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	e free convective �ow of an incompressible micropolar �uid along permeable vertical plate under the convective boundary
condition is investigated. 	e Lie scaling group of transformations is applied to get the similarity representation for the system
of partial di�erential equations and then the resulting systems of equations are solved using spectral quasi-linearisation method.
A quantitative comparison of the numerical results is made with previously published results for special cases and the results are
found to be in good agreement. 	e results of the physical parameters on the developments of �ow, temperature, concentration,
skinfriction, wall couple stress, heat transfer, and mass transfer characteristics along vertical plate are given and the salient features
are discussed.

1. Introduction

In the past few decades, most of the researchers considered
convective heat transfer problems with either constant wall
temperature (CWT), constant heat �ux (CHF), or Newtonian
heating (NH) in a Newtonian and/or non-Newtonian �uid.
Recently, a novel mechanism for the heating process has
drawn the involvement of many researchers, namely, convec-
tive boundary condition (CBC), where the heat is supplied to
the convecting �uid through a bounding surface with a 
nite
heat capacity. Further, this results in the heat transfer rate
through the surface being proportional to the local di�erence
in temperature with the ambient conditions (Merkin [1]).
Besides, it ismore general and realistic, particularly in various
technologies and industrial operations such as transpiration
cooling process, textile drying, and laser pulse heating. Aziz
[2] reported similarity solution for thermal boundary layer
�ow over a �at plate in a uniform stream of �uid with
the convective boundary condition and he concluded that a
similarity solution is possible if the convective heat transfer
related to hot �uid on the lower surface of the plate is

proportional to the inverse square root of the axial length.
In the presence of an internal heat generation local similarity
solution for free convection heat transfer from a moving
vertical plate with the convective boundary condition is
discussed by Makinde [3]. 	e laminar natural convection
�ow over a semi-in
nite moving vertical plate under the
convective boundary condition is examined by Ibrahim and
Bhashar Reddy [4]. RamReddy et al. [5] investigated the
in�uence of the prominent Soret e�ect on mixed convection
in a nano�uid under the convective boundary conditions.	e
nonsimilar result has been presented for the free convection
boundary layer �ow along a solid sphere under the convective
boundary conditions by Alkasasbeh et al. [6]. More recently,
a note on the natural convection along convectively heated
vertical plate is given by Pantokratoras [7].

One of the best established theories of �uids with
microstructure is the theory of micropolar �uids and this
theory can be found in the books by Lukaszewicz [8] and
Eremeyev et al. [9]. It has gathered a good deal of attention
due to the obvious reasons that theNavier Stokes equation for
Newtonian �uids cannot successfully explain the attributes of
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�uids with a substructure. Physically, the micropolar �uids
may be treated as non-Newtonian �uids consisting of dumb-
bell molecules or rigid cylindrical element, polymer �uids,
�uid suspension, animal blood, and so forth. Further, the
theory of micropolar �uids includes microrotation as well
as microinertia e�ects. 	is theory studies viscous �uids in
which microconstituents are rigid and spherical or randomly
oriented as well. 	e subject of free convection boundary
layer �ow in a micropolar �uid has been keyed out by
several investigators due to its immense applications in the
engineering problems such as solar energy collecting devices,
air conditioning of a room, material processing, and passive
cooling of nuclear reactors. 	e boundary layer �ow over
a semi-in
nite �at plate is considered for analyzing theory
of micropolar �uid and its application to low concentration
suspension �ow by Ahmadi [10]. Rees and Pop [11] discussed
the free convection boundary layer �ow of a micropolar �uid
from a vertical �at plate. 	e nonsimilarity transformations
are used to analyze the e�ects of double strati
cation on
free/mixed convective transport in a micropolar �uid by
Srinivasacharya and RamReddy [12–14] (also see the ref-
erences cited therein). 	e problems of a steady laminar
stagnation point �ow towards a stretching/shrinking sheet
in an incompressible micropolar �uid under the convective
surface boundary condition are discussed by Yacob and Ishak
[15] and Zaimi and Ishak [16]. Merely from the literature, it
is noted that the majority of the researchers have found the
local similarity or nonsimilarity solutions for the problems
involving convective boundary conditions, since most of the
researchers have taken a convective heat transfer coe�cient
as a function � for getting the similarity solutions in their
problems. Nevertheless, the assumption of a heat transfer
coe�cient varying along the plate as a function of � is not
realistic and very di�cult to be obtained in practice. For that
cause, it could be supposed that the above works have only
theoretical value.

In the recent past, several researchers are focused on
obtaining the similarity solutions of the convective transport
phenomena problems arising in �uid dynamics, aerodynam-
ics, plasma physics, meteorology, and some branches of engi-
neering by using di�erent procedures. One such procedure
is Lie group analysis. 	e concept of Lie group analysis also
called symmetry analysis is developed by Sophius Lie to
determine transformations which map a given di�erential
equation to itself and it uni
es almost all known exact
integration techniques (see [17–19]). It provides a potent,
sophisticated, and systematic tool for generating the invariant
solutions of the system of nonlinear partial di�erential equa-
tions (PDEs) with relevant initial or boundary conditions.
A special form of Lie group transformations, known as the
scaling group, has been suggested by various researchers to
study convection �ows of di�erent �ow phenomena (see
Tapanidis et al. [20], Hassanien and Hamad [21], Kandasamy
et al. [22], Aziz et al. [23], Mutlag et al. [24], etc.; they are
worth observing).

