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Rupture of a thin viscous film on a solid substrate under a balance of destabilizing van der Waals
pressure and stabilizing capillary pressure is shown to possess a countably infinite number of
similarity solutions in each of which the horizontal lengthscale decreases }ike Y*® and the film
thickness decreases liker(-t)*5, wheretz—t is the time remaining before rupture. Only the
self-similar solution corresponding to the least oscillatory curvature profile is observed in
time-dependent numerical simulations of the governing partial differential equation. The numerical
strategy employed to obtain the self-similar solutions is developed from far-field asymptotic
analysis of the similarity equations. @999 American Institute of Physics.
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I. INTRODUCTION been the subject of an extensive series of studies both as a
o model equation for surface-tension-driven flows and from a
Van der Waals forces can cause a thin liquid film on a.,ihematical viewpoir =16 The combination of the two
solid substrate to rupture and form a dry spot despite the, s on the fight-hand side ¢f) has been considered by
stabilizing influence of surface tension. Liquid-film rupture Bertozzi and Pugh’'8who proved a number of mathemati-
on a substrate is an |mpfortant_, if sc:jmghmes léndesl{rable, pbh%él results concerning boundedness, blowup, the existence of
homenon in a variety of coating, drying, and cooling prob-,, oy sojutions with compact support, and traveling-wave so-

!emr?. Va|r|1-der-vvfaalfs-dr|ven df".m (;uptllJre is a}n |mportarl1t stngtions for “moving contact lines,” but did not construct
In the collapse of a foam and in droplet coalescence. In eac, milarity solutions for pinching singularities. Pinching sin-

of these cases, accurate numerical simulation through th&ularities have been analyzed for the casen=1 which
topological singularity of rupture is aided by knowledge of describes the Rayleigh—Taylor problem in a Hele—Shaw

the \II:\/_EIiy thetsmgularlty Isl_spprgzichfd. i IceII,ll and for an equation comparable to the caseO, n
lim rupture on a sofid substraté provides one example. — 2, but with modifications to account for geometry, which

of a general class of finite-time free-surface singularity pmb'occurs in axisymmetric surface diffusioh2°

lems that have received much attention recently. Other ex- The physical problem of thin-film evolution under sur-
amples are the breakup of a thin liquid thread by Surfac“:I‘ace tension and van der Waals forces is describedlby
tension'~® the rupture of a thin freely suspended liquid sheerwi,[h m=3,n=—1, as derived by Williams and Dadisand
g;r/]van d%_\ﬁa}als Iflorﬁe@ff and L?DOIOQ);] ch;nges.m aIHeIe.— many other authors. In this paper we are concerned with
aw cefl. ~1n a t €se probiems the ynamics close in inching singularities of1) corresponding to film rupture.
space and time to the singularity are solely determined by th rom numerical simulations of two-dimensional van der

ap{?rqac_r to Sl'n?ma”% ?nd th_erdefore (;:ant b? ;Jlesfgr:t(;ed EV\/aals rupture of a thin liquid film on a solid substrate, Bu-
sell-similar solutions that aré independent ot far-eld andg o, g al,?? proposed that the effect of surface tension

|n|t|§1l clondlttjlolns. Th'i mlcliepeljdenctg gtreatli/ s(|jmpllf|es nu'Eecomes negligible near rupture so that the asymptotic self-
merical modeling as 1t allows Investigators 1o draw general; ;i hehavior is determined only by a balance of van der

coryclusmns about th? structure of the singularity frc_)m ObsferWaaIs forces and viscous dissipation. An analytic solution
vations of the evolution of the system towards a smgulantyfor this balance and consistent with the neglect of surface

from one particular se:-t Of. bou_ndary and initie}l gonditions. tension is given in a recent reviéi¥We present a reanalysis
The proplem Stud!ed n thls. paper falls within a class Ofof the problem in both two-dimensional and axisymmetric
problems with governing equations of the form geometries and show by time-dependent numerical simula-
tions of the governing partial differential equations that the
E=AV'(hth)—BV~(h”VV2h)- (1)  effects of surface tension are not asymptotically negligible.
Indeed, the requirement that surface tension, van der Waals
The caseB=0 is the well-known nonlinear diffusion equa- forces, and viscous dissipation are equally important near
tion, for which similarity solutions have been known for rupture fully determines the scalings of the horizontal and
many yearge.g., Ref. 13 More recently, the cas&=0 has vertical lengthscales. In both geometries the partial differen-
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tial equations describing rupture admit a countably infinitesubstrate and in the air above can be described as a macro-
family of similarity solutions and the solution observed in scopic body force and incorporated into a modified
the time-dependent simulations of the partial differentialpressuré* The fluid pressure in (3) thus contains a contri-
equation corresponds to the similarity solution with the leasbution from van der Waals forces in addition to the usual

