
Similarity testing for access control

Antonia Bertolino a, Said Daoudagh a, Donia El Kateb b, Christopher Henard b, Yves Le Traon b,
Francesca Lonetti a, Eda Marchetti a, Tejeddine Mouelhi b,⇑, Mike Papadakis b

a Istituto di Scienza e Tecnologie dell’Informazione ‘‘A. Faedo’’, Consiglio Nazionale delle Ricerche via G. Moruzzi 1, 56124 Pisa, Italy
b Interdisciplinary Research Centre, SnT, University of Luxembourg, Luxembourg

a r t i c l e i n f o

Article history:

Received 4 November 2013

Received in revised form 4 July 2014

Accepted 6 July 2014

Available online 21 July 2014

Keywords:

Similarity

Test prioritization

Security policies

a b s t r a c t

Context: Access control is among the most important security mechanisms, and XACML is the de facto

standard for specifying, storing and deploying access control policies. Since it is critical that enforced pol-

icies are correct, policy testing must be performed in an effective way to identify potential security flaws

and bugs. In practice, exhaustive testing is impossible due to budget constraints. Therefore the tests need

to be prioritized so that resources are focused on their most relevant subset.

Objective: This paper tackles the issue of access control test prioritization. It proposes a new approach for

access control test prioritization that relies on similarity.

Method: The approach has been applied to several policies and the results have been compared to ran-

dom prioritization (as a baseline). To assess the different prioritization criteria, we use mutation analysis

and compute the mutation scores reached by each criterion. This helps assessing the rate of fault detec-

tion.

Results: The empirical results indicate that our proposed approach is effective and its rate of fault detec-

tion is higher than that of random prioritization.

Conclusion: We conclude that prioritization of access control test cases can be usefully based on similar-

ity criteria.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modern networked systems must be equipped with security

services that provide adequate protection to users and companies

in a relatively open environment. Several approaches and infra-

structures, e.g., [1,2] have been recently proposed for the delivery

of adaptive dynamic services that can provide seamless connectiv-

ity while preserving privacy and confidentiality of personal and

critical data.

Security is achieved through appropriate mechanisms that

guarantee the confidentiality, integrity and availability (the

so-called CIA triad) of on-line data. Among security mechanisms,

one important component is the access control system, which medi-

ates all requests of access to protected data. Access control ensures

that only the intended, i.e., authorized users can access the data,

and that these intended users are only given the level of access

required to accomplish their tasks. In short, the access control sys-

tem replies to an authorization request with a permit/deny deci-

sion that is typically based on predefined security policies. Any

fault in the access control system could lead to security flaws,

resulting in either denial of accesses that should be allowed, or,

even worse, allowance of accesses to non authorized users. Thus,

it is important to perform a careful verification and validation of

such system.

XACML [3] is the de facto standard for specifying, storing and

deploying access control policies. However, the process of XACML

policy specification can be error-prone due to the language com-

plexity. Several approaches have been proposed to automate the

generation of XACML tests, including Targen [4] and X-CREATE

[5]. A common drawback of existing tools is that they produce a

huge number of tests. For evident limitations of testing budget

and time, it is generally impossible to run all those tests and check

that the results are correct (this latter step is usually done manu-

ally). Therefore means to identify, among the many generated

tests, those ones that deserve higher priority are crucial. This paper

focuses on this specific issue, namely, on XACML test prioritization.

Test prioritization has been widely investigated in the field

of software testing: it aims at defining a test execution order

http://dx.doi.org/10.1016/j.infsof.2014.07.003

0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

E-mail addresses: antonia.bertolino@isti.cnr.it (A. Bertolino), said.daoudagh@isti.

cnr.it (S. Daoudagh), donia.elkateb@uni.lu (D. El Kateb), christopher.henard@uni.lu

(C. Henard), yves.letraon@uni.lu (Y. Le Traon), francesca.lonetti@isti.cnr.it

(F. Lonetti), eda.marchetti@isti.cnr.it (E. Marchetti), tejeddine.mouelhi@uni.lu

(T. Mouelhi), mike.papadakis@uni.lu (M. Papadakis).