From the literature survey, it seems that the problem of
the free convective heat and mass transport along permeable
vertical plate in a micropolar �uid under the convective

boundary condition has not been investigated so far. Moti-
vated by all these works, this paper attempts to present the
new similarity transformations and corresponding similarity
solution to investigate the free convection �ow of a micropo-
lar �uid under the convective boundary condition using the
Lie group transformations. 	e mathematical model involv-
ing the convective boundary conditions becomes slightly
more complicated leading to the complex interactions of the
�ow, heat, and mass transfer mechanism. Further, the analyt-
ical solution is out of scope in the present set-up and hence a
numerical solution is obtained for the current problem. Also,
the in�uence of important parameters, namely, micropolar,
suction/injection, and convective heat transfer parameters,
on the physical quantities of the �ow, heat, and mass transfer
rates is analyzed in di�erent �ow situations.

2. Mathematical Formulation

Consider the steady, laminar, and free convective �ow of
an incompressible micropolar �uid with the free stream
temperature and concentration, �∞ and �∞, respectively.
Choose the coordinate system such that the �-axis is along
the vertical plate and �-axis normal to the plate, as shown
in Figure 1. 	e suction/injection velocity distribution is
assumed to be V�. 	e plate is either heated or cooled from
le� by convection from a �uid of temperature �� with �� >�∞ corresponding to a heated surface (assisting �ow) and�� < �∞ corresponding to a cooled surface (opposing �ow),
respectively. On thewall concentration is taken to be constant
and is given by ��.

By employing Boussinesq approximation and making
use of the standard boundary layer approximations, the
governing equations for the micropolar �uid [10] are given
by

���� + �V�� = 0, (1)

�(����� + V

����)
= (� + 
) �2���2

+ 
����
+��∗ (�� (�) (� −�∞) + �� (�) (�−�∞)) ,

(2)

�� (����� + V

����) = ��2���2
− 
(2�+ ����) , (3)

����� + V

���� = ��2���2
, (4)

����� + V

���� = ��2�
��2

, (5)

where � and V are the velocity components in � and �
directions, respectively, � is the component of microrotation
whose direction of rotation lies in the � �-plane, � is the
temperature, � is the concentration, �∗ is the acceleration
due to gravity, � is the density, � is the dynamic coe�cient
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Figure 1: Physical model and coordinate system.

of viscosity, ��(�) is the volumetric coe�cient of thermal
expansion, ��(�) is the volumetric coe�cient of solutal
expansions, 
 is the vortex viscosity, � is the microinertia
density, � is the spin-gradient viscosity, � is the thermal
di�usivity, and� is the solutal di�usivity of the medium.

	e boundary conditions are

� = 0,
V = V�,
� = − ����� ,

− ����� = ℎ� (�� −�) ,
� = ��,

at � = 0,

(6a)

� = 0,
� = 0,
� = �∞,
� = �∞,

as � �→ ∞,

(6b)

where subscripts� and∞ indicate the conditions at the wall
and at the outer edge of the boundary layer, respectively, ℎ�
is the convective heat transfer coe�cient, � is the thermal
conductivity of the �uid, and � is amaterial constant. Further,
we follow the work of many recent authors by assuming that� = (� + 
/2)�. 	is assumption is invoked to allow the 
eld
of equations to predict the correct behavior in the limiting
case when the microstructure e�ects become negligible and
the total spin � reduces to the angular velocity [10].

3. Nondimensionalization of
the Governing Equations

Introduce the following dimensionless variables:

� = �� ,
� = �

�Gr1/4,
� = �

]Gr1/2
�,

V = �
]Gr1/4

V,
� = �2

]Gr3/4
�,

 = � − �∞�� − �∞ ,
! = � − �∞�� − �∞ ,

(7)

where Gr = �∗��0(�� − �∞)�3/]2 is the Grashof number.
In view of the continuity equation (1), we introduce the

stream function " by

� = �"
�� ,

V = − �"
�� .

(8)

Using (7) and (8) into (2)–(5), we get the following momen-
tum, angular momentum, energy, and concentration equa-
tions:

Δ 1 = �"
��

�2"
���� − �"

��
�2"
��2

−( 1

1 − %)[�3"��3
−%���� ]

− �∗�� (�) (�� − �∞) �3
]
2Gr

 
− �∗�� (�) (�� − �∞) �3

]
2Gr

! = 0,
Δ 2 = �"

�� ���� − �"
�� ���� −( 2 − %

2 − 2%) �2���2

+( %
1 − %)[2�+ �2"

��2
] = 0,

Δ 3 = �"
�� � �� − �"

�� � �� − 1

Pr

�2 ��2
= 0,

Δ 4 = �"
��

�!
�� − �"

��
�!
�� − 1

Sc

�2!
��2

= 0.

