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By using scalar similarity transformation, nonlinear model of time-fractional diffusion/Harry Dym equation is transformed to
corresponding ordinary fractional differential equations, from which a travelling-wave similarity solution of time-fractional
Harry Dym equation is presented. Furthermore, numerical solutions of time-fractional diffusion equation are discussed. Again,
through another similarity transformation, nonlinear model of space-fractional diffusion/Harry Dym equation is turned into
corresponding ordinary differential equations, whose two similarity solutions are also worked out.

1. Introduction

Nonlinear partial differential equations arise in many fields
of engineering, physics, and applied mathematics. During
the last few decades, nonlinear fractional partial differential
equations have gained much attention due to their applica-
tions in many branches of science and engineering such as
porous media, fluid flow, fractals, heat conduction, control
theory, dynamical processes, and other areas. It is generally
known that fractional calculus can propose better results
than classical calculus. Many methods have been used to
study and analyze fractional differential equations, in which
the Lie-group analysis method is an effective tool to investi-
gate symmetries of ordinary and partial differential equa-
tions. Later, this method was generalized to study fractional
partial differential equations [1–9]. Djordjevic and Ata-
nackovic obtained similarity solutions to nonlinear fractional
heat conduction equation and Burgers/KdV equations [9]. It
is very critical to mention two recent papers [10, 11]. First, in
Ref. [10], the authors presented and discussed a fractional
nonlinear partial differential equation by use of similarity
reductions and recovered some interesting results associated
with Harry Dym-type equations. In addition, in Ref. [11], the
fractional nonlinear space-time wave-diffusion equation was
discussed and solved by the similarity method utilizing frac-

tional derivatives in the Caputo, Riesz-Feller, and Riesz
senses. In this work, we shall treat a nonlinear model of
time-fractional diffusion/Harry Dym equation

∂αu
∂tα

= un
∂nu
∂xn

, 0 < α < 1, n = 2, 3 ð1Þ

and further study nonlinear model of space-fractional diffu-
sion/Harry Dym equation

∂u
∂t

= uβ
∂βu
∂xβ

, 2 ≤ β ≤ 3, ð2Þ

with2 ≤ β ≤ 3, we can obtain all equations between the
diffusion and Harry Dym equation. In the following, we want
to study similarity solutions with Equation (1), including a
travelling-wave similarity solution and a kind of numerical
solutions. Furthermore, two similarity solutions in Equation
(2) are also produced.

First of all, we recall several associated notations. For con-
tinuous function f ðtÞ, the left Riemann-Liouville fractional
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derivative of order 0 < α < 1 is given as

dα f
dtα

= 1
Γ 1 − αð Þ

d
dt

ðt
0

f τð Þ
t − τð Þα dτ

= 1
Γ 1 − αð Þ

f 0ð Þ
tα

+
ðt
0

f 1ð Þ τð Þ
t − τð Þα dτ

" #
,

ð3Þ

where Γð:Þ is the Euler Gamma function

Γ αð Þ =
ð∞
0
e−zzα−1dz: ð4Þ

Similarly, for n − 1 < β < n, we have

dβ f

dtβ
= 1
Γ n − βð Þ

dn

dtn

ðt
0

f τð Þ
t − τð Þβ+1−n

dτ: ð5Þ

2. Travelling-Wave Similarity Solution of Time-
Fractional Harry Dym Equation

Firstly, we will prove that nonlinear model (1) possesses sim-
ilarity solutions, consider Lie-group scaling transformation
by introducing new variables ~t, ~x, ~u in the form [9]

t = λ~t, x = λp~x, u = λq~u ~x,~t
� �

, ð6Þ

where p and q are parameters to be determined later. It is easy
to verify that the transformed equation reads

λq−α
∂α~u
∂~tα

= λ n+1ð Þq−np~un
∂n~u
∂~xn

, ð7Þ

which implies that q − α = ðn + 1Þq − np, that is

p − q = α

n
: ð8Þ

Since

t
~t
= x

~x

� �1
p, u
~u
= x

~x

� �q
p, ð9Þ

in order to obtain the travelling-wave similarity solution to
time-fractional Harry Dym equation

