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Similarity solutions for van der Waals rupture of a thin film
on a solid substrate
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Rupture of a thin viscous film on a solid substrate under a balance of destabilizing van der Waals
pressure and stabilizing capillary pressure is shown to possess a countably infinite number of
similarity solutions in each of which the horizontal lengthscale decreases like (tR2t)2/5 and the film
thickness decreases like (tR2t)1/5, where tR2t is the time remaining before rupture. Only the
self-similar solution corresponding to the least oscillatory curvature profile is observed in
time-dependent numerical simulations of the governing partial differential equation. The numerical
strategy employed to obtain the self-similar solutions is developed from far-field asymptotic
analysis of the similarity equations. ©1999 American Institute of Physics.
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I. INTRODUCTION

Van der Waals forces can cause a thin liquid film on
solid substrate to rupture and form a dry spot despite
stabilizing influence of surface tension. Liquid-film ruptu
on a substrate is an important, if sometimes undesirable,
nomenon in a variety of coating, drying, and cooling pro
lems. Van-der-Waals-driven film rupture is an important s
in the collapse of a foam and in droplet coalescence. In e
of these cases, accurate numerical simulation through
topological singularity of rupture is aided by knowledge
the way the singularity is approached.

Film rupture on a solid substrate provides one exam
of a general class of finite-time free-surface singularity pr
lems that have received much attention recently. Other
amples are the breakup of a thin liquid thread by surf
tension,1–6 the rupture of a thin freely suspended liquid she
by van der Waals forces,7,8 and topology changes in a Hele
Shaw cell.9–12 In all these problems the dynamics close
space and time to the singularity are solely determined by
approach to singularity and therefore can be described
self-similar solutions that are independent of far-field a
initial conditions. This independence greatly simplifies n
merical modeling as it allows investigators to draw gene
conclusions about the structure of the singularity from obs
vations of the evolution of the system towards a singula
from one particular set of boundary and initial conditions

The problem studied in this paper falls within a class
problems with governing equations of the form

]h

]t
5A¹•~hm¹h!2B¹•~hn¹¹2h!. ~1!

The caseB50 is the well-known nonlinear diffusion equa
tion, for which similarity solutions have been known fo
many years~e.g., Ref. 13!. More recently, the caseA50 has
2451070-6631/99/11(9)/2454/9/$15.00
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been the subject of an extensive series of studies both
model equation for surface-tension-driven flows and from
mathematical viewpoint.14–16 The combination of the two
terms on the right-hand side of~1! has been considered b
Bertozzi and Pugh,17,18 who proved a number of mathemat
cal results concerning boundedness, blowup, the existenc
weak solutions with compact support, and traveling-wave
lutions for ‘‘moving contact lines,’’ but did not construc
similarity solutions for pinching singularities. Pinching sin
gularities have been analyzed for the casem5n51 which
describes the Rayleigh–Taylor problem in a Hele–Sh
cell,11 and for an equation comparable to the casem50, n
522, but with modifications to account for geometry, whic
occurs in axisymmetric surface diffusion.19,20

The physical problem of thin-film evolution under su
face tension and van der Waals forces is described by~1!
with m53, n521, as derived by Williams and Davis21 and
many other authors. In this paper we are concerned w
pinching singularities of~1! corresponding to film rupture
From numerical simulations of two-dimensional van d
Waals rupture of a thin liquid film on a solid substrate, B
relbachet al.,22 proposed that the effect of surface tensi
becomes negligible near rupture so that the asymptotic s
similar behavior is determined only by a balance of van
Waals forces and viscous dissipation. An analytic solut
for this balance and consistent with the neglect of surf
tension is given in a recent review.23 We present a reanalysi
of the problem in both two-dimensional and axisymmet
geometries and show by time-dependent numerical sim
tions of the governing partial differential equations that t
effects of surface tension are not asymptotically negligib
Indeed, the requirement that surface tension, van der W
forces, and viscous dissipation are equally important n
rupture fully determines the scalings of the horizontal a
vertical lengthscales. In both geometries the partial differ
4 © 1999 American Institute of Physics
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tial equations describing rupture admit a countably infin
family of similarity solutions and the solution observed
the time-dependent simulations of the partial differen
equation corresponds to the similarity solution with the le
oscillatory curvature profile near the origin.