(9)

In usual de
nitions, ] is the kinematic viscosity, Pr = ]/� is
the Prandtl number, Sc = ]/� is the Schmidt number, % =
/(� + 
) (0 ≤ % < 1) is the coupling number [25], and the

microinertia density is taken to be � = �2/Gr1/2.
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Now boundary conditions (6a) and (6b) become

�"
�� = 0,
�"
�� = 0�,
� = − ��2"��2

,
� �� = −Bi (1−  ) ,
! = 1,

at � = 0,

(10a)

�"
�� = 0,
� = 0,
 = 0,
! = 0,

as � �→ ∞,

(10b)

where 0� = −(�/]Gr1/4)V� is the suction/injection parame-
ter. It is worth mentioning that 0� determines the transpira-
tion rate at the surface, with0� > 0 for suction and0� < 0 for
injection, and0� = 0 corresponds to an impermeable surface.

Further, Bi = ℎ��/�Gr1/4 is the Biot number. It is a ratio of
the internal thermal resistance of the plate to the boundary
layer thermal resistance of the hot �uid at the bottom of the
surface.

4. Similarity Equations via Lie Scaling Group
Transformations

Aone-parameter Lie scaling group of transformations, which
is a simpli
ed form of Lie group transformation, is selected as
(for more, see [26–31])

Γ : �∗ = �2�	1 ,
�∗ = �2�	2 ,
"∗ = "2�	3 ,
�∗ = �2�	4 ,
 ∗ =  2�	5 ,
!∗ = !2�	6 ,
�∗� = ��2�	7 ,
�∗� = ��2�	8 .

(11)

Here 3 ̸= 0 is the parameter of the group and �
 (where5 = 1, 2, 3, . . . , 8) are arbitrary real numbers whose interrela-
tionship will be determined by our analysis. Transformations

in (11) may be treated as a point transformation, transforming
the coordinates

(�, �, ", �,  , !, ��, ��)
= (�∗, �∗, "∗, �∗,  ∗, !∗, �∗�, �∗�) . (12)

We now investigate the relationship among the exponents �

(where 5 = 1, 2, 3, . . . , 8) such that

Δ � [�∗, �∗, �∗, V∗, . . . , �
3"∗
��∗3 ]

= ;� [�, �, �, V, . . . , �
3"
��3

; @]

⋅ Δ � [�, �, �, V, . . . , �
3"
��3

] , (� = 1, 2, 3, 4) .

(13)

	is is the requirement that the di�erential formsΔ 1,Δ 2,Δ 3,
and Δ 4 are conformally invariant under transformation (11).
Substituting transformations (11) in (9), we have

Δ 1 = 2�(	1+2	2−2	3) (�"∗
��∗

�2"∗
��∗��∗ −

�"∗
��∗

�2"∗
��∗2 )

−( 1

1 − %) 2�(3	2−	3) �3"∗��∗3
−( %

1 − %) 2�(	2−	4) ��∗��∗
− �∗�∗� (�� − �∞) �3

]
2Gr

2−�(	5+	7) ∗

− �∗�∗� (�� − �∞) �3
]
2Gr

2−�(	6+	8)!∗ = 0,

(14a)

Δ 2 = 2�(	1+	2−	3−	4) (�"∗��∗ ��
∗

��∗ −
�"∗
��∗ ��

∗

��∗ )
−( 2 − %

2 − 2%) 2�(2	2−	4) �2�∗��∗2
+( %

1 − %)(2�∗2−�	4 + 2�(2	2−	3) �2"∗��∗2 )
= 0,

(14b)

Δ 3 = 2�(	1+	2−	3−	5) (�"∗��∗ � 
∗

��∗ −
�"∗
��∗ � 

∗

��∗)
− 1

Pr
2�(2	2−	5) (�2 ∗

��∗2) = 0,
(14c)

Δ 4 = 2�(	1+	2−	3−	6) (�"∗��∗
�!∗
��∗ −

�"∗
��∗

�!∗
��∗ )

− 1

Sc
2�(2	2−	6) (�2!∗

��∗2) = 0.
(14d)
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Now, boundary conditions (10a) and (10b) become

2�(	2−	3) �"∗��∗ = 0,
2�(	1−	3) �"∗��∗ = 0�,

2−�	4�∗ = − �2�(2	2−	3) �2"∗��∗2 ,
2�(	2−	5) � ∗��∗ = −Bi (1− 2−�	5 ∗) ,

2−�	6!∗ = 1,
at �∗ = 0,

(15a)

2�(	2−	3) �"∗��∗ = 0,
2−�	4�∗ = 0,
2−�	5 ∗ = 0,
2−�	6!∗ = 0,
as �∗ �→ ∞.