∂αu
∂tα

= u3uxxx, 0 < α < 1, ð10Þ

we consider the similarity transformation

u = x
q
pU ξð Þ, ξ = ct

x
− 1, ð11Þ

where p, q, and c are constants to be determined. We find that

∂αu
∂tα

= 1
Γ 1 − αð Þ

∂
∂t

ðt
0

xq/pU ct/x − 1ð Þ
t − τð Þα dτ: ð12Þ

Set y = ct/x − 1; then t − τ = ðx/cÞðξ − yÞ, ∂/∂t = ðx/cÞðd/
dξÞ, and then Equation (12) becomes

∂αu
∂tα

= 1
Γ 1 − αð Þ

c
x
d
dξ

ðξ
−1

xq/pU yð Þ
x/cð Þα ξ − yð Þα

x
c
dy = cαx

q−αp
p
dαU ξð Þ
dξα

,

ð13Þ

∂u
∂x

= x
q−p
p

q
p
U ξð Þ − ξ + 1ð ÞU ′ ξð Þ

� �
, ð14Þ

∂2u
∂x2

= x
q−2p
p

q q − pð Þ
p2

U ξð Þ + 2 p − qð Þ
p

ξ + 1ð ÞU ′ ξð Þ + ξ + 1ð Þ2U ′′ ξð Þ
� �

,

ð15Þ
∂3u
∂x3

= x
q−3p
p

q q − pð Þ q − 2pð Þ
p3

U ξð Þ + 3 q − pð Þ 2p − qð Þ
p2

�
� ξ + 1ð ÞU ′ ξð Þ+ 3q − 6p

p
ξ + 1ð Þ2U ′′ ξð Þ − ξ + 1ð Þ3U ′′′ ξð Þ

�
:

ð16Þ
Inserting (13) and (16) into Equation (10) leads to

cαx
q−αp
p
dαU ξð Þ
dξα

= x
4q−3p

p T ξð ÞU3 ξð Þ, ð17Þ

It is easy to find that q − αp = 4q − 3p, that is

q
p
= 1 − α

3 : ð18Þ

Then, the corresponding ordinary nonlinear fractional
Harry Dym equation reads

cα
dαU ξð Þ
dξα

= T ξð ÞU3 ξð Þ: ð19Þ

We take special solutions of (19) in the forms:

U ξð Þ =
Nξρ, ξ ≥ 0
0, ξ < 0:

(
ð20Þ

Substituting (20) into Equation (19) gives

cαNΓ 1 + ρð Þ
Γ 2 − α + ρð Þ 1 − α + ρð Þξρ−α = q q − pð Þ q − 2pð Þ

p3
ξ3

�
+ 3 q − pð Þ 2p − qð Þ

p2
ξ + 1ð Þρξ2+ 3q − 6p

p
ξ + 1ð Þ2ρ ρ − 1ð Þξ

− ξ + 1ð Þ3ρ ρ − 1ð Þ ρ − 2ð Þ
�
N4ξ4ρ−3,

ð21Þ

which leads to ρ − α = 4ρ − 3, then

ρ = 1 − α

3 : ð22Þ
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By using (18) and (22), from Equation (21), we get

N = 18 3 − 2αð ÞcαΓ 2 − 1/3αð Þ
α3 − 9αð ÞΓ 3 − 4/3αð Þ

� �1
3
: ð23Þ

Hence, we obtain the travelling-wave similarity solutions
to Equation (10) as follows:

u x, tð Þ = x
q
pNξρ =N ct − xð Þ1−1

3α

= 18 3 − 2αð ÞcαΓ 2 − 1/3αð Þ
α3 − 9αð ÞΓ 3 − 4/3αð Þ

� �1
3
ct − xð Þ1−1

3α:
ð24Þ

From (23), we get

c = N3 α3 − 9α
� �

Γ 3 − 4/3αð Þ
18 3 − 2αð ÞΓ 2 − 1/3αð Þ

� �1
α

: ð25Þ

Inserting (25) into (24), we finally obtain

u x, tð Þ = x
q
pNξρ =N

N3 α3 − 9α
� �

Γ 3 − 4/3αð Þ
18 3 − 2αð ÞΓ 2 − 1/3αð Þ

� �1
α

t − x

( )1−1
3α

:

ð26Þ

3. Numerical Solutions of Time-Fractional
Diffusion Equation

In order to obtain the numerical solutions of time-fractional
diffusion equation

∂αu
∂tα

= u2uxx, 0 < α < 1, ð27Þ

we consider the similarity transformation

u = x
q
pU ξð Þ, ξ = x−

1
pt, ð28Þ

where UðξÞ, ξ, p, and q are constants to be determined. We
find that

∂αu
∂tα

= 1
Γ 1 − αð Þ x

−1
p
d
dξ

ðξ
0

xq/pU τð Þx−α/p
ξ − τð Þα x

1
pdτ = x

q−α
p
dαU ξð Þ
dξα

,

ð29Þ

∂u
∂x

= x
q−p
p

q
p
U ξð Þ − 1

p
ξU ′ ξð Þ

� �
, ð30Þ

∂2u
∂x2

= x
q−2p
p

q q − pð Þ
p2

U ξð Þ + p − 2q + 1
p2

ξU ′ ξð Þ + 1
p2

ξ2U ′′ ξð Þ
� �

:

ð31Þ

Substituting (29) and (31) into (27), we have correspond-
ing ordinary nonlinear fractional diffusion equation

dαU ξð Þ
dξα

= q q − pð Þ
p2

U3 ξð Þ + p − 2q + 1
p2

ξU2 ξð ÞU ′ ξð Þ

+ 1
p2

ξ2U2 ξð ÞU ′′ ξð Þ, p − q = α

2 :
ð32Þ

In what follows, we discuss its numerical solutions. In
Ref. [12], suppose that a given function f ðtÞ has continuous
first and second derivatives, then we get

f α tð Þ = t1−α

Γ 2 − αð Þ f 1ð Þ tð Þ + 〠
∞

n=1

Γ n − 1 + αð Þ
Γ α − 1ð Þn!tn

ðt
0
τn f 2ð Þ τð Þdτ

" #

+ f 0ð Þ
tαΓ 1 − αð Þ :

ð33Þ

Utilizing the integration by parts on the right-hand side
gives

f α tð Þ = 1
Γ 2 − αð Þ f 1ð Þ tð Þ 1 + 〠

∞

n=1

Γ n − 1 + αð Þ
Γ α − 1ð Þn!

" #
t1−α

(

−
α − 1
tα

f tð Þ + 〠
∞

n=2

Γ n − 1 + αð Þ
Γ α − 1ð Þ n − 1ð Þ!

f tð Þ
tα

+
fVn

tn−1+α

 !" #)

+ f 0ð Þ
tαΓ 1 − αð Þ ,

ð34Þ

where the moments fVn reads

fVn = 1 − nð Þ
ðt
0
τn−2 f τð Þdτ, n = 2, 3,⋯ ð35Þ

As an application, we take finite number of terms in sums
of (34), that is, we take n = 2, 3,⋯,N with suitable chosen
NðN = 7Þ. Thus, from following formula for the fractional
derivative, we have

f α tð Þ = 1
Γ 2 − αð Þ f 1ð Þ tð Þ 1 + 〠

N

n=1

Γ n − 1 + αð Þ
Γ α − 1ð Þn!

