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The unsteady laminar flow of an incompressible viscous fluid over a nonlinearly

stretching rotating disk is investigated. The axisymmetric three-dimensional boundary

layer equations are reduced into self-similar form with the help of new similarity trans-

formation. The resulting coupled nonlinear equations are solved numerically using

shooting method coupled with Range-Kutta 6 (RK-6). An exact analytical solution

for the large stretching parameter is also presented. Some interesting observations

are made while interpreting the results physically. Dual solutions are obtained due

to the presence of unsteadiness parameter for the nonlinear stretching of the rotating

disk. The analytical results reveal that for large stretching parameter the azimuthal

velocity becomes negligible and the flow behaviors turn into steady state, which is the

most surprising observation of the paper. These results are also verified numerically by

solving original self similar equations using shooting method. C 2015 Author(s). All

article content, except where otherwise noted, is licensed under a Creative Commons

Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4917459]

I. INTRODUCTION

An elegant exact analytical solution of the viscous fluid flow over a stretching surface was first

presented by Crane.2 Since then so much has been said on the stretching phenomena that it is hardly

possible to mention all the later developments. The subject of our investigation being stretching of

rotating disk, it suffices to give a brief review of the stretching phenomenon for rotating disks.

The study of flow field due to rotating disk has found many applications in different fields

of engineering and industry. A number of real processes are undertaken using disk rotation such

as fans, turbines, centrifugal pumps, rotors, viscometers, spinning disk reactors and other rotating

bodies etc. The analytical study of rotating disk goes back to the celebrated paper by Von Karman1

while initiating the study of incompressible viscous fluid over an infinite plane disk rotating with

a uniform angular velocity. This work was extended to the three-dimensional case by Wang.3 The

exact solutions for the steady flow over a rotating disk and for the heat and mass transfer over a

permeable rotating disk were presented by Fang4 and Turkyilmazoglu.5 Fang and Zhang6 studied

the flow between two stretching disks. Recently, Asghar et al.7 derived new similarity transforma-

tions for the flow and heat transfer for the nonlinearly stretching rotating disc using group theoretic

methods. They presented the exact analytical solutions of the nonlinear equations. All these studies

were undertaken for steady flow over a rotating disk.

The steady flows are important for the fully developed flow and are investigated to understand

the behavior and physics of fluid. However, there are situations in which it is highly desirable to

introduce time evolution through some sort of unsteadiness. To emphasize further, we can say that
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there is no actual flow situation, natural or artificial, which does not involve some unsteadiness.

Some of the likely technological and engineering unsteady processes are nuclear fuel element cool-

ing passages, electric resistive heaters, processing of materials geophysical and biological flows

and heat exchangers. Further, startup and shutdown operations and changes in steady-state power

levels give rise to the transient conditions in the surface velocity and flow of fluid. A flow becomes

unsteady either due to the impulsive change in the free stream velocity, surface velocity, and sudden

change in wall temperature or due to the time dependent variation. In this paper unsteadiness in flow

is caused by impulsive change in radially stretching velocity.

The unsteady flow over a rotating disk was first studied by Watson and Wang.8 In this, the

angular velocity of the disk was set inversely proportional to time. The solution was shown to exist

only for a deceleration of the rotating disk. The decelerating disk problem was further extended to a

porous disk with mass transfer effects.9 Recently, Fang and Tao10 presented the numerical solution

of unsteady flow over a rotating stretchable disk. In this, the linear stretching with deceleration is

taken in the radial direction. However, the non-linear stretching with deceleration is not discussed in

the literature.

The aim of the present study is to investigate the effects of unsteady nonlinear stretching for

the rotating disk. This paper is an extension of a recent paper by the authors7 where the steady

nonlinear stretching of the rotating disk is investigated introducing new similarity transformations.

The similarity transformations are now derived for the unsteady case (not available in the literature)

that converts the original Navier Stokes equations into a system of self similar ordinary differential

equations. The numerical solution of the nonlinear ordinary differential equations is presented using

shooting method coupled with RK-6. Effects of unsteady parameter and the stretching parameter are

discussed physically. A closed form exact analytical solution for large stretching parameter is also

presented. The telling points of this study are (a) The derivation of the similarity transformation that

converts the nonlinear PDE into self similar ODE (b) Existence of two solution branches instead of

one, as reported for the steady flow. (c) The effects of the stretching and unsteady parameters on the

fluid flow. (d) A rare exact analytical solution for large stretching parameter is obtained, showing

that the unsteadiness parameter and the azimuthathal velocity are of no significance in the large

stretching parameter limit.