(15b)

	e system remains invariant under the group transforma-
tion Γ. We then have the following relationships for the
parameters:

�1 + 2�2 − 2�3 = 3�2 −�3 = �2 −�4 = −�5 −�7= −�6 −�8;�1 +�2 −�3 −�4 = 2�2 −�4 = −�4 = 2�2 −�3;�1 +�2 −�3 −�5 = 2�2 −�5;�1 +�2 −�3 −�6 = 2�2 −�6;�1 −�3 = 0;
− �4 = 2�2 −�3;

�2 −�5 = 0 = −�5;�6 = 0.

(16)

Solving linear system (16), we have the following relationship
among the exponents:

�1 = �3 = �4 = �7 = �8,
�2 = �5 = �6 = 0. (17)

	e set of transformations Γ reduces to
�∗ = �2�	1 ,
�∗ = �,
"∗ = "2�	1 ,
�∗ = �2�	1 ,
 ∗ =  ,
!∗ = !,
�∗� = ��2�	1 ,
�∗� = ��2�	1 .

(18)

Expanding by theTaylor series in power of 3, keeping the term
up to the 
rst degree (neglecting higher power of 3), we get

�∗ −� = 3�1�,�∗ = �,
"∗ −" = 3�1",
�∗ −� = 3�1�,

 ∗ =  ,
!∗ = !,

�∗� −�� = 3�1��,
�∗� −�� = 3�1��.

(19)

	e characteristic equations are

D��1� = D�
0

= D"
�1" = D��1� = D 

0
= D!

0
= D���1��

= D���1�� .
(20)

Solving the above characteristic equations, we have the
following similarity transformations:

E = �,
" = �0 (E) ,
� = �� (E) ,
�� = ��0�,
�� = ��0�,
 =  (E) ,
! = ! (E) ,

(21)

where ��0 and ��0 are constant thermal and mass coe�cient
of expansion.

Using (21) into (9), we get the following similarity
equations:

( 1

1 − %)0��� +00�� −0�2 +( %
1 − %)�� +  +B!

= 0,
( 2 − %
2 − 2%)��� +0�� −0��−( %

1 − %) (2�+0��)
= 0,

1

Pr
 �� +0 � = 0,

1

Sc
!�� +0!� = 0,

(22)

where the primes indicate di�erentiation with respect to E
alone andB = ��0(�� − �∞)/��0(�� − �∞) is the buoyancy
ratio.



6 Advances in High Energy Physics

Boundary conditions (10a) and (10b) in terms of 0, �,  ,
and ! become

E = 0 : 0 (0) = 0�,
0� (0) = 0,
� (0) = − �0�� (0) ,
 � (0) = −Bi [1−  (0)] ,
! (0) = 1,

(23a)

E �→ ∞ : 0� (∞) = 0,
� (∞) = 0,
 (∞) = 0,
! (∞) = 0.

(23b)

5. Skin Friction, Wall Couple Stress, and Heat
and Mass Transfer Coefficients

	e wall shear stress and the wall couple stress are

F� = [(� + 
) ���� + 
�]

=0

,

I� = � [����]
=0 ,
(24a)

and the heat and mass transfers from the plate, respectively,
are given by

J� = − � [����]
=0 ,

J� = −�[���� ]
=0 .
(24b)

	e nondimensional skin friction �� = 2F�/��2∗, wall
couple stress K� = I�/��2∗�, the local Nusselt number%�� = J��/�(�� − �∞), and local Sherwood number Sh� =J��/�(�� − �∞) are given by

��Gr1/4� = 2(1 − �%
1 − % )0�� (0) ,

K�Gr1/2� = ( 2 − %
2 − 2%)�� (0) ,

%��
Gr1/4�

= −  � (0) ,
Sh�

Gr1/4�
= −!� (0) ,

(25)

where �2∗ is the characteristic velocity and Gr� = �∗��0(�� −�∞)�3/]2 is the local Grashof number.

6. Numerical Solution Using the Spectral
Quasi-Linearization Method (SQLM)

In this section, we describe the quasi-linearization method
(QLM) for solving the governing system of (22) along
with boundary conditions (23a) and (23b). 	is QLM is
a generalization of the Newton-Raphson method and was
proposed by Bellman and Kalaba [32] for solving nonlinear
boundary value problems.

Assume that the solutions 0�, ��,  �, and !� of (22) at the(L+1)th iteration are0�+1, ��+1,  �+1, and !�+1. If the solutions
at the previous iteration are su�ciently close to the solutions
at the present iteration, the nonlinear components of (22)
can be linearised using one-term Taylor series of multiple
variables so that (22) give the following iterative sequence of
linear di�erential equations:

( 1

1 − %)0����+1 + @1,�0���+1 + @2,�0��+1 + @3,�0�+1
+( %

1 − %)���+1 +  �+1 +B!�+1 = M1,�,
( 2 − %
2 − 2%)����+1 + N3,����+1 + N4,���+1 + N1,�0��+1
+ N2,�0�+1 −( %

1 − %)0���+1 = M2,�,
O1,�0�+1 + 1

Pr
 ���+1 + O2,� ��+1 = M3,�,

D1,�0�+1 + 1

Sc
!���+1 +D2,�!��+1 = M4,�,

(26)

where the coe�cients @�1 ,� (P1 = 1, 2, 3), N�2 ,� (P2 = 1, 2, . . . ,
4), O�3 ,� (P3 = 1, 2), D�4 ,� (P4 = 1, 2), and M�5 ,� (P5 = 1, 2, . . . ,
4) are known functions (from previous iterations) and are
de
ned as