Information and Software Technology 58 (2015) 355–372

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.07.003
mailto:antonia.bertolino@isti.cnr.it
mailto:said.daoudagh@isti.cnr.it
mailto:said.daoudagh@isti.cnr.it
mailto:donia.elkateb@uni.lu
mailto:christopher.henard@uni.lu
mailto:yves.letraon@uni.lu
mailto:francesca.lonetti@isti.cnr.it
mailto:eda.marchetti@isti.cnr.it
mailto:tejeddine.mouelhi@uni.lu
mailto:mike.papadakis@uni.lu
http://dx.doi.org/10.1016/j.infsof.2014.07.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


according to some criteria (e.g., coverage, fault detection rate), so

that those tests that have a higher priority are executed before

the ones having a lower priority. Several proposals include

approaches for test prioritization in the context of regression test-

ing [6,7]. We clarify that in this paper we do not address prioritiza-

tion techniques expressly for regression testing; more in general

we aim at deriving a test execution order for a given test suite.

In [8], several test prioritization techniques are used to increase

the fault detection rate of test suites. More recent results [9] still

confirm the effectiveness of test case prioritization based on fault

detection rate and show the flexibility of the approach for applica-

tion in different contexts. However, as demonstrated in [10], no

prioritization metric is the best one for any system: indeed, the

performance of the prioritization approach varies according to

the considered application and could depend on the evaluated test

suites. Another proposal addresses time-constrained test prioriti-

zation in the context of integer programming [11].

An approach that is currently considered very promising is

based on the notion of test similarity, e.g., [12]: the intuition

behind similarity-based prioritization is that when resources are

limited and only a subset of test cases within a large test suite

can be executed, then it is convenient to start from those that

are the most dissimilar according to a predefined distance function.

In this paper, we propose to adapt similarity-based prioritization

to order XACML test cases. To do this, we need to capture and specify

what is a suitable notion of distance between XACML requests.

To the best of our knowledge, our approach is the first attempt

to introduce a prioritization strategy in XACML access control

systems. The approach has been implemented into a tool called

SIMTAC (SIMilarity Testing for Access-Control) that is publicly

available for download.1

To evaluate the proposed prioritization strategy for the testing

of XACML access control systems, we consider the fault detection

rate criterion. In particular, we rely on mutation analysis to inject

faults into the XACML policy, and challenge the ordered tests to

detect the faults seeded in the policy itself. The goal is to end up

with XACML tests ordered in a way that enables to quickly reach

a high mutation score.

The contributions of this paper include:

� the introduction of the first test prioritization technique for

XACML access control systems;

� the definition of two XACML similarity metrics, a simple one

independent of the XACML policy, and another exploiting the

XACML policy specification;

� an empirical study that compares different alternative tech-

niques to prioritize XACML requests (on six policies of various

complexity) for assessing our proposed technique.

The remainder of this paper is organized as follows. Section 2

introduces the XACML language and how XACML test cases are

generated. Section 3 motivates this work while Section 4 presents

our new test similarity-based prioritization approach. Then, Sec-

tion 5 shows the empirical evaluation of the proposed approach,

followed by Section 6 that discusses threats to validity. Finally,

Section 7 presents the related work and Section 8 concludes the

paper, also hinting at future work.

2. Background

This section introduces the background behind the proposed

approach. Specifically, we first present the XACML language and

an XACML policy example. Then we focus on XACML requests gen-

eration and provide a short description of a combinatorial testing

strategy used for deriving the test suites adopted in the empirical

validation.

2.1. XACML language

XACML [3] is a de facto standardized specification language that

defines access control policies and access control decision

requests/responses in an XML format. An XACML policy defines

the access control requirements of a protected system. An access

control request aims at accessing a protected resource in a given

system whose access is regulated by a security policy. The request

is evaluated against the policy and the access is granted or denied.