The paper is organized as follows: in the next section
sketch the derivation of the fourth-order nonlinear diffusi
equation which describes the evolution of the film thickne
In Sec. III we present results from numerical simulations
axisymmetric film rupture. The form of the similarity solu
tion is deduced from the results of the numerical simulatio
and then used to derive an ordinary differential equation
the self-similar film thickness from the governing tim
dependent equations. In Sec. IV we present analysis and
lutions for the similarity ordinary differential equation ass
ciated with axisymmetric rupture. The similarity proble
poses some interesting challenges for numerical solut
owing to nonlinearities and to the large number of deriv
tives in the problem, which combine to give rise to oscil
tions in the film thickness and to a variety of far-fie
asymptotic behaviors. In Sec. V we present time-depend
numerical simulations and similarity solutions for a tw
dimensional geometry. Results from the time-depend
simulations in both axisymmetric and two-dimensional g
ometries agree well with the similarity solution that po
sesses the least oscillatory curvature profile. In Sec. VI
conclude by establishing the limits of validity for the se
similar regime found in Secs. III–V. Details of the numeric
schemes used in the time-dependent simulations are give
the Appendix.

II. PROBLEM FORMULATION

Consider a nonwetting fluid layer with initial thicknes
h0 . Owing to the destabilizing effects of van der Waa
forces, small disturbances of the film thickness can grow
cause the film to rupture. We follow previous studies
assuming that the initial destabilizing disturbances are l
wavelength and therefore the rupture process, at least i
early stages, can be described by the usual lubrication
proximation to the Navier–Stokes equations. Letz be the
coordinate normal to the flat solid substrate underlying
film, and xH , uH , and ]H be the components of displace
ment, velocity, and gradient vectors parallel to the substr
For typical fluids, gravity is negligible on lengthscales f
which van der Waals forces are significant. The govern
equations then take the form

052¹Hp1m
]2uH

]z2 , ~2!

052
]p

]z
, ~3!

]h

]t
1¹H•E

0

h

uH dz50, ~4!

where m denotes the fluid viscosity andh(xH ,t) the film
thickness. The collective effect of van der Waals attractio
between molecules in the fluid film and those in the so
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substrate and in the air above can be described as a m
scopic body force and incorporated into a modifi
pressure.24 The fluid pressurep in ~3! thus contains a contri-
bution from van der Waals forces in addition to the usu
contribution from surface tension. For a sufficiently thin a
nearly flat film, we write

p~xH ,t !5
A*

6ph32g¹H
2 h, ~5!

whereg is the coefficient of surface tension andA* is the
Hamaker constant, which reflects the strength of the vari
intermolecular attractions.

Imposing a no-slip condition at the solid substrate an
free-slip condition at the film surface in~2!, we obtain from
~2!, ~4!, and~5! that

]h

]t
1¹H•F h3

3m
¹HS g¹H

2 h2
A*

6ph3D G50. ~6!

Equation~6! is the fourth-order nonlinear diffusion equatio
describing the evolution of the film thickness. The tw
dimensional version of~6! was that studied by Burelbac
et al.22

Dimensional analysis of~6!, as well as more detailed
stability studies,21 suggests that a flat film of initial thicknes
h0 is linearly unstable to sinusoidal perturbations who
wavelengths are greater than or comparable toh0

2/d* , where

d* 5~A* /g!1/2 ~7!

is the molecular lengthscale. For a continuum approach to
valid, we requireh0@d* , which implies thath0

2/d* @h0 and
hence that the initial instability has a long wavelength,
agreement with our original assumption.

As the film thins towards rupture, the characteris
length- and timescales of the problem change by order
magnitude so that~6! cannot be nondimensionalized by the
scales. Insteadh, xH , andt are nondimensionalized in a wa
that recasts~6! in a form independent of the material param
eters. One such nondimensionalization uses a characte
film thicknessĥ, lateral lengthscalel̂ , and timescalet̂ de-
fined by

ĥ5h0 , ~8a!

l̂ 5
h0

2

d*
, ~8b!

t̂5
12p2mgh0

5

A* 2 ; ~8c!

another uses an arbitrary lengthscale in place ofh0 in ~8a!–
~8c!. From now on all variables will be nondimensional u
less stated otherwise.