@1,� = 0�,
@2,� = − 20�� ,
@3,� = 0��� ,
M1,� = 0�0��� − (0��)2 ,N1,� = −��,
N2,� = ���,N3,� = 0�,
N4,� = −0�� −( 2%

1 − %) ,
M2,� = 0���� −0����,
O1,� =  ��,
O2,� = 0�,
M3,� = 0� ��,
D1,� = !��,
D2,� = 0�,
M4,� = 0�!��,

(27)
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subject to boundary conditions

0�+1 (0) = 0�,
0��+1 = 0,

0��+1 (∞) = 0,
��+1 = − �0���+1 (0) ,

��+1 (∞) = 0,
 ��+1 (0) = −Bi (1−  (0)) ,

 �+1 (∞) = 0,
!�+1 (0) = 1,

!�+1 (∞) = 0.

(28)

System (26) constitutes a linear system of coupled di�eren-
tial equations with variable coe�cients and can be solved
iteratively using any numerical method for L = 1, 2, 3, . . ..
In this work, as will be discussed below, the Chebyshev
pseudospectral method was used to solve the QLM scheme
(26) (for more details, refer to the works of Motsa et al.
[33, 34]):

00 (E) = 0� + 1− 2−�,
�0 (E) = − �2−�,

 0 = 2−� Bi

Bi + 1
,

!0 = 2−�,

(29)

and starting from these sets of initial approximations 00, �0, 0, and !0, the iteration schemes (26) can be solved iteratively
for 0�+1(E), ��+1(E),  �+1(E), and!�+1(E) when L = 0, 1, 2, . . ..
For this, we discretise the equation using the Chebyshev
spectral collocation method. 	e unknown functions are
approximated by the Chebyshev interpolating polynomials
in such way that they are collocated at the Gauss-Lobatto
collocation points de
ned as

F� = cos
R�
% , � = 0, 1, 2, . . . , %, (30)

where % is the number of collocation points. 	e physical
region [0,∞) is transformed into the region [−1, 1] using the
domain truncation technique in which the problem is solved
on the interval [0, E∞] instead of [0,∞). 	is leads to the
mapping

E
E∞ = F + 1

2
, −1 ≤ F ≤ 1, (31)

where E∞ is the scaling parameter used to invoke the
boundary condition at in
nity. 	e functions 0, �,  , and !
are approximated at the collocation points by

0 (F) = �∑
�=0

0 (F�) �� (F�) ,

� (F) = �∑
�=0

� (F�) �� (F�) ,

 (F) = �∑
�=0

 (F�) �� (F�) ,

! (F) = �∑
�=0

! (F�) �� (F�) ,
� = 0, 1, 2, . . . , %,

(32)

where �� is the �th Chebyshev polynomial de
ned as

�� (F) = cos [� cos−1 (F)] . (33)

	e derivatives of the variables at the collocation points are
represented as

D�0
DE� = �∑

�=0
D
�
��0 (F�) ,

D��
DE� =

�∑
�=0

D
�
��� (F�) ,

D� DE� =
�∑
�=0

D
�
�� (F�) ,

D�!
DE� =

�∑
�=0

D
�
��! (F�) ,

V = 0, 1, . . . , %,

(34)

where W is the order of the derivative and D = 2D/E∞ is the
Chebyshev spectral di�erentiation matrix and its entries are
clearly de
ned in Canuto et al. [35].

Substituting (31)–(34) into (26) leads to the matrix equa-
tion

XY = M, (35)

subject to the boundary conditions

0�+1 (F�) = 0�,
�∑
�=0

D��0 (F�) = 0,
�∑
�=0

D0�0 (F�) = 0,

��+1 (F�) = − � �∑
�=0

D
2

��0 (F�) ,
��+1 (F0) = 0,
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�∑
�=0

D�� �+1 (F�) −Bi  �+1 (F�) = −Bi,
 �+1 (F0) = 0,
!�+1 (F�) = 1,
!�+1 (F0) = 0.

(36)

In (35) X is a (4%+ 4) × (4%+ 4) square matrix andY and M
are (4% + 1) × 1 column vectors de
ned by

X =
[[[[[
[

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

]]]]]
]
,

Y =
[[[[[
[

F�+1

G�+1

Θ�+1
Φ�+1

]]]]]
]
,

M =
[[[[[
[

R1

R2

R3

R4

]]]]]
]
,

(37)

where

F = [0�+1 (F0) , 0�+1 (F1) , . . . , 0�+1 (F�)]� ,
G = [��+1 (F0) , ��+1 (F1) , . . . , ��+1 (F�)]� ,
Θ = [ �+1 (F0) ,  �+1 (F1) , . . . ,  �+1 (F�)]� ,
Φ = [!�+1 (F0) , !�+1 (F1) , . . . , !�+1 (F�)]� ,