II. THE FORMULATION

Consider a three dimensional laminar unsteady flow of an incompressible fluid over a stretch-

able rotating disk, which has angular speed varying with time. The disk is stretching in radial

direction with velocity uw(r, t). Using boundary layer approximations, the governing Navier Stokes

equations for an axisymmetric flow in cylindrical coordinates are given by
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z = 0; u = uw(r, t), v =
Ω rn

1 − ct
, w = 0,

z → ∞; u = 0 , v = 0.
(5)

In the above equations u, v and w are the components of velocity in r , θ and z directions, ρ is the

fluid density, p is the pressure andΩ is a constant angular velocity of the disk.
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The form of stretching velocity is given as

uw =
αΩ rn

1 − ct
. (6)

Where, the nonzero constant α is disk stretching parameter. The governing equations (1)-(5) are

the partial differential equations and can be transformed into ordinary differential equations using

similarity transformations. In this study, our intention is to study the effects of physical quantities on

unsteady flow in the boundary layer region. The boundary layer form of Eqs. (1)–(5) reveals that the

pressure term is constant.

The methodology of deriving similarity transformation for steady flow over a rotating disk is

illustrated in Ref. 7, however we also refer11–15 to understand the technique of finding similarity

transformations. The following similarity transformations reduce the governing equations into self

similar form:

η =



Ω

v (1 − ct)

z

r (1−n)/2
, ψ =



Ωv

(1 − ct)
r (3+n)/2 f (η),

v =
Ω rn

1 − ct
g(η),

(7)

where η is the similarity variable and the stream function ψ(x, y) is defined as

ru =
∂ψ

∂z
, rw = −

∂ψ

∂r
. (8)

Using Eqs. (7), the boundary layer problem (1)-(5) takes the self similar form:
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f ′(0) = α, f (0) = 0, g(0) = 1,

f ′(∞) = 0, g(∞) = 0.
(11)

Where A = c
Ω

is the unsteady parameter and corresponds to disk acceleration for A > 0 or disk

deceleration (A < 0). The beauty of similarity transformations (7) is that for n = 1 we get the simi-

larity equations for linearly unsteady stretching10 and for A = 0 we arrive at the similarity equations

for steady nonlinear stretching.7

III. EXACT ANALYTICAL SOLUTION

We first present an exact analytical solution for large stretching parameter. The boundary value

problem (9)–(11) can be much simplified by defining the following transformations:

η = ξ/
√
α, f (η) =

√
αF(ξ), g(η) =

√
αG(ξ). (12)

Using Eqs. (12) in Eqs. (9) and (10) we get the following system of equations:
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Now considering the terms upto order α for large α , Eqs. (13) and (14) reduce to

F ′′ +
3 + n

2
FF ′′ − nF ′

2
= 0, (15)

G′′ +
3 + n

2
FG′ − (n + 1)F ′G = 0, (16)
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and the transformed boundary conditions are

F ′(0) = 1, F(0) = 0, G(0) = 1/
√
α, Θ(0) = 1

F ′(∞) = 0, G(∞) = 0, Θ(∞) = 0
(17)

The exact analytical solution of the boundary value problem (15)-(17), for n = 3, can be easily

expressed as:
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where ς = e−
√

3η and M(a, b, ς) is Kummer function. From backward substitution and taking the

first derivative then putting ξ = 0, the rotational skin friction is given by:
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α

(21)

It is of interest to note that for large stretching parameter the transformed Eqs. (15)-(17) are the

same as for steady radially stretching.7 Thus the effects of unsteadiness on the physical quan-

tities for large stretching parameter are ignorable. The physical reason is: for large stretching the

evolution between steady to unsteady regime is negligibly small. We strengthen our arguments

by comparing exact analytical solutions with the numerical solutions of the original self similar

equations i.e. Eqs. (9) and (10). Using transformations (12) in Eqs. (18) and (21) the exact analytical

solution for n = 3 in terms of the original self similar variables is given by:

f ′′(0) = −α
√

3α (22)

G′(0) = −1.937049
√
α (23)

In the next section we will give comparison of analytical results of the reduced equations (without

unsteadiness effects) with the numerical results of Eqs. (9)-(11) (with unsteadiness effects).