III. AXISYMMETRIC TIME-DEPENDENT SIMULATIONS

Numerical simulation of axisymmetric free-surface ev
lution proceeded from the nondimensional form of~6!,

]h

]t
1

1

r

]

]r F rh3
]

]r
X1
r

]

]r S r
]h

]r D C1 r

h

]h

]r G50, ~9!
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wherer is the radial coordinate. The numerical scheme u
finite differences with implicit representation of the highe
spatial derivatives. To resolve the self-similar behavior clo
to rupture, we used an adaptive variable-grid scheme wh
maintains a roughly constant number of grid points ove
horizontal length comparable with the square of the curr
minimum film thickness, a choice which is consistent w
the anticipated self-similar scaling. The size of the time s
was then chosen to be consistent with the desired sp
resolution.

The initial free-surface profile was taken to be

h~r ,0!5
10

9 F12
1

10
cosS 2pr

l D G , ~10!

which is qualitatively similar to a linear axisymmetric pe
turbation mode of the thin film. Equation~9! was solved on
the fixed interval 0<r<l/4 and the wavelengthl was cho-
sen to be sufficiently long for linear instability. Bounda
conditions]h/]r 5]3h/]r 350 were imposed atr 50 andr
5l/4. The conditions atr 50 are required for the solution t
be regular at that point; the initial condition and the boun
ary conditions atr 5l/4 were simply chosen for conve
nience, and the behavior close to the rupture does not de
on this choice. The simulation began with minimum fil
thicknesshmin(t50)51 and proceeded through ten decad
until hmin(t)510210. More details about the numerica
scheme can be found in the Appendix.

A few snapshots of the film profile toward the beginni
of the simulation are shown in Fig. 1, along with the fil
profile reached at the end of the run. To illustrate the ad
tive, variable-grid scheme used in the simulation, grid poi
are shown on top of the film profiles athmin(0)51 and
hmin(t)50.4. It may be noted that rupture occurs at the cen
point r 50, and fluid is not trapped in a dimple as can occ
when two drops approach each other without van der W
attractions.25

The plot of dhmin /dt and ]2h/]r 2(0) versushmin(t) in
Fig. 2 suggests that the minimum film thickness varies
(tR2t)1/5, wheretR is the time of rupture, while the charac
teristic horizontal lengthscale varies ashmin

2 (t). A test of the
scalings suggested by these variations is provided by Fig
which plots the rescaled second derivativehmin

3 ]2h/]r2 as a

FIG. 1. Film profilesh(r ,t) at hmin(t)51.0, 0.8, 0.6, 0.4, 0.2, and 10210.
Circles placed on profiles athmin(t)51.0 and hmin(t)50.4 correspond to
points used in the time-dependent simulation.
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3,

function of the rescaled radial distancer /hmin
2 at successive

times. The rapid convergence ofhmin
3 ]2h/]r2 to a fixed shape

confirms that~9! has a similarity solution of the form

h~r ,t !5~ tR2t !1/5H~h!, h5
r

~ tR2t !2/5. ~11!

For later comparisons with solutions to the similarity ord
nary differential equations, we note that fitting power laws
the results in Fig. 2 givesH(0)50.7681 and H9(0)
50.1687. We also note for later discussion that the ti
dependence shown in~11! implies that the long-wavelength
approximation must eventually fail.

A plot of the rescaled film thicknessh(r ,t)/hmin(t) at
hmin510210 ~Fig. 4! shows that, on the intermediate range
lengthscaleshmin

2 (t)!r!l/4, the film thickness varies ap
proximately asAr1/2, whereA50.6763. We can see from
~11! that this intermediate behavior corresponds to a qu
steady far field in the similarity solution. The film thicknes
deviates from the intermediate scaling whenr 5O(1) in or-
der to accommodate the imposed boundary conditions.

FIG. 2. dhmin /dt ~solid line! and]2h/]r 2 ~dashed line! versushmin(t). After
a short transient, the solid line has slope24 and the dashed line has slop
23. The intercepts can be used to inferH(0) andH9(0) in the similarity
form ~11!.

FIG. 3. Rescaled second derivativehmin
3 ]2h/]r2 versus rescaled radial dis

tancer /hmin
2 . Solid curves correspond to profiles athmin51.0, 0.8, 0.6, 0.4,

and 0.2; the dashed curve corresponds to the profile athmin510210. Rapid
convergence to a self-similar profile is almost complete byhmin50.2.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. AXISYMMETRIC SIMILARITY SOLUTIONS

Substitution of the similarity ansatz~11! into the govern-
ing equation~9! yields an ordinary differential equation fo
self-similar axisymmetric rupture,

1

5
~H22hH8!5

1

h FhH8

H
1hH3S ~hH8!8

h D 8G8, ~12!

where8 denotes differentiation with respect to the similar
variable h. Two boundary conditions,H8(0)5H-(0)50,
are imposed at the origin for regularity. The values ofH(0)
andH9(0) are determined by shooting for boundary con
tions at infinity.