X11 = ( 1

1 − %)D3 + diag [@1,�]D2 + diag [@2,�]D
+ diag [@3,�] ,

X12 = ( %
1 − %)D,

X13 = I,
X14 = BI,
X21 = −( %

1 − %)D2 + diag [N1,�]D+ diag [N2,�] ,
X22 = ( 2 − %

2 − 2%)D2 + diag [N3,�]D+ diag [N4,�] ,
X23 = 0,
X24 = 0,
X31 = diag [O1,�] ,
X32 = 0,
X33 = 1

Pr
D

2 + diag [O2,�]D,

Table 1: Comparison of − �(0) for free convection along a vertical
�at plate in Newtonian �uid when % = 0, � = 0, B = 0, Pr = 1,
Bi → ∞, and 0� = 0.

Merkin [36] Nazar et al. [37] Molla et al. [38] Present

0.4214 0.4214 0.4214 0.4214313

X34 = 0,
X41 = diag [D1,�] ,
X42 = 0,
X43 = 0,
X44 = 1

Sc
D

2 + diag [D2,�]D,
R1 = M1,�,
R2 = M2,�,
R3 = M3,�,
R4 = M4,�,

(38)

and here I is an identity matrix, the size of the matrix 0 is(%+1)×1, and diag[ ] is a diagonalmatrix of size (%+1)×(%+
1). Subscript r denotes the iteration number. A�er modifying
matrix system (35) to incorporate boundary condition (36),
the solution is obtained as

Y = X−1M. (39)

7. Results and Discussions

It is noticed that the present problem reduces to free convec-
tion heat transfer along an impermeable vertical plate in a
micropolar �uid without the convective boundary condition
when0� = 0, Bi → ∞, andB = 0. Also in the limit as% →
0, governing equations (2)–(5) reduce to the corresponding
equations for a free convection heat and mass transfer in
a viscous �uid. In order to validate the code generated the
results of the present problem have been compared with the
results obtained by Merkin [36], Nazar et al. [37], and Molla
et al. [38] as a special case by taking % = 0, � = 0, B = 0,
Pr = 1, Bi → ∞, and 0� = 0 and it was found that
they are in good agreement, as presented in Table 1. Also, the
comparison of heat transfer coe�cient has been made with
the results obtained by Nazar et al. [37] as shown in Table 2
when � = 0.5, B = 0, Pr = 1, Bi → ∞, and 0� = 0.
To study the e�ects of coupling number%, suction/injection
parameter 0�, Biot number Bi, and material parameter �,
computations were carried out in the cases of B = 1.0,
Pr = 0.71, and Sc = 0.22.

	e e�ects of the coupling number% on the dimension-
less velocity, microrotation, temperature, and concentration
are illustrated in Figures 2(a)–2(d) with 
xed values of
other parameters. 	e coupling number % characterizes the
coupling of linear and rotational motion arising from the
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Figure 2: E�ect of% on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration pro
les.

Table 2: Comparison of − �(0) for free convection �ow in a
micropolar �uid obtained by Nazar et al. [37] when � = 0.5,B = 0,
Pr = 1, Bi → ∞, and 0� = 0.

% Nazar et al. [37] Present

0.00 0.4214 0.4214

0.33 0.3991 0.3990

0.50 0.3834 0.3834

0.60 0.3709 0.3709

0.66 0.3608 0.3608

0.71 0.3522 0.3522

0.75 0.3447 0.3447

�uid particles. In the case of % = 0 (i.e., as 
 tends to
zero) the micropolarity is absent and �uid becomes nonpolar
�uid. With a large value of % e�ect of microstructure
becomes signi
cant, whereas with a diminished value of %
the individuality of the substructure is much less articulated.
As % increases, it is found from Figure 2(a) that the max-
imum velocity decreases in amplitude and the location of
the maximum velocity moves farther away from the wall.
Since % → 0 corresponds to viscous �uid, the velocity in
case of a micropolar �uid has been less compared to that
of viscous �uid case. It can be observed from Figure 2(b)
that, as % increases, initially microrotation pro
les tend to
become �atter and then approach their free stream values
far away from the wall. 	is happens due to the vanishing
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Figure 3: E�ect of Bi on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration pro
les.

of antisymmetric part of the stress on the boundary that
corresponds to a weak concentration of microelements. 	is
is because an increment in the value of % implies a higher
vortex viscosity of �uid which promotes the microrotation
of micropolar �uids. It is seen from Figures 2(c) and 2(d)
that thermal and concentration boundary layers of the
�uid increase with increase in coupling number %. Hence,
temperature and concentration in case of micropolar �uids
are more than those of the viscous �uid case.