oscillatory curvature profile near the origin. contribution from surface tension. For a sufficiently thin and
The paper is organized as follows: in the next section wenearly flat film, we write

sketch the derivation of the fourth-order nonlinear diffusion AF

equation which describes the evolution of the film thickness.  p(x,,t)= —— yVﬁ'h, (5)

In Sec. Il we present results from numerical simulations of mh

axisymmetric film rupture. The form of the similarity solu- where y is the coefficient of surface tension aad is the

tion is deduced from the results of the numerical simulationsHamaker constant, which reflects the strength of the various
and then used to derive an ordinary differential equation fointermolecular attractions.

the self-similar film thickness from the governing time-  Imposing a no-slip condition at the solid substrate and a

dependent equations. In Sec. IV we present analysis and sfree-slip condition at the film surface i{2), we obtain from
lutions for the similarity ordinary differential equation asso- (2), (4), and(5) that

ciated with axisymmetric rupture. The similarity problem h3 A+
poses some interesting challenges for numerical solution, — 4V, —VH()/Vﬁh— )
owing to nonlinearities and to the large number of deriva-  Jt 3u 6h?

tives in the problem, which combine to give rise to oscilla- gqyation(6) is the fourth-order nonlinear diffusion equation
tions in the film thickness and to a variety of far-field yescribing the evolution of the film thickness. The two-

asymptotic behaviors. In Sec. V we present time-dependenfimensional version of6) was that studied by Burelbach
numerical simulations and similarity solutions for a two- gt 522

dimensional geometry. Results from the time-dependent pimensional analysis of6), as well as more detailed
simulations in both axisymmetric and two-dimensional ge-gtapjlity studie€! suggests that a flat film of initial thickness
ometries agree well with the similarity solution that pos-p,  is Jinearly unstable to sinusoidal perturbations whose

sesses the least oscillatory curvature profile. In Sec. VI Wevavelengths are greater than or comparabllegid* where
conclude by establishing the limits of validity for the self-

=0. (6)

. . . . . — 1/2
similar regime found in Secs. IlI-V. Details of the numerical d*=(A*ly) (7)
schemes used in the time-dependent simulations are given j§ the molecular lengthscale. For a continuum approach to be
the Appendix. valid, we requireh>d*, which implies thah3/d*>h, and
hence that the initial instability has a long wavelength, in
Il. PROBLEM FORMULATION agreement with our original assumption.

As the film thins towards rupture, the characteristic

Consider a nonwetting fluid layer with initial thickness length- and timescales of the problem change by orders of
ho. Owing to the destabilizing effects of van der Waals magnitude so th&6) cannot be nondimensionalized by these
forces, small disturbances of the film thickness can grow andcales. InsteaH, x,;, andt are nondimensionalized in a way
cause the film to rupture. We follow previous studies bythat recast$6) in a form independent of the material param-
assuming that the initial destabilizing disturbances are longters. One such nondimensionalization uses a characteristic
wavelength and therefore the rupture process, at least in ifym thicknessh, lateral lengthscalé, and timescald de-
early stages, can be described by the usual lubrication agmed py
proximation to the Navier—Stokes equations. kzebe the R
coordinate normal to the flat solid substrate underlying the h=ho, (8a)
film, and xy, uy, anddy be the components of displace-

2
ment, velocity, and gradient vectors parallel to the substrate. |- h_i’, (8b)
For typical fluids, gravity is negligible on lengthscales for d
which van der Waals forces are significant. The governing 2 5
: . 12m“uyhy
equations then take the form t= A2 : (8¢
é%u
0=—Vup+u 2H , (2) another uses an arbitrary lengthscale in plachiih (8a)—
9z (8c). From now on all variables will be nondimensional un-
ap less stated otherwise.
0=——, ()
0z
Jh h . AXISYMMETRIC TIME-DEPENDENT SIMULATIONS
a_t+VH' fo uy dz=0, (4) Numerical simulation of axisymmetric free-surface evo-
o ) i lution proceeded from the nondimensional form(6f,
where p denotes the fluid viscosity ank(xy,t) the film
thickness. The collective effect of van der Waals attractions oh 1 ¢ 3l (} 2, dh )+ rdh ~0 9
between molecules in the fluid film and those in the solid at roar ar\r ar\ or h ar '
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FIG. 1. Film profilesh(r,t) at hy()=1.0, 0.8, 0.6, 0.4, 0.2, and 18. FIG. 2. dhy,,/dt (solid line) and#?h/dr? (dashed lingversushy(t). After