A. Far-field asymptotic behavior

Since the self-similar behavior of locally driven ruptu
should be asymptotically insensitive to the boundary con
tions imposed at the end of the unscaled interval, the far-fi
boundary condition for the similarity solution is that o
quasi-steady behavior: the quasi-steady condition]h/]t
!h/t far from rupture in~9! translates into the boundar
condition 1

5(H22hH8)!H or, equivalently,H;Ah1/2 as
h˜` in ~12!. In fact,

H1/2~h!5Ah1/2 ~13!

is an exact solution of~12! for all values of the constantA.
Since~13! has only one free constant, it is not immed

ately clear that requiringH;Ah1/2 imposes the correct num
ber of boundary conditions at infinity or that it allows matc
ing to the boundary conditions at the origin. Howev
linearizing ~12! about ~13! by writing H5H1/21DH1/2 re-
veals that the asymptotic form~13! has one perturbation
mode which corresponds to a small change in the value oA
and three exponential perturbation modes of the form

DH1/25a0h21ex0~h!1a1h21ex1~h!1a2h21ex2~h!,
~14!

where

x0~h!;2
bh5/6

A
, x6~h!;

e6 ip/3bh5/6

A
,

FIG. 4. Rescaled film profileh(r ,t)/hmin(t) versus rescaled radial distanc
r /hmin

2 . Note ther 1/2 dependence extending over the range of lengthsc
intermediate between ther 5O(hmin

2 ) region of rupture and ther 5O(1) size
of the domain.
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Thus the requirement thatH(h);Ah1/2 is equivalent to the
requirement that the amplitudesa6 of the two growing
modes must vanish ash˜`, which constitutes two bound
ary conditions. We therefore expect, and indeed will fin
that the desired similarity solutions exist at isolated points
the „H(0),H9(0)… parameter plane.

Before proceeding to a numerical search for the des
similarity solutions of~12!, it is helpful to note what alter-
native far-field behavior is produced by~12! in the remainder
of the „H(0),H9(0)… plane. One alternative requires

FhH3S ~hH8!8

h D 8G8;0 as h˜` ~16!

and yields

H2~h!;Ch21
3

80C2 ~ ln h!21D ln h, ~17!

whereC andD are free constants. Linear perturbation ana
sis indicates that theh2 far-field behavior is always structur
ally stable and therefore constitutes the generic behavio
the „H(0),H9(0)… plane. The other alternative requires

1

5
~H22hH8!;

1

h FhH3S ~hH8!8

h D 8G8 as h˜`,

~18!

and yields the far-field asymptotic behaviorH(h)
;H4/3(h), where

H4/3~h!5Bph4/3, Bp5~ 27
320!

1/3 ~19!

is also an exact solution. The four linear perturbation mo
about ~19! have the form hm, where 27m41144m3

1180m2232050. One of the four roots gives a growin
mode, so that requiringH;h4/3 constitutes one boundar
condition at infinity. Thus this kind of solution occurs a
parameter values which lie on curves in the„H(0),H9(0)…
plane. For ease of reference, we shall refer to a solution w
H;h1/2 asymptotic behavior as anh1/2 solution, a solution
with H;h4/3 asymptotic behavior as anh4/3 solution and the
generic solution~17! as anh2 solution.

The numerical problem is now seen to be that of findi
the isolated values ofH(0) and H9(0) that give the
asymptotic far-field behavior~13! as h˜` in a plane of
values that almost always give rise to the asymptotic far-fi
behavior of~17! or ~19!. The simple strategy of first zeroin
the coefficientC of the largest asymptotic term in theh2

solution, and then zeroing the coefficientBp of the next larg-
est term in theh4/3 solution, fails sinceBp is a fixed number
and not a free coefficient. The problem is complicated by
fact that, as in many capillary problems,~12! supports solu-
tions with oscillations and hence the far-field behavior is n
a monotonic function of the shooting parameter. The follo
ing sections describe two numerical strategies devised
overcome these complications.

s

AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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B. h1/2 solutions