The main components of an access control systems architecture

are the Policy Enforcement Point (PEP) and the Policy Decision

Point (PDP). A PEP intercepts a user’s request, transforms it into

an XACML format and transmits it to the PDP. As showed in

Fig. 1, the PDP evaluates the request against the XACML policy

and returns the access response (Permit/Deny/NotApplicable/

Indeterminate).

In a simplified vision an XACML policy has a hierarchical struc-

ture: at the top level there is the policy set, which can contain in

turn one (or more) policy set(s) or policy elements. A policy set (a

policy) consists of a target, a set of rules and a rule combining algo-

rithm. The target specifies the subjects, resources, actions and

environments on which a policy can be applied. If a request satis-

fies the target of the policy set (policy), then the set of rules of the

policy set (policy) is checked, else the policy set (policy) is skipped.

A rule is composed by: a target, which specifies the constraints

of the request that are applicable to the rule; a condition, which

is a boolean function evaluated when the request is applicable to

the rule. If the condition is evaluated to true, the result of the rule

evaluation is the rule effect (Permit or Deny), otherwise a NotAppli-

cable result is given. If an error occurs during the application of a

request to the policy, Indeterminate is returned. The rule combining

algorithm specifies the approach to be adopted to compute the

decision result of a policy when more than one rule may be appli-

cable to a given request. For instance, the permit-overrides algo-

rithm specifies that Permit takes the precedence regardless of the

result of evaluating any of the other rules in the combination, then

it returns Permit if there is a rule that is evaluated to Permit, other-

wise it returns Deny if there is at least a rule that is evaluated to

Deny and all other rules are evaluated to NotApplicable. If there

is an error in the evaluation of a rule with Permit effect and the

other policy rules with Permit effect are not applicable, the

Indeterminate result is given. The access decision is given by

considering all attribute and element values describing the sub-

ject, resource, action and environment of an access request and

comparing them with the attribute and element values of the

policy.

Listing 1 illustrates an XACML policy with two rules. The first

rule (lines 33–67) states that a student can borrow and return

books from the library. The second rule (lines 68–96) states that

a professor is authorized to buy books for the library.

Fig. 1. XACML policy evaluation.1 A release of the SIMTAC tool is available at http://labse.isti.cnr.it/tools/simtac.

356 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372

http://labse.isti.cnr.it/tools/simtac


1 <Pol i cySet xmlns=”xacml:2 . 0 : p o l i c y : s c h ema : o s ”
2 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”
3 PolicyCombiningAlgId=” f i r s t −app l i c ab l e ” Po l i cySet Id=” LibrarySet ”>

4 < !−− THE POLICY SET TARGET −−>

5
6 <Target>
7 <Resources>
8 <Resource>
9 <ResourceMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

10 <Attr ibuteValue DataType=” s t r i n g ”>Book</Attr ibuteValue>

11 <ResourceAttr ibuteDes ignator Att r ibute Id=” resource−id ” DataType=” s t r i n g ”/>
12 </ResourceMatch>

13 </Resource>
14 </Resources>
15 </Target>
16 <Pol i cy Po l i cy Id=”Library ” RuleCombiningAlgId=” f i r s t −app l i c ab l e ”>

17
18 < !−− THE POLICY TARGET −−>

19
20 <Target>
21 <Subjec t s>
22 <Subject>
23 <SubjectMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

24 <Attr ibuteValue DataType=” s t r i n g ”>Student</Attr ibuteValue>

25 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” subject−id ” DataType=” s t r i n g ”/>
26 </SubjectMatch>

27 </ Subject>
28 </ Subjec t s>
29 </Target>
30
31 < !−− THE POLICY RULES −−>

32
33 <Rule E f f e c t=”Permit” RuleId=”Rule1”>

34
35 < !−− RULE 1 TARGET: SUBJECTS, RESOURCES AND ACTIONS −−>

36
37 <Target>
38 <Subjec t s> <Subject>
39 <SubjectMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