Circles placed on profiles din(t)=1.0 andhy,,(t)=0.4 correspond to  a short transient, the solid line has slopd and the dashed line has slope

points used in the time-dependent simulation. —3. The intercepts can be used to infé¢0) andH”(0) in the similarity
form (11).

wherer is the radial coordinate. The numerical scheme used
2

finite differences with implicit representation of the h'gheStfunction of the rescaled radial distancéh?, at successive

spatial derivatives. To resolvg the sglf-smﬂqr behavior chs imes. The rapid convergence o}, #har? o a fixed shape
to rupture, we used an adaptive variable-grid scheme whic

U . . confirms that(9) has a similarity solution of the form
maintains a roughly constant number of grid points over a

horizontal length comparable with the square of the current
minimum film thickness, a choice which is consistent with h(r )= (ta t)Y5H _ r
the anticipated self-similar scaling. The size of the time step (rH=(tz=1) (), 7 (tg—1)%>
was then chosen to be consistent with the desired spatial
resolution.
The initial free-surface profile was taken to be

(11

For later comparisons with solutions to the similarity ordi-
nary differential equations, we note that fitting power laws to
10 1 2q7r the results in Fig. 2 givesH(0)=0.7681 andH"(0)
h(r.0=5 1_1_0005(T) , (100 =0.1687. We also note for later discussion that the time
o o o ) _ ) dependence shown i11) implies that the long-wavelength
which is qualitatively similar to a linear axisymmetric per- approximation must eventually fail.

turbation mode of the thin film. Equatici9) was solved on A plot of the rescaled film thickness(r,t)/h(t) at
the fixed interval 8=r<A\/4 and the wavelength was cho- 1, . — 10710 (Fig. 4) shows that, on the intermediate range of

sen to be sufficiently long for linear instability. Boundary lengthscalesh?, (t)<r<\/4, the film thickness varies ap-
conditionsdh/dr = 9°n/gr®=0 were imposed at=0 andr  proyimately asAr'?, where A=0.6763. We can see from
=\/4. The conditions at=0 are required for the solution to (11) that this intermediate behavior corresponds to a quasi-
be regular at that point; the initial condition and the bound-gteady far field in the similarity solution. The film thickness
ary conditions atr=\/4 were simply chosen for conve- eyiates from the intermediate scaling whenO(1) in or-

nience, and the behavior close to the rupture does not deperg; 1o accommodate the imposed boundary conditions.
on this choice. The simulation began with minimum film

thicknessh,i,(t=0)=1 and proceeded through ten decades
until h,,;,()=10"% More details about the numerical
scheme can be found in the Appendix. 0.10 y - y
A few snapshots of the film profile toward the beginning
of the simulation are shown in Fig. 1, along with the film
profile reached at the end of the run. To illustrate the adap-
tive, variable-grid scheme used in the simulation, grid points P
are shown on top of the film profiles dt,;,(0)=1 and or?
hmin(t)=0.4. It may be noted that rupture occurs at the center
pointr =0, and fluid is not trapped in a dimple as can occur
when two drops approach each other without van der Waals
attractions . . .
The plot of dhy,/dt and 9%h/dr?(0) versushpx(t) in RdT) -5 0 5 10
Fig. 2 suggests that the minimum film thickness varies as 7/hin
FIG. 3. Rescaled second derivatitig,,?h/ar? versus rescaled radial dis-

(tr—1)*5, wheretg is the time of rupture, while the charac-
teristic horizontal lengthscale varies Iaéin(t)' A test of the tancer/h2,.. Solid curves correspond to profilestag,=1.0, 0.8, 0.6, 0.4,

scalings suggested by these variations is provided by Fig. 3nd 0.2; the dashed curve corresponds to the profite,at=10"1°. Rapid
which plots the rescaled second derivath/;ﬁnazh/&rz as a convergence to a self-similar profile is almost completenfy=0.2.
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0 . —_— . . . . . . . . 6/2 1/3
10 : : B= 5 ( 5) . (15
81 -