	e Biot number Bi is the ratio of internal thermal
resistance of a solid to boundary layer thermal resistance.
When Bi = 0 the plate is totally insulated, internal thermal
resistance of the plate is extremely high, and no convective
heat transfer to the cold �uid on the upper part of the

plate takes place. Figure 3(a) depicts �uid velocity pro
les
for di�erent values of the Biot number with % = 0.5, 0� =
0.5, and � = 0.5. Generally, �uid velocity is zero at plate
surface and increases gradually away fromplate to free stream
value satisfying boundary conditions. It is interesting to note
that an increase in the intensity of convective surface heat
transfer Bi produces signi
cant enhancement in �uid velocity
within the momentum boundary layer. In Figure 3(b), we
bring out the behavior of microrotation with di�erent values
of Biot number Bi for 
xed values of other parameters. As the
parameter value Bi increases microrotation showing reverse
rotation near the two boundaries. Hence, the condition of
vanishing of antisymmetric part of the stress on the boundary
results in a drastic change of the microrotation pro
les.
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Figure 4: E�ect of 0� on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration pro
les.

Given that convective heating increases with Biot number,
Bi → ∞ simulates the isothermal surface which is clearly
seen from Figure 3(c), where  (0) = 1 as Bi → ∞. In
fact, a high Biot number indicates higher internal thermal
resistance of the plate than boundary layer thermal resistance.
In this �uid temperature is maximum at the plate surface
and decreases exponentially to zero value far out from the
plate satisfying boundary conditions. As a consequence, an
increment in the Biot number leads to increase of �uid
temperature e�ciency. Figure 3(d) illustrates the variation of
dimensionless concentration for di�erent values of Bi. It is
clear that the concentration of �uid decreases with increase
of Bi.

	e e�ect of 0� on velocity pro
le is depicted in
Figure 4(a). Here, 0� > 0 represents suction and 0� < 0
denotes injection.	e lower velocity is noticed in case of suc-
tion when compared to case of injection. From Figure 4(b),
we note that microrotation is showing reverse rotation near
two boundaries with both suction and injection parame-
ter. 	e dimensionless temperature for di�erent values of
suction/injection parameters is drawn in Figure 4(c). It is
readable that the temperature of the �uid is more in case of
injection, whereas it is less in case of suction in comparison
with the impermeable surface case (0� = 0). Figure 4(d)
demonstrates dimensionless concentration for di�erent val-
ues of suction/injection parameters. It is determined that the
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Figure 5: E�ect of material parameter � on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration pro
les.

concentration of �uid ismore with injection, whereas it is less
with suctionwhen compared to the impermeable surface case
(0� = 0). As a 
nale, the thermal and solutal boundary layer
thicknesses increase in case of injection compared to case of
suction as displayed in Figures 4(c) and 4(d).

In Figures 5(a)–5(d), the e�ect of material parameter� on dimensionless velocity, microrotation, temperature,
and concentration is presented for 
xed values of other
parameters, since the material parameter � signi
es the
microrotation e�ects (i.e., for � = 0, particles are not free
to revolve near the surface whereas, as � increases from 0 to
1, the microrotation term gets augmented and induces �ow
enhancement). As � increases, it is found from Figure 5(a)
that the minimum velocity increases in amplitude and the

location of the minimum velocity moves farther away from
the wall. From Figure 5(b), we observe that themicrorotation
is decreasing with increasing value of material parameter� within the boundary layer. It is clear from Figures 5(c)-
5(d) that the thermal and solutal boundary layer thicknesses
decrease with increase of material parameter �.

	e variations of − �(0) and −!�(0) versus coupling
number % are shown in Figures 6–8. It can be noticed from
these 
gures that the heat and mass transfer coe�cients
are less in case of micropolar �uids when compared to the
viscous �uids. 	is is because as % increases, the thermal
and solutal boundary layer thicknesses become larger, thus
giving rise to a small value of local heat and mass transfer
rates. 	e e�ect of the Biot number Bi with 
xed 0� = 0.5
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Figure 6: E�ect of Bi on (a) heat transfer rate and (b) mass transfer rate.
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Figure 7: E�ect of 0� on (a) heat transfer rate and (b) mass transfer rate.

and � = 0.5 on local heat transfer coe�cient is exhibited
in Figure 6. It is found from Figure 6 that local heat transfer
rate increases nonlinearly with the increase in Biot number
Bi.	e in�uence of the Biot number Bi on local mass transfer
coe�cient is shown in Figure 6. Figure 6 reveals that the local
mass transfer coe�cient is enhanced by the growth in the
Biot number Bi. In Figure 7, the e�ect of the suction/injection
parameter 0� with 
xed Bi = 0.1 and � = 0.5 on local heat
and mass transfer coe�cients is displayed. It is found from
Figure 7 that the local heat and mass transfer coe�cients are
less in the case of injection 0� < 0 in comparison with the
case of suction 0� > 0. Figure 8 is prepared to analyze the
e�ect of the material parameter � with 
xed Bi = 0.1 and

0� = 0.5 on local heat andmass transfer coe�cients. Figure 8
reveals that the local heat and mass transfer coe�cients are
enhanced by the increase in material parameter �. 	is is
because when � increases from 0 to 1, the microrotation term
gets augmented and induces �ow enhancement.

	e variations of ��Gr1/4� and K�Gr1/2� , which are
proportional to the coe�cients of skin friction and wall
couple stress, are shown in Table 3 with di�erent values of
the coupling number % for 
xed � = 0.5, 0� = 0.5, and
Bi = 0.1. It indicates that the skin friction factor is higher
for micropolar �uid than the viscous �uids (% = 0). Since
micropolar �uids o�er a heavy resistance (resulting from
vortex viscosity) to �uid movement and cause larger skin
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Figure 8: E�ect of material parameter � on (a) heat transfer rate and (b) mass transfer rate.