The desiredh1/2 solutions were first obtained by a nu
merical shooting scheme in which~12! was integrated using
a fourth-order Runge–Kutta scheme from the origin to so
large value ofh, which ranged from 10 to 200. Estimates
the shooting parametersH(0) andH9(0) were used to star
the integration. These parameters were adjusted so that

H22hH850 and H14h2H950 ~20!

at the end of the integration range—the two end conditi
~20! were chosen to be independent, to involve low-ord
derivatives and to together requireH(h)}h1/2 at the end of
the integration interval; other choices are certainly possi
To avoid the coordinate singularity at the origin, a five-te
Taylor series was used to start the numerical integratio
h51024. The distance 1024 was chosen to be at most1

20 of
the radius of convergence forH(0) andH9(0) in the region
of interest in parameter space. The local radius of conv
gence was estimated from the decay of the first 200 Ta
series coefficients; it varies strongly withH(0) and only
weakly with H9(0).

Results of this preliminary search forh1/2 solutions are
illustrated in Fig. 5, where the solid curves correspond
values of„H(0),H9(0)… which satisfy the end conditionH
22hH850 while the dashed curves correspond to values
„H(0),H9(0)… that satisfy the end conditionH14h2H9
50. Dots at the intersections of the two sets of curves c
respond toh1/2 solutions. Since neither end condition alo
is sufficient to locate ah1/2 solution, points on only one o
the solid and dashed curves have little significance in th
selves and correspond to solutions withh2 or h4/3 far-field
behavior if the integration range is extended to infinity. E
perimentation with different integration intervals show
that as the integration interval is extended, the shapes o
curves change significantly but the locations of the inters
tions remain essentially unchanged. The spacing betwee
tersections decreases in the parameter limitH(0)˜0,
H9(0)˜0, which suggests that~12! has a countably infinite
number ofh1/2 similarity solutions.

The results of the preliminary search described ab
were then refined by a search scheme described in the

FIG. 5. Results of the search for solutions withh1/2 far-field behavior. Solid
and dashed curves correspond to solutions satisfying theH22hH850 and
H14h2H950 end conditions ath510. Dots correspond to solutions wit
the desiredh1/2 far-field behavior.
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section, which makes use of the wayh1/2 andh4/3 solutions
are related in this problem. Here we restrict ourselves
some comments on the values ofH(0), H9(0), andA asso-
ciated with the first six similarity solutions given in Table
Though the numerical values are dependent on the sca
used to derive~9!, their relative spacing is not. The coeffi
cientA of theh1/2 far-field behavior decreases monotonica
with H(0) while the curvature at the originH9(0) decreases
in an oscillatory fashion.

In Fig. 6 we have plottedH(h) andH-(h) for the first,
third, and fifth similarity solutions, together with the sel
similar profiles observed in the time-dependent simulati
The self-similar dynamics observed in the time-depend
simulations of~9! closely corresponds to the first similarit
solution of ~12!. None of the higher-order similarity solu

FIG. 6. Plots ofH(h) andH-(h) for the first, third, and fifth axisymmetric
similarity solutions~lines! together with results from the time-depende
simulations ~circles!. Successive similarity solutions have an extra ha
oscillation inH-(h).

TABLE I. Various quantities associated with the first six similarity sol
tions for axisymmetric rupture. Self-similar dynamics deduced from tim
dependent axisymmetric simulations yield valuesH(0)50.7681, H9(0)
50.1687, andA50.6763, which are consistent with the first similarity s
lution.

H(0) H9(0) A

0.768 178 509 6 0.168 731 448 2 0.676 32
0.637 424 688 0.024 570 167 5 0.452 93
0.546 865 550 8 0.034 961 263 4 0.375 148
0.495 583 051 0.023 138 214 6 0.329 95
0.458 624 50 0.021 649 009 0.299 22
0.430 800 0.018 417 65 0.276 430
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tions has been observed in time-dependent simulati
which suggests that they are unstable.~This has since been
confirmed by a stability analysis.25!

A comparison ofH-(h) profiles shows that the similar
ity solutions are ordered by structure as well as byH(0): as
H(0) decreases, each successive similarity solution exp
ences an extra half-oscillation before asymptoting towa
the h1/2 far-field behavior. This ordering by structure allow
us to deduce that there are no similarity solutions at lar
values ofH(0). Hence we conclude that the self-similar s
lution observed in time-dependent simulations is the o
with the least oscillatory curvature profile.