T ] Thus the requirement that(7)~A»'? is equivalent to the
h(n,) 10t 4 requirement that the amplitudes,. of the two growing
Poain(8) | 1 modes must vanish ag— oo, which constitutes two bound-

10%r 1 ary conditions. We therefore expect, and indeed will find,

102l that the desired similarity solutions exist at isolated points in

5 | the (H(0),H"(0)) parameter plane.
1t . Before proceeding to a numerical search for the desired
bt 164 : ‘2 : 1612 —_ 1(')20 sim_ilarity splutions of(lZ), it is helpful to.note what _alter—
7/ hinin native far-field behavior is produced k32) in the remainder

" . .
FIG. 4. Rescaled film profiléa(r,t)/h,(t) versus rescaled radial distance of the (H(O)'H (O)) plane. One alternative requires
r/h2,. Note ther'? dependence extending over the range of lengthscales (pHY\ T

intermediate between tire= O(hZ,.) region of rupture and the=O(1) size Y

of the domain. () 169 P W {”Hs( 7 ) } ~0 as p—o» (16)

and yields

IV. AXISYMMETRIC SIMILARITY SOLUTIONS

3
Ho(7)~Cn°+ —=(In5)?+DIn 7, (17
Substitution of the similarity ansatz 1) into the govern- 80C

ing equation(9) yields an ordinary differential equation for

- . : whereC andD are free constants. Linear perturbation analy-
self-similar axisymmetric rupture,

sis indicates that the? far-field behavior is always structur-
nH’ o (7H) "\ ally stable and therefore constitutes the generic behavior in
, (12 the (H(0),H"(0)) plane. The other alternative requires

1H 2H’_1
g( 7 )—;

H
where’ denotes differentiation with respect to the similarity 1 o1 3 (pH)H"\ |
variable 7. Two boundary conditionsH’(0)=H"(0)=0, g(H=27H )~; 7H 7 as n—x,
are imposed at the origin for regularity. The valuedH{D) (18
andH”(0) are determined by shooting for boundary condi-
tions at infinity. and vyields the far-field asymptotic behavioH(7)
. : : ~Hy(7), where

A. Far-field asymptotic behavior

Since the self-similar behavior of locally driven rupture  Haa(7)=B,7n*3,  B,=(Zp)"* (19

should be asymptotically insensitive to the boundary condi- . ) .

tions imposed at the end of the unscaled interval, the far-field S0 an exact solution. The four linear perturbation rr;odes
boundary condition for the similarity solution is that of @oout (19) have the form »", where 2Wn*+144m°
quasi-steady behavior: the quasi-steady conditigm Jt +180m*—320=0. One of the four roots gives a growing

- 413 -
<h/t far from rupture in(9) translates into the boundary Mode, so that requiringd~ »™* constitutes one boundary
condition {(H—27H')<H or, equivalently,H~A»Y2 as  condition at infinity. Thus this kind of solution occurs at

n— in (12). In fact, parameter values which lie on curves in tfHa(O),H”(Q)) _
1 plane. For ease of reference, we shall refer to a solution with
Hia(m)=An (13)  H~ 52 asymptotic behavior as an'’? solution, a solution

P - - 3 -
is an exact solution of12) for all values of the constast, ~ With H~ 7"~ asymptotic behavior as ay® solution and the

Since(13) has only one free constant, it is not immedi- 9€Neric solutior(17) as an’72, solution. o
ately clear that requiringl ~ A2 imposes the correct num- The numerical problem is now se”en to be tha_t of finding
ber of boundary conditions at infinity or that it allows match- the isolated values oH(0) and H"(0) that give the
ing to the boundary conditions at the origin. However,3Symptotic far-field behaviof13) as »— in a plane of
linearizing (12) about(13) by writing H=H.,+AHy,, re- values_ that almost always give rise to the asymptonc far_—fleld
veals that the asymptotic forrfl3) has one perturbation behaV|or.of(17) or (19). The simple strategy of f|r§t zeroing
mode which corresponds to a small change in the valug of the coefficientC of the largest asymptotic term in the?

and three exponential perturbation modes of the form solution, and then zeroing the coeffici) of the next larg-
est term in thep*? solution, fails sinceB,, is a fixed number