IV. RESULTS AND DISCUSSIONS

Numerical results of the boundary value problem (9)–(11) are obtained through finite difference

scheme; namely, shooting method using Range Kutta 6. It is observed that dual solutions exist for

various values of physical parameter because of the unsteadiness parameter. These solutions, named

as the “upper solution branch” and the “lower solution branch”, are evident from table and figures.

Generally, it is true that the lower solution branch is not physically feasible because it indicates

negative azimuthal velocity.

In Table I, we compare f ′′(0) and g′(0), for different combinations of stretching and the un-

steady parameters, with Fang and Tao.10 An excellent agreement is found between the two which

ensures the accuracy of results obtained here.

Before going further to look for the effects of the physical parameters on the field quantities,

it will be useful to discuss the case of the large stretching parameter, solved analytically in the

previous section. We observe that some terms do not contribute in the large stretching parameter as

observed from transformed equations (15) and (16). Physically, these terms represent the azimuthal

velocity and the unsteadiness of the flow. To verify the correctness of the transformations and

the consequences thereof, we solve the original self similar equations numerically using shooting

method. Tables II and III show a comparison of the exact analytical solution of the transformed

equations (azimuthal velocity and unsteadiness are absent), for f ′′(0) and g′(0), with the numerical
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TABLE I. Comparison of values of f ′′(0) and g ′(0) with Fang and Tao10 for different values of unsteady parameter A and

stretching parameter α when n = 1.0.

α = 0.0 α = 2.0

f ′′ (0) g ′ (0) f ′′ (0) g ′ (0)

A Branch Self Ref. 10 Self Ref. 10 Self Ref. 10 Self Ref. 10

−0.1 U 0.5307 0.5308 −0.5789 −0.5789 −3.1178 −3.1178 −2.053 −2.053

L 0.5259 0.5288 −0.5789 −0.5602 −3.2235 −3.2235 −2.0022 −2.0022

−0.2 U 0.5514 0.5515 0.5416 −0.5416 −3.0784 −3.0784 −2.0373 −2.0373

L 0.5406 0.5409 −0.5077 −0.508 −3.2328 −3.2328 −1.9687 −1.9687

−0.5 U 0.6138 0.6143 −0.4285 −0.4284 −2.9601 −2.9601 −1.9901 −1.9901

L 0.5504 0.5516 −0.3446 −0.3452 −3.2463 −3.2463 −1.9036 −1.9036

−1 U 0.7186 0.7198 −0.2368 −0.2366 −2.7622 −2.7622 −1.9111 −1.9111

L 0.478 0.4821 −0.0823 −0.0832 −3.2798 −3.2798 −1.8307 −1.8307

−2 U 0.9283 0.9315 0.1543 0.155 −2.3641 −2.3641 −1.7523 −1.7523

L −0.023 −0.0099 −0.0447 −0.0298 −3.4124 −3.4124 −1.7479 −1.7479

−5 U 1.552 1.5627 1.358 1.3609 −1.1549 −1.1549 −1.2701 −1.2701

L −0.838 −0.8192 −1.734 −1.7106 −4.1829 −4.1829 −1.7931 −1.7931

−10 U 2.5748 2.6008 3.4055 3.4139 0.8935 0.8935 −0.4532 −0.4532

L −1.802 −1.7634 −4.0816 −4.0429 −6.065 −6.065 −2.3432 −2.3432

−20 U 4.5867 4.6464 7.5574 7.5796 5.0627 5.0627 1.2108 1.2108

L −3.682 −3.6023 −8.6078 −8.5402 −10.504 −10.504 −3.9896 −3.9896

TABLE II. Comparison of numerical solution for f ′′(0) with exact analytical solution (22) for different α for n = 3 taking

unsteadiness parameter A=−0.5 and A=−5.0.