40 <Attr ibuteValue DataType=” s t r i n g ”>Student</Attr ibuteValue>

41 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” subject−id ” DataType=” s t r i n g ”/>
42 </SubjectMatch>

43 </ Subject>
44 </ Subjec t s>
45 <Resources><Resource>
46 <ResourceMatch
47 MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

48 <Attr ibuteValue DataType=” s t r i n g ”>Book</Attr ibuteValue>

49 <ResourceAttr ibuteDes ignator Att r ibute Id=” resource−id ” DataType=” s t r i n g ”/>
50 </ResourceMatch>

51 </Resource>
52 </Resources>
53 <Actions><Action>

54 <ActionMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

55 <Attr ibuteValue DataType=” s t r i n g ”>Borrow</Attr ibuteValue>

56 <Act ionAttr ibuteDes ignator Attr ibute Id=” act ion−id ” DataType=” s t r i n g ”/>
57 </ActionMatch>

58 </Action>

59 <Action>

60 <ActionMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

61 <Attr ibuteValue DataType=” s t r i n g ”>Return</Attr ibuteValue>

62 <Act ionAttr ibuteDes ignator Attr ibute Id=” act ion−id ” DataType=” s t r i n g ”/>
63 </ActionMatch>

64 </Action>

65 </Actions>
66 </Target>
67 </Rule>
68 <Rule E f f e c t=”Permit” RuleId=”Rule2”>

69
70 < !−− RULE 2 TARGET: SUBJECTS, RESOURCES AND ACTIONS −−>

71
72 <Target>
73 <Subjec t s><Subject>
74 <SubjectMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

75 <Attr ibuteValue DataType=” s t r i n g ”>Pro f e s s o r</Attr ibuteValue>

76 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” subject−id ” DataType=” s t r i n g ”/>
77 </SubjectMatch>

78 </ Subject>
79 </ Subjec t s>
80 <Resources><Resource>
81 <ResourceMatch
82 MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

83 <Attr ibuteValue DataType=” s t r i n g ”>Book</Attr ibuteValue>

84 <ResourceAttr ibuteDes ignator Att r ibute Id=” resource−id ” DataType=” s t r i n g ”/>
85 </ResourceMatch>

86 </Resource>
87 </Resources>
88 <Actions> <Action>

89 <ActionMatch MatchId=” u rn : o a s i s : n ame s : t c : x a cm l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

90 <Attr ibuteValue DataType=” s t r i n g ”>Buy</Attr ibuteValue>

91 <Act ionAttr ibuteDes ignator Attr ibute Id=” act ion−id ” DataType=” s t r i n g ”/>
92 </ActionMatch>

93 </Action>

94 </Actions>
95 </Target>
96 </Rule>
97 </ Po l i cy>

98 </ Po l i cySet>

Listing 1. XACML policy example.

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 357



An XACML request is composed of four elements: a subject, a

resource, an action and an environment. The values and types of

these four elements should be among the values and types defined

by the policy rules or targets. Testing an XACML policy involves

generating a set of requests to be evaluated based on the policy.

The responses to these requests are then checked against the

expected decisions. The next section presents a strategy for auto-

matically generating the XACML requests.

2.2. Test cases generation

A critical issue in testing XACML access control systems is the

generation of an effective test suite.

Listing 2 presents an example of an XACML request of a student

asking to borrow a book from the library. In detail the request con-

tains one subject attribute (Student), one action attribute (Borrow)

and one resource attribute (Book). If this request is evaluated con-

sidering the XACML policy of Listing 1, a Permit decision is returned

allowing the access. Specifically, this request will be first evaluated

against the target of the policy set (line 6–15): it will be applicable

to this target since it matches the resource Book; then it will be

evaluated against the target of the policy (line 20–29): it will be

applicable to this target since it matches the subject Student;

finally it will be evaluated against the rules Rule1 (line 33–67)

and Rule2 (line 68–96): it will be applicable to Rule1 since it

matches the subject Student, the resource Book and one of the

two actions specified in that rule (the Borrow action), whereas it

will be not applicable to the rule Rule2 since it does not match

the subject and action of this rule. Because the defined algorithm

in the policy is first-applicable, the effect of the first rule, i.e., Permit

will be returned.