AHyp=agn teXo " +a, p teX+"+a_y lex-17, and not a free coefficient. The problem is complicated by the
(14  fact that, as in many capillary problen{42) supports solu-
where tions with oscillations and hence the far-field behavior is not
A a monotonic function of the shooting parameter. The follow-
B> e ™3y ing sections describe two numerical strategies devised to
Xolm)~ = A’ X=(m)~ A ' overcome these complications.
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025 TABLE |. Various quantities associated with the first six similarity solu-
tions for axisymmetric rupture. Self-similar dynamics deduced from time-
020 | dependent axisymmetric simulations yield valud$0)=0.7681, H"(0)
=0.1687, andA=0.6763, which are consistent with the first similarity so-
0.15 ¢ lution.
Hll(o)
0101 H(0) H'(0) A
0.05 } 0.768 178 509 6 0.168 731448 2 0.676 32
0.637 424 688 0.024 5701675 0.452 93
0.00 | 0.546 865 550 8 0.034 961 263 4 0.375 148
0.495583 051 0.023 1382146 0.329 95
-0.05 0.458 624 50 0.021 649 009 0.299 22
0.430 800 0.018 417 65 0.276 430

FIG. 5. Results of the search for solutions with? far-field behavior. Solid
and dashed curves correspond to solutions satisfyingith@ H' =0 and
H+47%?H"=0 end conditions aiy=10. Dots correspond to solutions with . . o .
the desiredy™? far-field behavior. section, which makes use of the way'? and »*° solutions

are related in this problem. Here we restrict ourselves to
some comments on the valuestd€0), H”(0), andA asso-
B. ciated with the first six similarity solutions given in Table I.
Though the numerical values are dependent on the scaling
The desired;~ solutions were first obtained by a nu- ysed to derive(9), their relative spacing is not. The coeffi-
merical shooting scheme in whicti2) was integrated using cjentA of the 2 far-field behavior decreases monotonically

a fourth-order Runge—Kutta scheme from the origin to someyith H(0) while the curvature at the origid”(0) decreases
large value ofp, which ranged from 10 to 200. Estimates of jn an oscillatory fashion.

4/3

Y2 solutions

1/2

the shooting parametef$(0) andH"(0) were used to start In Fig. 6 we have plotteti () andH" () for the first,
the integration. These parameters were adjusted so that  third, and fifth similarity solutions, together with the self-
H-27H'=0 and H+47?H"=0 (200  similar profiles observed in the time-dependent simulation.

The self-similar dynamics observed in the time-dependent

at the end of the integration range—the two end conditiongjmy|ations of(9) closely corresponds to the first similarity
(20) were chosen to be independent, to involve low-orderso|ytion of (12). None of the higher-order similarity solu-
derivatives and to together requirg 7) = »*? at the end of

the integration interval; other choices are certainly possible.
To avoid the coordinate singularity at the origin, a five-term
Taylor series was used to start the numerical integration at
7»=10"%. The distance 10* was chosen to be at mogof

the radius of convergence fét(0) andH”(0) in the region

of interest in parameter space. The local radius of conver-
gence was estimated from the decay of the first 200 Taylor
series coefficients; it varies strongly witH(0) and only
weakly withH”(0).

Results of this preliminary search fa/*’2 solutions are
illustrated in Fig. 5, where the solid curves correspond to
values of(H(0),H”(0)) which satisfy the end conditiohl
—27nH’ =0 while the dashed curves correspond to values of
(H(0),H"(0)) that satisfy the end conditiomd + 4 7?H"
=0. Dots at the intersections of the two sets of curves cor-
respond ton*? solutions. Since neither end condition alone 0.00
is sufficient to locate ay*/? solution, points on only one of
the solid and dashed curves have little significance in them-
selves and correspond to solutions wigh or 7*? far-field -0.04
behavior if the integration range is extended to infinity. Ex- H"(n)
perimentation with different integration intervals showed

that as the integration interval is extended, the shapes of the ~0.08 ]
curves change significantly but the locations of the intersec- ]
tions remain essentially unchanged. The spacing between in- -0.12 ;
tersections decreases in the parameter lii(0)—0, 0 2 4 5 6 8 10

H"”(0)—0, which suggests th&l2) has a countably infinite ] _ , _ _
FIG. 6. Plots ofH(%) andH"(#) for the first, third, and fifth axisymmetric

12 cimmilar :
number 0f77 Slm”anty SOIL_anS' . similarity solutions(lines) together with results from the time-dependent
The results of the preliminary search described abovgjmyiations circles. Successive similarity solutions have an extra half-

were then refined by a search scheme described in the nesdcillation inH" (7).
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FIG. 7. Results of the search for solutions V\Bpn“’3 far-field asymptotic
behavior. Solid curves correspond to these solutions; dots correspond
solutions with the desireg)’’? far-field behavior. The numerical integration
range isn=50.