C. h4/3 solutions

Having located the points corresponding toh1/2 solu-
tions in the„H(0),H9(0)… plane, we considered their rela
tion to the more generich2 andh4/3 solutions. To do so we
solved ~12! for the one-parameter family of curves corr
sponding to theh4/3 solutions. The same numerical shootin
scheme was employed, except that the end condition
now chosen to beH2(9/4)h2H950. Of all the curves ob-
tained this way, only those withH-,0 at the end corre-
spond toh4/3 solutions as the integration range is extend
towards infinity; those withH-.0 correspond to transient
before eventualh2 far-field behavior and were discarded.

Results of the search forh4/3 solutions are illustrated in
Fig. 7. Someh4/3 parameter curves run smoothly from1` to
2`, but others appear to terminate in a spiral about value
„H(0),H9(0)… which yield h1/2 solutions. These observa
tions are confirmed by the asymptotic behavior of termin
ing h4/3 parameter curves as the integration range is
tended. We have also plotted profiles ofH(h) for points
along the h4/3 parameter curve and observed that,
„H(0),H9(0)… approach the end of the spiral, theH(h) pro-
file develops a lengtheningh1/2 transient. Indeed, we foun
that locatingh1/2 solutions by finding the terminations of th
h4/3 spirals was a more robust strategy than finding roots
~20!, since there is less variation of the curves in the para
eter plane as the integration range is extended towards i
ity. Hence rough estimates of the parameter values co
sponding toh1/2 solutions obtained from our preliminar

FIG. 7. Results of the search for solutions withBph4/3 far-field asymptotic
behavior. Solid curves correspond to these solutions; dots correspon
solutions with the desiredh1/2 far-field behavior. The numerical integratio
range ish550.
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search were refined by locating the termination points of
h4/3 spirals. A plot of the spiral corresponding to the fir
similarity solution is given in Fig. 8.

Some explanation for the existence of a spiral ofh4/3

solutions around anh1/2 solution is provided by~14! and
~15!: the two growing perturbation modes around anh1/2

solution are oscillatory, and their initially small amplitude
are linearly related to the deviation ofH(0) andH9(0) from
the values that give a trueh1/2 solution. If the phase of thes
modes is right when their amplitudes and nonlinear inter
tions have grown toO(1), then anh4/3 solution results.

V. TWO-DIMENSIONAL TIME-DEPENDENT
SIMULATIONS

A two-dimensional rupture process is described by

]h

]t
1

]

]x F S h3
]3h

]x3 1
1

h

]h

]xD G50 ~21!

with the initial condition~10! and symmetry boundary con
ditions ]h/]x5]3h/]x350 at the origin and at the end o
the interval. An adaptive, variable-grid scheme, similar to
one used in the axisymmetric time-dependent simulati
was employed to solve~21!. The two-dimensional simula
tions give results which, when plotted in an analogous m
ner to Figs. 2–4, show clear asymptotic self-similarity. T
similarity scaling is given by~11! with r replaced byx, and
the numerical results yieldH(0)50.7326,H9(0)50.3007,
andA50.8068.

The similarity ansatz~11! reduces the time-depende
problem~21! to the ordinary differential equation

1

5
~H22hH8!5S H8

H
1H3H-D 8

, ~22!

with symmetry boundary conditionsH8(h)5H-(h)50 at
the origin and quasi-steady boundary conditions at infinit

As in the axisymmetric rupture problem,~22! admits
three types of solutions which vary, respectively, likeh2,
h4/3, and h1/2 as h˜`. Each solution corresponds to th
same balance of terms in~22! as the axisymmetric case an
has the same number of growing perturbation modes. H
ever, unlike in the axisymmetric problem,Ah1/2 andBph4/3

toFIG. 8. A closeup of the spiraling end of theh4/3 parameter curve associate
with the first axisymmetric similarity solution.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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are not exact solutions of~22!. The desiredh1/2 similarity
solution can be shown to have the asymptotic form

H1/2~h!5Ah1/2S 11(
i 51

`
ai

~Ah5/2! i D , ~23!

where the coefficientsai can be obtained once the free co
stantA is known. Theh4/3 solution has the asymptotic form

H4/3~h!5Bph4/3S 11(
i 51

`
bi

~Bph10/3! i D , ~24!

