the heat di�usion �ux ℎ(�) decrease with the
decrease of �(�).

In order to verify the eciency and reliability of approx-
imate analytical solution obtained by using DPTPEM, a

Table 5: Values of 8 for � = 8.0 and �(�) = �, �2, �3.
� �(�) 8
8.0 � 0.5212

8.0 �2 0.3551

8.0 �3 0.2723

n=0.2
n=0.6
n=1.0

n=2.5
n=5.0
n=10.0

0

0.2

0.4

0.6

0.8

1

h

0.2 0.4 0.6 0.8 10

z

Figure 2: Flux distribution for � = 0.2, 0.6, 1.0, 2.5 5.0, 10.0, �(�) =�2.

comparison of approximate analytical solution andnumerical
one obtained by bvp4c with Matlab is presented in Tables
6 and 7 and Figures 6 and 7. It is obvious that excellent
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n=0.2
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Figure 3: Flux distribution for � = 0.2, 0.6, 1.0, 2.5 5.0, 10.0, �(�) =�3.
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k(z)=z
k(z)=z2

k(z)=z3
,
,

Figure 4: Flux distribution for � = 2.0, �(�) = �, �2, �3.

agreement exists for approximate analytical solution and
numerical one.

6. Conclusions

In the paper, a class of nonlinear convection-di�usion was
studied. 
e partial di�erential equation and corresponding
initial value conditions were transformed into a class of
singular nonlinear boundary value problems of ordinary dif-
ferential equation when similarity variables were introduced.
An ecient approximate analytical method named DPTPEM
was applied to solve these nonlinear problems. 
e reliability
and e�ectiveness of the DPTPEMwere veri�ed by comparing
approximate results with the numerical solutions. 
e e�ects

k(z)=z
k(z)=z2

k(z)=z3

0

0.1

0.2

0.3

0.4

0.5

h

0.2 0.4 0.6 0.8 10

z

,
,

Figure 5: Flux distribution for � = 8.0, �(�) = �, �2, �3.

Table 6: Comparison of ℎ(�) for � = 10 and �(�) = �.
� � O PQ 5VR4S
0.0 0.5169 0.5169

0.1 0.5119 0.5119

0.2 0.4968 0.4968

0.3 0.4715 0.4715

0.4 0.4359 0.4359

0.5 0.3899 0.3899

0.6 0.3334 0.3334

0.7 0.2663 0.2663

0.8 0.1884 0.1884

0.9 0.0997 0.0997

1.0 0 0

Table 7: Comparison of ℎ(�) for � = 2 and �(�) = �3.
� � O PQ 5VR4S
0.0 0.3529 0.3551

0.1 0.3528 0.3550

0.2 0.3518 0.3540

0.3 0.3483 0.3506

0.4 0.3405 0.3427

0.5 0.3255 0.3278

0.6 0.3000 0.3023

0.7 0.2601 0.2624

0.8 0.2008 0.2031

0.9 0.1164 0.1186

1.0 0 0

of convection functional coecient �(�) and power law
index � on transfer behavior were presented. 
e results
show that heat di�usion �ux ℎ(�) is an increasing function
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Figure 6: 
e comparison of the results of approximate analytical
solution and numerical solution for � = 10.0, �(�) = �.

numerical solution
approximate solution
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Figure 7: 
e comparison of the results of approximate analytical
solution and numerical solution for � = 2, �(�) = �3.

of convection functional coecient �(�) and a decreasing
function of power law index �.
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[15] R. Bürger and I. Kröker, “Computational uncertainty quan-
ti�cation for some strongly degenerate parabolic convection-
di�usion equations,” Journal of Computational and Applied
Mathematics, vol. 348, pp. 490–508, 2019.



8 Mathematical Problems in Engineering
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