E)IG. 8. A closeup of the spiraling end of th#”® parameter curve associated
with the first axisymmetric similarity solution.

search were refined by locating the termination points of the
tions has been observed in time-dependent simulations;*3 spirals. A plot of the spiral corresponding to the first
which suggests that they are unstaliiEhis has since been similarity solution is given in Fig. 8.
confirmed by a stability analysfs) Some explanation for the existence of a spiral73f°

A comparison ofH" () profiles shows that the similar- splutions around am?*/? solution is provided by(14) and

ity solutions are ordered by structure as well asH{¥)): as  (15): the two growing perturbation modes around 5H2
H(0) decreases, each successive similarity solution experkolution are oscillatory, and their initially small amplitudes
ences an extra half-oscillation before asymptoting towardsyre linearly related to the deviation Bif{0) andH”(0) from
the »'/2 far-field behavior. This ordering by structure allows the values that give a trug"2 solution. If the phase of these
us to deduce that there are no similarity solutions at largemodes is right when their amplitudes and nonlinear interac-
values ofH(0). Hence we conclude that the self-similar so- tions have grown t®(1), then any*3 solution results.
lution observed in time-dependent simulations is the one
with the least oscillatory curvature profile.

V. TWO-DIMENSIONAL TIME-DEPENDENT

C. %*3 solutions SIMULATIONS

Having located the points corresponding #8'2 solu- A two-dimensional rupture process is described by
tions in the(H(0),H"(0)) plane, we considered their rela- oh o #h 1 0h
tion to the more generig/> and *° solutions. To do so we 7 o SWJF n &) =0 (21)

solved (12) for the one-parameter family of curves corre-
sponding to they* solutions. The same numerical shooting With the initial condition(10) and symmetry boundary con-
scheme was employed, except that the end condition waditions dh/9x=3g°h/9x3=0 at the origin and at the end of
now chosen to bél —(9/4)»?H”=0. Of all the curves ob- the interval. An adaptive, variable-grid scheme, similar to the
tained this way, only those with” <0 at the end corre- one used in the axisymmetric time-dependent simulation,
spond toz*? solutions as the integration range is extendedvas employed to solveé2l). The two-dimensional simula-
towards infinity; those withHH” >0 correspond to transients tions give results which, when plotted in an analogous man-
before eventual)? far-field behavior and were discarded.  ner to Figs. 2—4, show clear asymptotic self-similarity. The
Results of the search foy* solutions are illustrated in  Similarity scaling is given by11) with r replaced byx, and
Fig. 7. Somen*? parameter curves run smoothly froe to  the numerical results yiel#i(0)=0.7326,H"(0)=0.3007,
—a, but others appear to terminate in a spiral about values cind A=0.8068.
(H(0),H"(0)) which vyield #*? solutions. These observa- The similarity ansat211) reduces the time-dependent

tions are confirmed by the asymptotic behavior of terminat{roblem(21) to the ordinary differential equation
43

ing %™° parameter curves as the integration range is ex- H’ /
tended. We have also plotted profiles l6{ #) for points g(H—ZﬂH')= W+H3HW> , (22
along the #*® parameter curve and observed that, as

(H(0),H"(0)) approach the end of the spiral, tHe€ ) pro-  with symmetry boundary conditiond’(7)=H"(7)=0 at

file develops a lengthening®? transient. Indeed, we found the origin and quasi-steady boundary conditions at infinity.
that locatingn/? solutions by finding the terminations of the As in the axisymmetric rupture probleni22) admits
73 spirals was a more robust strategy than finding roots othree types of solutions which vary, respectively, liké,

(20), since there is less variation of the curves in the param#*2, and 52 as y—o. Each solution corresponds to the
eter plane as the integration range is extended towards infisame balance of terms (22) as the axisymmetric case and
ity. Hence rough estimates of the parameter values corrdias the same number of growing perturbation modes. How-
sponding to»*? solutions obtained from our preliminary ever, unlike in the axisymmetric problem,*? andB,7*?
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TABLE II. Various quantities associated with the first six similarity solu-
tions for two-dimensional rupture. Self-similar dynamics deduced from 3
time-dependent two-dimensional simulations yi¢l§0)=0.7326,H"(0)
=0.3007, andA=0.8068, which are consistent with the first similarity so-
lution.