Several common approaches for generating XACML requests are

based on combinatorial strategies, as surveyed in Section 7. In this

paper, among the tools available for test cases generation we refer

to X-CREATE [13,5,14].2 In particular, we use the Simple Combinato-

rial test strategy implemented in this tool for deriving the test suites

used to empirically validate the effectiveness of the proposed XACML

prioritization approach.

The Simple Combinatorial strategy applies a combinatorial

approach to the policy values. Specifically, four data sets called

SubjectSet, ResourceSet, ActionSet and EnvironmentSet are defined.

These sets are filled with the values and the attributes of the policy

elements hSubjectsi, hResourcesi, hActionsi and hEnviron-

mentsi, respectively. The elements and attributes values in each

set are then combined in order to obtain the entities. Specifically,

a subject entity is defined as a combination of the values of ele-

ments and attributes of the SubjectSet set. Similarly the resource

entity, the action entity and the environment entity represent com-

binations of the values of the elements and attributes of the

ResourceSet, ActionSet, and EnvironmentSet respectively.

Then, an ordered set of combinations of subject entities, resource

entities, action entities and environment entities is generated in the

following way:

� First, pair-wise combinations are generated to obtain the PW

set.

� Then, three-wise combinations are generated to obtain the TW

set.

� Finally, four-wise combinations are generated to obtain the FW

set.

These sets have the following inclusion propriety PW# TW#

FW . Thus, the maximum number of requests derived by this

strategy is equal to the cardinality of the FW set. The X-CREATE

framework provides an ordered set of requests guaranteeing a

coverage first of all pairs, then of all triples and finally of all

quadruples of values entities derived by the policy. Since the

Simple Combinatorial strategy relies only on the values entities

specified in the policy, the derived test suite can be used for test-

ing either the policy or the PDP. More details about this strategy

are in [5].

3. Motivation

It is a shared understanding in testing environments that auto-

mated support tools for test cases generation and execution can

drastically reduce the huge time and effort usually required for

these activities. However, the activity of checking the testing out-

comes remains largely a manual task and can become the bottle-

neck of the overall testing process. In fact, deciding whether each

test result is correct or not can be a budget-consuming activity,

especially when a (possibly large) number of tests is automatically

executed.

During the TAS3 [1] project, we performed an experiment that

aimed at evaluating the impact of test activities inside the develop-

ment of a commercial access control system. We found that

automatic test requests generation and execution required only

0.02% of the overall testing time, and that the (manual) analysis

of test results took the remaining 99.98% [14]. Thus an emerg-

ing challenge is to provide applicable and efficient proposals to

reduce the effort needed during the manual check of the test

outputs.

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <Request>
3 <Subject>
4 <Attr ibute Att r ibute Id=” subject−id ” DataType=”XMLSchema#s t r i n g ”>
5 <Attr ibuteValue>Student</Attr ibuteValue>

6 </ Attr ibute>

7 </ Subject>
8 <Resource>
9 <Attr ibute Att r ibute Id=” resource−id ”

=epyTataD01 ”XMLSchema#s t r i n g ”>
11 <Attr ibuteValue>Book</Attr ibuteValue>

12 </ Attr ibute>

13 </Resource>
14 <Action>

15 <Attr ibute Att r ibute Id=” act ion−id ”
=epyTataD61 ”XMLSchema#s t r i n g ”>

17 <Attr ibuteValue>Borrow</Attr ibuteValue>

18 </ Attr ibute>

19 </Action>

20 <Environment/>

21 </Request>

Listing 2. XACML request example.