" #
t1−α

(

−
α − 1
tα

f tð Þ + 〠
N

n=2

Γ n − 1 + αð Þ
Γ α − 1ð Þ n − 1ð Þ!

f tð Þ
tα

+
fVn

tn−1+α

 !" #)

+ f 0ð Þ
tαΓ 1 − αð Þ ,

ð36Þ

where fVn is given by (35). Similar to the method proposed in
Refs. [13–15], the fractional equation can be replaced by a
system of first-order equations of integer order by using (36).
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In what follows, we consider Equation (32). We utilize
the substitution x1 =U , x2 =U ð1Þ and (35) to express the
fractional derivative UðαÞ. Then, we have the following sys-
tem of first-order equations (with ξ = t)

x 1ð Þ
1 = x2,

x 1ð Þ
2 = p2

x21t
2Γ 2 − αð Þ x2 tð Þ 1 + 〠

N

n=1

Γ n − 1 + αð Þ
Γ α − 1ð Þn!

" #
t1−α

(

−
α − 1
tα

x1 tð Þ + 〠
N

n=2

Γ n − 1 + αð Þ
Γ α − 1ð Þ n − 1ð Þ!

x1 tð Þ
tα

+
fVn

tn−1+α

 !" #)

+ α + 1 − p
t

x2 tð Þ − α2 − 2αp
4t2 x1 tð Þ,

ð37Þ

with differential equations for variables fVn, n = 2,⋯, 7

fV2
1ð Þ

tð Þ = −x1 tð Þ,fV3
1ð Þ

tð Þ = −2tx1 tð Þ,⋯ =⋯,fV7
1ð Þ

tð Þ = −6t5x1 tð Þ,
ð38Þ

subject to

x1 0ð Þ = x0, x2 0ð Þ = v0,fV2 0ð Þ = 0, fV3 0ð Þ = 0,⋯ ð39Þ

4. Two Similarity Solutions of Space-Fractional
Diffusion/Harry Dym Equation (2)

Similarity transformation of space-fractional diffusion/Harry
Dym Equation (2) is similar to the corresponding discussion
of time-fractional diffusion/Harry Dym Equation (1). Take
the following transformation:

t = λ~t, x = λp~x, u = λq~u ~x,~t
� �

: ð40Þ

Equation (2) is transformed to

λq−1
∂~u
∂~t

= λq+βq−βp~uβ
∂β~u
∂~xβ

, ð41Þ

which gives that

p − q = 1
β
: ð42Þ

In terms of

x
~x
= t

~t

� 	1
p

, u
~u
= t

~t

� 	q

, ð43Þ

we have

ξ = t−px, u = tqU ξð Þ: ð44Þ

Then, it is easy to find

ut = tq−1 qU ξð Þ − pξU ′ ξð Þ
h i

, ð45Þ

forn − 1 < β < n, by use of definition (5), one can com-
pute that

dβu x, tð Þ
dxβ

= 1
Γ n − βð Þ

∂n

∂xn

ðx
0

u ~x, tð Þ
x − ~xð Þβ+1−n

d~x: ð46Þ

Let

I x, tð Þ = 1
Γ n − βð Þ

ðx
0

u ~x, tð Þ
x − ~xð Þβ+1−n

d~x: ð47Þ

we have

∂nI x, tð Þ
∂xn

= 1
Γ n − βð Þ

∂n

∂xn

ðx
0

tqU t−p~xð Þ
x − ~xð Þβ+1−n

d~x: ð48Þ

Set ζ = t−p~x; then, we have

x − ~x = tp ξ − ζð Þ, ∂n

∂xn
= t−np

dn

dξn
: ð49Þ

Substituting the above calculations into Equation (46),
we have

dβu x, tð Þ
dxβ

= 1
Γ n − βð Þ t

−np dn

dξn

ðξ
0

tqU ζð Þtp
tp β+1−nð Þ ξ − ζð Þβ+1−n

dζ

= tq−βp
dβU ξð Þ
dξβ

:

ð50Þ

Inserting the above results into (2) yields

tq−1 qU ξð Þ − pξU ′ ξð Þ
h i

= tq+βq−βpUβ ξð Þ d
βU ξð Þ
dξβ

, ð51Þ

which leads to

p − q = 1
β
, ð52Þ

which is equivalent to (42). Thus, we have the following frac-
tional ordinary differential system:

qU ξð Þ − pξU ′ ξð Þ =Uβ ξð Þ d
βU ξð Þ
dξβ

: ð53Þ

Let us consider the solution in this form:

U ξð Þ =Wξσ ð54Þ
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and then insert (54) into (53); we have

q − pσð Þξσ =Wβ Γ 1 + σð Þ
Γ 2 + σ − βð Þ 1 − β + σð Þξσ+σβ−β, ð55Þ

which gives σ = σ + σβ − β, that is

σ = 1: ð56Þ

In terms of (52) and (56), from Equation (55), we get

W = Γ 3 − βð Þ
β β − 2ð Þ
� �1

β

: ð57Þ

Then, we get the following similarity solutions to Equa-
tion (2):

u x, tð Þ = Γ 3 − βð Þ
β β − 2ð Þ
� �1

β

xt−
1
β: ð58Þ

Similar to the discussion of the time-fractional Harry
Dym Equation (10), we can obtain the travelling-wave simi-
larity solution to space-fractional diffusion/Harry Dym
Equation (2). To obtain this solution a suitable similarity
transformation reads

u = t
q
pU ξð Þ, ξ = x

t
−�c, ð59Þ

where p, q, and c are constants to be determined later. We see
that

∂u
∂t

= t
q−p
p

q
p
U ξð Þ − ξ +�cð ÞU ′ ξð Þ

� �
, ð60Þ

∂βu
∂xβ

= 1
Γ n − βð Þ

∂n

∂xn

ðx
0

tq/pU �x/t −�cð Þ
x − �xð Þβ+1−n

d�x: ð61Þ

Set z = �x/t −�c, and then x − �x = tðξ − zÞ, ∂n/∂xn = t−nðdn
/dξnÞ; then, Equation (61) becomes

∂βu
∂xβ

= 1
Γ n − βð Þ t

−n dn

dξn

ðξ
−1

tq/pU zð Þ
tβ+1−n ξ − zð Þβ+1−n

tdz = t
q−βp
p
dβU ξð Þ
dξβ

:

ð62Þ

Inserting (60) and (62) into (2) yields

t
q−p
p

q
p
U ξð Þ − ξ +�cð ÞU ′ ξð Þ

� �
= t

q+βq−βp
p Uβ ξð Þ d

βU ξð Þ
dξβ

, ð63Þ

which gives rise to

q
p
= 1 − 1

β
: ð64Þ

Thus, we get the following fractional ordinary differential
system:

dβU ξð Þ
dξβ

= 1 − 1
β

� 	
U1−β ξð Þ − ξ +�cð ÞU−β ξð ÞU ′ ξð Þ: ð65Þ

We take special solutions of (65) in the forms

U ξð Þ = U1ξ
δ, ξ ≥ 0

0, ξ < 0:

(
ð66Þ

Substituting (66) into Equation (65) gives

U1Γ 1 + δð Þ
Γ 2 + δ − βð Þ 1 − β + δð Þξδ−β =U1−β

1 1 − 1
β

� 	
ξ − δ ξ +�cð Þ

� �
ξδ−δβ−1,

ð67Þ

which implies

δ = 1 − 1
β
: ð68Þ

Then, we have

U1 =
�cΓ 3 − β − 1/βð Þ
β − 1ð ÞΓ 2 − 1/βð Þ

� �1
β

: ð69Þ

Thus, we obtain the following travelling-wave similarity
solution:

u x, tð Þ = �cΓ 3 − β − 1/βð Þ
β − 1ð ÞΓ 2 − 1/βð Þ

� �1
β

x −�ctð Þ1−1
β: ð70Þ

5. Conclusions

In this paper, through similarity transformations, two nonlin-
ear models of time-fractional and space-fractional diffusion/-
Harry Dym equation are transformed to corresponding
ordinary fractional differential equations, from which four
similarity solutions are presented, including travelling-wave
similarity solutions and numerical solutions. The technology
presented in this paper can be applied to other fractional par-
tial differential equations, such as multi-equation systems and
(2 + 1)-dimensional equations, to get more various similarity
solutions, which will enrich and supplement the known
results.
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