H(0) H"(0) A
0.732 662 38 0.300 975 59 0.806 88
0.597 607 373 0.017 350 716 0.551 36
0.506 529 650 0.073 219676 0.452714
0.457 1817338 0.0320528117 0.39559
0.420860571 7 0.039 995 592 0.356 87
0.394 032 366 8 0.028 833 237 0.328 28 0

0.1

are not exact solutions d22). The desiredn/? similarity
solution can be shown to have the asymptotic form 0.0

H"(n)
Apt? 1+ 23 0.1
HyAn)=An 2 (AWSIZ)I) (23
where the coefficienta; can be obtained once the free con- 02

stantA is known. Thez*® solution has the asymptotic form

1+2 1(B, 7710’3))

unereB, - (271501 and the coefient, are also deter F6, 3, Plis () st 0 o e s, it s 1 e
mined by(22) Numerical solution of22) revealed the same dependent smulatlo?‘l(s:lrcles Each sugcesswe similarity solution has an
type of behavior as for the axisymmetric problem: each Ofexira half-oscillation itH" (7).

the desiredn*’? similarity solutions occurs at a point in the
(H(0),H"(0)) plane at which a parameter curve correspond-
ing to the *° solution terminates, and there are a countably
infinite number of such solutions. Table Il lists the values of
H(0), H"(0), andA associated with the first six*? simi-
larity solutions for two-dimensional rupture. Figure 9 pre-
sentsH(#7) andH"(#) for the first, third, and fifth similarity
solutions 0f(22) along with the self-similar profiles from the
time-dependent simulation. As in Fig. 6, the time-dependent
result from (21) corresponds closely to the first similarity
solution of (22). The similarity solutions of22) exhibit the
same intrinsic ordering: each succesdi/&( ) has an extra
half-oscillation before asymptoting onto the far-field profile.

(24) ~0 2 4 6 8 0

Had 7)=By7*? "

unstable to perturbations in film thickness along the third
direction, as also would be ring rupture. Since the axisym-
metric solution is stable to asymmetric perturbatithst,
seems plausible that the film thickness would then evolve
into axisymmetric rupture. Thus thin films destabilized by
van der Waals forces will generally rupture at a point.

We conclude with some thoughts on the limits of valid-
ity for the self-similar regime described so far. Returning to
dimensional variables, the continuum approximation fails
when h,,i,(t)~d*. Since the lateral lengthscalét) is given
by (8) and (11), it follows that|(t)=h2,(t)/d* and that the
aspect ratio I(t)/hyi () ~hpin(H)/d*. Thus the long-
V1. DISCUSSION wavelength approxirnr:gtion rljged to deriy® fails at the

Both two-dimensional and axisymmetric rupture of asame time as the continuum approximation. A similar failure
thin liquid film destabilized by van der Waals forces asymp-criterion applies to the free-slip condition on the film surface,
tote towards a self-similar regime in which the film thins asSince the neglect of viscous stresses exerted by the external
(tr—t)Y® and the characteristic horizontal lengthscale offluid on the film in comparison with the viscous shear
rupture decreases aBRGt)z/S, wheretg—t is the time re-  stresses experienced within the film itself requires that
maining before rupture. The observed scalings indicate thatextn /! < uUy /hyin, Which fails whenh i, /0% < ey / .
van der Waals forces, surface tension, and viscous stresses As the film ruptures, the reduced Reynolds number
are equally significant in the rupturing thin film. Time- puh®ul diverges astg—t)*®, so that the effects of inertia
dependent simulations show excellent agreement with sollare predicted to become significant when the film thins to
tions to the similarity ordinary differential equations. We thickness
suggest that the conclusion of Ref. 22, that surface tension is A*2  \ 113
asymptotically negligible when compared with van der  h, ( )
Waals forces or viscous stresses, may have been due to prob-
lems with numerical resolution. Though the film-rupture However, for typical parameter values, e.gA*
problem has been studied here in strictly two-dimensionak=10 *2erg, y=20dynecm?!, p=1gcm?3 and u
and axisymmetric geometries, two-dimensional rupture is=10 2gcm lsec?, h, is less than the molecular length-