A=−0.5 A=−5.0

α Anal Numer Abs. % Error Anal Numer Abs. % Error

0.01 −0.00173 0.45158 100.4 −0.1937 −0.5066 61.76

0.05 −0.01936 0.43846 104.4 −0.43314 −0.63831 32.14

0.1 −0.05477 0.37134 114.7 −0.61255 −0.7266 15.7

0.5 −0.61237 −0.3019 102.9 −1.3697 −1.32376 3.47

1 −1.73205 −1.4595 18.67 −1.93705 −1.87811 3.138

5 −19.3649 −19.572 1.056 −4.33137 −4.21875 2.669

10 −54.7723 −55.527 1.359 −6.12549 −5.99336 2.205

50 −612.372 −611.65 0.118 −13.697 −13.6843 0.093

100 −1732.05 −1731 0.058 −19.3705 −19.3609 0.049

500 −19364.9 −19363 0.011 −43.3137 −43.3019 0.027

1000 −54772.3 −54769 0.006 −61.2549 −61.2301 0.04

5000 −612372 −612366 0.001 −136.97 −136.755 0.157

solution of the original equations (azimuthal velocity and unsteadiness present), for large stretching

parameter. This comparison is made for small and large unsteady parameter by setting A = −0.5 to

A = −5.0. It is observed that the percentage error decreases drastically by increasing the values of

stretching parameter, ultimately reaching the exact numerical solutions for large stretching param-

eter. This reveals a phenomenal physical conclusion; that is, for the large radially stretching disk the

azimuthal velocity is negligible and the flow behavior is steady. This is the first such observation,

and largely depends upon the strength of the analytical solutions.

Figs. 1–6 exhibit the velocity profiles for different values of controlling parameters in radial,

vertical and azimuthal directions. Effects of power-law stretching index n on velocity profiles are

shown in Figs. 1 and 2. With an increase of n the velocity profile decreases in the upper branch

solution. However a crossover exists in the radial and vertical components of velocities in the lower
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TABLE III. Comparison of numerical solution for g ′(0) with exact analytical solution (23) for different α for n = 3 taking

unsteadiness parameter A=−0.5 and A=−5.0.

A = -0.5 A = -5.0

α Anal Numer Abs. % Error Anal Numer Abs. % Error

0.01 −0.00173 1.10848 100.2 −0.1937 0.990314 119.6

0.05 −0.01936 1.06311 101.8 −0.43314 0.863854 150.1

0.1 −0.05477 1.00516 105.4 −0.61255 0.711107 186.1

0.5 −0.61237 −1.0766 43.12 −1.3697 −1.58214 13.43

1 −1.73205 −2.095 17.32 −1.93705 −1.87967 3.052

5 −19.3649 −19.556 0.979 −4.33137 −4.02388 7.642

10 −54.7723 −55.322 0.994 −6.12549 −5.80787 5.469

50 −612.372 −621.34 1.443 −13.697 −13.333 2.73

100 −1732.05 −1757.6 1.454 −19.3705 −18.9495 2.222

500 −19364.9 −19343 0.114 −43.3137 −43.2663 0.11

1000 −54772.3 −54741 0.057 −61.2549 −61.2049 0.082

5000 −612372 −612304 0.011 −136.97 −136.744 0.165

FIG. 1. Effects of power-law stretching index n = 0.5, 1.0, 2.0, 5.0 on velocity profile for α= 1.0, A=−0.1 (Upper Branch

Solution).

FIG. 2. Effects of power-law stretching index n = 0.5, 1.0, 2.0, 5.0 on velocity profile for α= 1.0, A=−0.1 (Lower Branch

Solution).

branch solution. Physically it can be explained as: increasing n the disk accelerates rapidly in radial

direction and the fluid is moved towards the disk to decrease the boundary layer thickness and the

velocity.

The cross over are observed for an increase in absolute value of unsteadiness parameter in all

the components of velocities in the upper branch solutions and in radial and azimuthal velocities in

the lower branch solution (Figs. 3 and 4).

In the upper branch solution all the velocity components first increase and then decrease. The

behavior in the lower branch solution is different in that the. Radial and azimuthal velocities firstly
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FIG. 3. Effects of unsteady parameter A=−0.5, −1.0, −5.0, −10.0 on velocity profile for n = 2.0, α = 1.0 (Upper Branch

Solution).

FIG. 4. Effects of unsteady parameter A=−0.5, −1.0, −5.0, −10.0 on velocity profile for n = 2.0, α = 1.0 (Lower Branch

Solution).

decrease then increase while the vertical velocity decreases throughout the boundary layer. All the

velocity components have a common characteristic; that is, increasing |A| (that is, fast deceleration)

the boundary layer becomes thinner. However upper branch solution is different from lower branch

solution in the sense that flows are in opposite directions for all the velocity profiles.