whereBp5(27/56)1/3 and the coefficientsbi are also deter-
mined by~22!. Numerical solution of~22! revealed the same
type of behavior as for the axisymmetric problem: each
the desiredh1/2 similarity solutions occurs at a point in th
„H(0),H9(0)… plane at which a parameter curve correspo
ing to theh4/3 solution terminates, and there are a counta
infinite number of such solutions. Table II lists the values
H(0), H9(0), andA associated with the first sixh1/2 simi-
larity solutions for two-dimensional rupture. Figure 9 pr
sentsH(h) andH-(h) for the first, third, and fifth similarity
solutions of~22! along with the self-similar profiles from th
time-dependent simulation. As in Fig. 6, the time-depend
result from ~21! corresponds closely to the first similarit
solution of ~22!. The similarity solutions of~22! exhibit the
same intrinsic ordering: each successiveH-(h) has an extra
half-oscillation before asymptoting onto the far-field profi

VI. DISCUSSION

Both two-dimensional and axisymmetric rupture of
thin liquid film destabilized by van der Waals forces asym
tote towards a self-similar regime in which the film thins
(tR2t)1/5 and the characteristic horizontal lengthscale
rupture decreases as (tR2t)2/5, where tR2t is the time re-
maining before rupture. The observed scalings indicate
van der Waals forces, surface tension, and viscous stre
are equally significant in the rupturing thin film. Time
dependent simulations show excellent agreement with s
tions to the similarity ordinary differential equations. W
suggest that the conclusion of Ref. 22, that surface tensio
asymptotically negligible when compared with van d
Waals forces or viscous stresses, may have been due to
lems with numerical resolution. Though the film-ruptu
problem has been studied here in strictly two-dimensio
and axisymmetric geometries, two-dimensional rupture

TABLE II. Various quantities associated with the first six similarity sol
tions for two-dimensional rupture. Self-similar dynamics deduced fr
time-dependent two-dimensional simulations yieldH(0)50.7326, H9(0)
50.3007, andA50.8068, which are consistent with the first similarity s
lution.

H(0) H9(0) A

0.732 662 38 0.300 975 59 0.806 88
0.597 607 373 0.017 350 716 0.551 36
0.506 529 650 0.073 219 676 0.452 714
0.457 181 733 8 0.032 052 811 7 0.395 59
0.420 860 571 7 0.039 995 592 0.356 87
0.394 032 366 8 0.028 833 237 0.328 28
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unstable to perturbations in film thickness along the th
direction, as also would be ring rupture. Since the axisy
metric solution is stable to asymmetric perturbations,26 it
seems plausible that the film thickness would then evo
into axisymmetric rupture. Thus thin films destabilized
van der Waals forces will generally rupture at a point.

We conclude with some thoughts on the limits of vali
ity for the self-similar regime described so far. Returning
dimensional variables, the continuum approximation fa
whenhmin(t)'d* . Since the lateral lengthscalel (t) is given
by ~8! and ~11!, it follows that l (t)5hmin

2 (t)/d* and that the
aspect ratio l (t)/hmin(t);hmin(t)/d* . Thus the long-
wavelength approximation used to derive~6! fails at the
same time as the continuum approximation. A similar failu
criterion applies to the free-slip condition on the film surfac
since the neglect of viscous stresses exerted by the exte
fluid on the film in comparison with the viscous she
stresses experienced within the film itself requires t
mextuH / l !muH /hmin , which fails whenhmin /d*&mext/m.

As the film ruptures, the reduced Reynolds numb
ruh2/m l diverges as (tR2t)3/5, so that the effects of inertia
are predicted to become significant when the film thins
thickness

hI5S A* 2

12p2mng D 1/3

. ~25!

However, for typical parameter values, e.g.,A*
510213erg, g520 dyne cm21, r51 g cm23, and m
51022 g cm21 sec21, hI is less than the molecular length

FIG. 9. Plots of H(h) and H-(h) for the first, third, and fifth two-
dimensional similarity solutions~lines! together with results from the time
dependent simulations~circles!. Each successive similarity solution has a
extra half-oscillation inH-(h).
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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scaled* . For typical fluids, then, the neglect of inertia fai
after the continuum and long-wavelength approximatio
For the theoretical problem in whichhI@d* , scaling analy-
sis would appear to allow two possible balances of force
the subsequent inertial regime, each of which fully det
mines the time dependence of the film thickness and
horizontal lengthscale. One possibility balances inertia,
der Waals forces, and surface tension, in which cash
;(tR2t)2/7 andl;(tR2t)4/7; the other balances inertia, va
der Waals forces, and viscous dissipation, in which cash
;(tR2t)1/2 and l;(tR2t)1/4. In view of the parameter val
ues, we have not investigated this further.