- 1272 uvy (25
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scaled*. For typical fluids, then, the neglect of inertia fails zontal coordinate in the two-dimensional probles(r;,t) is
after the continuum and long-wavelength approximationsthe coordinate used in the numerical scheme. The grid-point
For the theoretical problem in whidi>d*, scaling analy- distribution was uniform irs so that the grid spacing inwas
sis would appear to allow two possible balances of forces imearly uniform near the origin but increased proportional to
the subsequent inertial regime, each of which fully deter-away from the origin. The variable transformation is consis-
mines the time dependence of the film thickness and théent with the symmetry of the boundary conditions at the
horizontal lengthscale. One possibility balances inertia, vamrigin.
der Waals forces, and surface tension, in which chse Each time step was made using the currdned) grid,
~(tg—1)?" andl ~ (tg—t)*"; the other balances inertia, van implicit representation of the higher derivatives in each term
der Waals forces, and viscous dissipation, in which dase of (9), and the current value of the nonlinear coefficients.
~(tg—t)¥2andl~(tg—t)¥* In view of the parameter val- After each time step, a new grid was defined from the new
ues, we have not investigated this further. value ofh,;,(t) and additional grid points were introduced to
Equation(9) can also describe the thinning, under vankeep the grid spacing isroughly constant. Values ¢f(r,t)
der Waals forces, of a less viscous liquid film between twoat the new set of grid points were obtained from the original
very viscous droplets when the viscosity rafiduqopiet IS~ Set by cubic interpolation. The time sté&yg was chosen by

much smaller than the aspect rakiah)*?, wherea is the Ard
drop radius andh is the minimum gap thickness. As—0 At= — ~h>. ()As?, (A2)
this inequality must eventually be violated, which makes it Nrmin(t)

of interest to extend analysis of self-similar rupture to thewhereAr is the grid spacing near the origin. This choice of
case of arbitrary viscosity ratio. Though there can be a comtme step ensures that evolution on grid scales near the origin
plex interaction between droplet deformation and film thin-js followed throughout the rupture process. The variable
ning during the approach to coalesceftéthe final stages transformation(Al) leaves features away from the origin
are dominated by van-der-Waals-driven rupture and a knowlynder-resolved spatially for the time st¢p2). However,
edge of the asymptotic, self-similar behavior of the thinningsjnce the far-field free-surface profile is almost quasi-steady,
gap might be useful in creating better cutoff schemes inhe error is expected to be small and not to influence the
coarse-grained simulation of droplet interactions. region of self-similar rupture. To test this expectation, the

~ Finally, we note that, though the self-similar regime in axisymmetric rupture simulation was repeated with a differ-
this rupture problem, like that of other finite-time singulari- ent transformation,

ties, spans only the final instants of the rupture process, it is 5 4 1o 12
nevertheless significant as the self-similar regime constitutes r(s)=h2, (t)s(s +(s'+4) )
the limiting regime towards which the nonlinear transient min 2 ’
state evolves. Thus a knowledge of the self-similar behaviof, e again the point distribution is uniform & The grid

gssomated Wlth a f|n|tejt|me singularity can.prowde 'ns'gh_tsspacing inr is still nearly uniform near the origin but in-
into the physical behavior of the system which cannot easily. o yseg as'? instead ofr, away from the origin. This

be obtained from either stability analyses or full numerical.qice is motivated by the” intermediate asymptotic scal-
calculations. The mathematical tools developed in the stud}ﬁg (Fig. 4, and uses many more grid points in the far field.

of finite-time singularities may also have more general applicomparison of simulations using3) with simulations us-
cations in the analysis of nonlinear systems. ing (A1) and the same spatial resolution near the origin
showed no significant difference either in the self-similar be-
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APPENDIX: NUMERICAL SCHEMES FOR with 16 data points increasing to 306 by,,(t)=10 1,

TIME-DEPENDENT SIMULATIONS while the other began with 48 data points increasing to 919

o ) ] by hy,in(t)=10"1% Error estimates foH(0), H"(0), andA
The anticipation that the film profile asymptotes towardscan pe obtained by comparison of the results from the two
a similarity solution whose horizontal length scales as thgns.

square of minimum film thickness motivated the variable
transformation,
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