Table 3: E�ects of skin friction and wall couple stress for varying
values of Biot numbers Bi, micropolar parameter %, material
parameter �, and suction/injection parameter 0�.
% Bi 0� � ��Gr1/4� K�Gr1/2�
0.1 0.1 0.5 0.5 2.424227 0.63279

0.3 0.1 0.5 0.5 2.502716 0.639966

0.5 0.1 0.5 0.5 2.647987 0.630863

0.7 0.1 0.5 0.5 2.943561 0.603879

0.9 0.1 0.5 0.5 3.874631 0.550891

0.5 0.1 0.5 0.5 2.647987 0.630863

0.5 1.0 0.5 0.5 3.211755 0.805879

0.5 5.0 0.5 0.5 3.533141 0.908078

0.5 20.0 0.5 0.5 3.629791 0.939137

0.5 0.1 −0.5 0.5 2.426265 0.336219

0.5 0.1 0.0 0.5 2.530014 0.465429

0.5 0.1 1.0 0.5 2.737553 0.820899

0.5 0.1 2.0 0.5 2.721244 1.193596

0.5 0.1 0.5 0.0 2.916655 −0.289339
0.5 0.1 0.5 0.5 2.647987 0.630863

0.5 0.1 0.5 1.0 2.232556 2.066191

friction factor compared to viscous �uid, the results as well
suggest larger values of coupling number % and lower wall
couple stresses. Since the skin friction coe�cient 0��(0) and
wall couple stress coe�cient as well as high temperature and
mass transport rates are more depressed in the micropolar
�uid comparing to the viscous �uid, which may be bene
cial
in �ow, temperature, and concentration control of polymer
processing, thus, the presence of microscopic e�ects arising
from the local structure and of the �uid elements reduces the
high temperature and mass transfer coe�cients. 	e e�ect

of Bi on ��Gr1/4� and K�Gr1/2� for 0� = 0.5, � = 0.5, and

% = 0.5 is illustrated in Table 3. It can be noticed that the
skin friction and wall couple stress coe�cients are increasing
with increase of Bi for 
xed values of other parameters.
	is notice is consistent with physical pro
les presented in
Figure 3. 	e e�ects of suction/injection parameter on the
skin friction andwall couple stress coe�cients are also shown
in Table 3. It is noted that the skin friction and wall couple
stress coe�cients are less with injection case, whereas they
are more with suction case when compared to the case of
impermeable surface. Finally, the detailed behavior of the
material parameter � is given in Table 3. 	e skin friction
decreases and wall couple stress increases with increase of
material parameter �.
8. Conclusions

In this composition, the similarity solution of the free convec-
tion �ow on a permeable vertical plate of a micropolar �uid
under the convective boundary condition is obtained using
Lie group transformations. Using the similarity variables, the
governing equations are transformed into a set of nondi-
mensional parabolic equations. 	ese equations are solved
numerically using spectral quasi-linearisation method. 	e
numerical computation is carried out for various values of
nondimensional physical parameters. 	e main 
ndings are
summarized as follows:

(i) 	e numerical results indicate that velocity distribu-
tion is less near the plate but it is more far away from
the plate; the wall couple stress coe�cient and rate of
heat andmass transfers are lower but the temperature
and concentration distributions and the skin friction
coe�cient are higher for the micropolar �uids in
comparison with those of viscous �uids. Also, the
reverse rotation ofmicrorotation near two boundaries
is found with the increasing value of%.
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(ii) An increase in Biot number Bi decreases concen-
tration distribution, whereas it causes an increase
in temperature distribution, skin friction and wall
couple stress coe�cients, and heat and mass transfer
rates within the boundary layer. Further, enhancing
in Biot number Bi enhances velocity distribution
near the plate but shows the reverse behavior far
away from the plate. We observe reverse rotation
of microrotation near two boundaries within the
boundary layer in the presence of Biot number.

(iii) Less velocity, temperature, and concentration distri-
butions are observed, more skin friction and wall
couple stress coe�cients and heat and mass transfer
rates in the case of suction compared to the case of
injection. Further, microrotation decreases near the
wall and depicts the opposite trend far away from the
wall.

(iv) It is found that microrotation, temperature, and con-
centration distributions and skin friction coe�cients
are more in the case of a micropolar �uid with strong
concentration (i.e., � = 0) when compared to the case
of a micropolar �uid with weak concentration (i.e.,� = 1/2). Further, velocity is less in the case of � = 0
when compared to the case of � = 1/2 near the wall
and shows the opposite trend far away from the wall.
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