Equation~9! can also describe the thinning, under v
der Waals forces, of a less viscous liquid film between t
very viscous droplets when the viscosity ratiom/mdroplet is
much smaller than the aspect ratioh/(ah)1/2, wherea is the
drop radius andh is the minimum gap thickness. Ash˜0
this inequality must eventually be violated, which makes
of interest to extend analysis of self-similar rupture to t
case of arbitrary viscosity ratio. Though there can be a co
plex interaction between droplet deformation and film th
ning during the approach to coalescence,25,27 the final stages
are dominated by van-der-Waals-driven rupture and a kno
edge of the asymptotic, self-similar behavior of the thinni
gap might be useful in creating better cutoff schemes
coarse-grained simulation of droplet interactions.

Finally, we note that, though the self-similar regime
this rupture problem, like that of other finite-time singula
ties, spans only the final instants of the rupture process,
nevertheless significant as the self-similar regime constit
the limiting regime towards which the nonlinear transie
state evolves. Thus a knowledge of the self-similar beha
associated with a finite-time singularity can provide insig
into the physical behavior of the system which cannot ea
be obtained from either stability analyses or full numeri
calculations. The mathematical tools developed in the st
of finite-time singularities may also have more general ap
cations in the analysis of nonlinear systems.
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APPENDIX: NUMERICAL SCHEMES FOR
TIME-DEPENDENT SIMULATIONS

The anticipation that the film profile asymptotes towar
a similarity solution whose horizontal length scales as
square of minimum film thickness motivated the variab
transformation,

r ~s!5hmin
2 ~ t !sinh~s!, ~A1!

in the axisymmetric problem and an analogous transfor
tion of x in the two-dimensional problem. Herer is the radial
coordinate in the axisymmetric problem, andx is the hori-
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zontal coordinate in the two-dimensional problem;s(r ,t) is
the coordinate used in the numerical scheme. The grid-p
distribution was uniform ins so that the grid spacing inr was
nearly uniform near the origin but increased proportional tr
away from the origin. The variable transformation is cons
tent with the symmetry of the boundary conditions at t
origin.

Each time step was made using the current~fixed! grid,
implicit representation of the higher derivatives in each te
of ~9!, and the current value of the nonlinear coefficien
After each time step, a new grid was defined from the n
value ofhmin(t) and additional grid points were introduced
keep the grid spacing ins roughly constant. Values ofh(r ,t)
at the new set of grid points were obtained from the origi
set by cubic interpolation. The time stepDt was chosen by

Dt5
Dr 4

hmin
3 ~ t !

'hmin
5 ~ t !Ds4, ~A2!

whereDr is the grid spacing near the origin. This choice
time step ensures that evolution on grid scales near the o
is followed throughout the rupture process. The varia
transformation~A1! leaves features away from the orig
under-resolved spatially for the time step~A2!. However,
since the far-field free-surface profile is almost quasi-stea
the error is expected to be small and not to influence
region of self-similar rupture. To test this expectation, t
axisymmetric rupture simulation was repeated with a diff
ent transformation,

r ~s!5hmin
2 ~ t !sS s21~s414!1/2

2 D 1/2

, ~A3!

where again the point distribution is uniform ins. The grid
spacing inr is still nearly uniform near the origin but in
creases asr 1/2, instead ofr, away from the origin. This
choice is motivated by ther 1/2 intermediate asymptotic sca
ing ~Fig. 4!, and uses many more grid points in the far fie
Comparison of simulations using~A3! with simulations us-
ing ~A1! and the same spatial resolution near the ori
showed no significant difference either in the self-similar b
havior or the approach to self-similarity. We expect the sa
to be true for two-dimensional rupture. All results presen
here are therefore from simulations which used the chea
scheme~A1!.

The values ofH(0), H9(0), andA in each geometry are
deduced from two simulations with the same initial conditi
but different grid spacings. For example, the axisymme
values were obtained from two runs, one of which beg
with 16 data points increasing to 306 byhmin(t)510210,
while the other began with 48 data points increasing to 9
by hmin(t)510210. Error estimates forH(0), H9(0), andA
can be obtained by comparison of the results from the
runs.
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