The effect of disk stretching parameter and the disk rotation on the various components of

velocities is shown in Figs 5 and 6. The vertical and the radial velocities increase with the increase

of disk stretching parameter. Away from the surface, the radial velocity decreases by increasing disk

stretching parameter for both lower and upper branch solution, although it is is more prominent in

lower branch solution.

It is further observed that the effect of disk stretching parameter α is responsible to decrease

the azimuthal velocity for both the upper and lower branch solutions. This is because increas-

ing disk stretching parameter, at unsteadiness parameter α = 0.1, the disk is stretched with slow

deceleration, resulting in increase of radial velocity. Consequently, this causes the fluid to flow

towards the disk at fist and later away from the disk in the far field decreasing the azimuthal

velocity.

Effects of power-law stretching index n, unsteadiness parameter A and stretching parameter α

on the radial and azimuthal skin friction are listed in Table IV. It is observed that both the values

of f ′′(0) and g′(0) are monotonically decreasing with the increasing values of n, A and α, for the

upper branch solution. However, for the lower branch solution the behavior is different as compared

to upper branch solution. The effects of n and α are the same as in the case of upper branch solution,

i.e., f ′′(0) and g′(0) decrease with an increase in these parameters. Values of f ′′(0) increase with

increase in A but the values of g′(0) are quite diverse in nature for the lower solution branch. With

the increase in |A|g′(0) first increases (for |A| < 0) and then decreases (for |A| > 1).

To sum up, the flow of viscous fluid over a nonlinearly stretching rotating disk is studied in

this paper. Two solution branches are observed due to the unsteadiness parameter. The upper branch

solution is normally reported in literature, but the lower branch solution is found to be rightfully

valid mathematically.
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FIG. 5. Effects of stretching parameter α = 0.0, 0.5, 1.0, 2.0 on velocity profile for n = 2.0, A=−1.0 (Upper Branch

Solution).

FIG. 6. Effects of stretching parameter α = 0.0, 0.5, 1.0, 2.0 on velocity profile for n = 2.0, A=−1.0 (Lower Branch

Solution).

TABLE IV. Variation of f ′′(0) and g ′(0) for various values of power-law index n, unsteady parameter A and stretching

parameter α.

N A α Branch f ′′(0) g ′(0)

0.5 −0.1 1.0 U −0.70413 −1.31841

L −0.75747 −1.27094

1.0 U −0.91897 −1.46559

L −0.96838 −1.42057

2.0 U −1.26365 −1.72291

L −1.30881 −1.68409

5.0 U −1.99594 −2.33066

L −2.03673 −2.3044

2.0 −0.5 U −1.16716 −1.64719

L −1.30971 −1.60623

−1.0 U −1.04581 −1.55197

L −1.33298 −1.54166

−5.0 U −0.05564 −0.77489

L −2.05285 −1.70949

−20.0 U 3.788 1.96352

L −6.28732 −4.80627

−0.1 0.5 U −0.24698 −1.2578

L −0.26796 −1.22853

1.0 U −1.26365 −1.72291

L −1.30881 −1.68409

2.0 U −4.01199 −2.41893

L −4.11297 −2.36846

5.0 U −16.3911 −3.82322

L −16.6913 −3.75867
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V. CONCLUSION

The main focus of this study is to find unsteady flow for nonlinear stretching of the rotating

disk. The dual solutions for the unsteady flow for the linear stretching10 have been recounted for

the nonlinear stretching also. Firstly, we develop the important mathematically tool of similarity

transformation for the existing problem to convert the partial differential equation into consistent

self similar ordinary differential equation. The resulting nonlinear differential equation is solved

numerically to find the solution for all values of the stretching parameter. To add beauty, reliance

and reliability to the analysis, we present an exact analytical solution for large stretching param-

eter. Besides, the perfect agreement with the numerical solution for large stretching parameter

limit, the analysis reveals important and interesting physical revelations which would have been

obscure in the numerical results. The most phenomenal observation is that for large stretching limit

the azimuthal velocity and the unsteadiness has no significant consequences. This study has thus

been of equal importance in the engineering processes through the numerical results and providing

physical insight through analytical results. The study has thus far more meaning than its practical

applications only.
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