2 A release of the X-CREATE tool is available from http://labse.isti.cnr.it/tools/

xcreate.

358 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372

http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate


In software testing, solutions to reduce the cost of verdict anal-

ysis include either the development and adoption of automatic

mechanisms (usually called the test oracles), or the application of

proper strategies for test cases selection [15,16] or prioritization

[12].

To the best of our knowledge, in the context of access control

systems the only available proposal to automatically check

whether the test outputs are correct, is provided in [17]. This work

proposes to simultaneously observe the responses from different

PDPs on the same test inputs, so that different responses can high-

light possible issues. Although effective, the proposal is quite

demanding, because it requires using different PDP implementa-

tions. The cost and effort necessary for the approach may prevent

its applicability in a commercial settings.

In test case selection, the aim is to reduce the cardinality of the

test suites while keeping the same effectiveness in terms of cover-

age or fault detection rate; in test case prioritization, the aim is to

order the test cases so that those having the highest priority can be

executed first. In this paper, we take the latter direction by

performing XACML requests prioritization.

In our previously mentioned experiment [14], we learned sev-

eral lessons for improving the test suite effectiveness and reducing

the cost of verdict analysis. First, it is evident that only those

requests that are applicable to a policy (namely those that contain

values matching the target of the policy set, the target of the policy

and the target of the rule) will trigger the rule decision and hence

facilitate the identification of possible access problems related to

the policy. This evidence has been used for the ad hoc selection

of the test cases. Then, the execution of such selected test cases

and the analysis of the obtained results highlighted that: (i) the

effectiveness of the reduced test suites in terms of verdict coverage

was preserved; (ii) the cardinality of the reduced test suites for

some policies was drastically decreased; (iii) the analysis time of

the verdicts of all reduced test suites was reduced of the 95%.

On the basis of the above experience, we reached the conclusion

that only specific test case selection criteria taking into account the

policy values and the request applicability to the XACML policy,

represent feasible and effective solutions for testing access control

systems.

In this paper we employ this lesson, learned in the context of

XACML test case selection, for prioritization and present an

approach, implemented into the SIMTAC tool, taking into account

the applicability of the request to the policy. More specifically we

propose an XACML test case prioritization approach based on sim-

ilarity, using two different metrics: (i) a standard similarity metric

applied to XACML test suites (we call it simple similarity), and (ii) a

more specific similarity metric for the prioritization of test cases

within an XACML test suite (we call it XACML similarity). In partic-

ular the latter implements the previously mentioned recommen-

dation, by prioritizing those requests triggering the rule decision

of an XACML policy.

4. Similarity metrics

Similarity is a heuristic that is used here to order access control

requests, i.e., the test cases. Previous work on model-based testing,

such as [18], has shown that dissimilar test cases bestow a higher

fault detection power than similar ones. Analogously, the experi-

ment results presented in this paper (see Section 5) show that

two dissimilar access control requests are likely to find more

access control faults than two similar ones.

In the following, we consider a test suite of r access control

requests fR1; . . . ;Rrg. A similarity-based prioritization approach

consists of two steps. The first step involves the definition of a dis-

tance metric d between any two access control requests Ri and Rj,

where 1 6 i; j 6 r. This metric is used to evaluate the degree of

similarity between two given requests: the highest the resulting

distance, the most different the two requests. The second step is

the ordering of these r requests. To this end, we first compute

the distance between each pair of requests. Then, a prioritization

algorithm uses the computed distances to select the most dissim-

ilar requests, resulting in a list where the first selected requests are

the most dissimilar ones. In Sections 4.1–4.3 we introduce the sim-

ilarity distances proposed in this paper (step 1), whereas in Sec-

tion 4.4 we show the prioritization algorithm (step 2).

4.1. Distance metrics between access control requests

We present two methods for calculating a distance metric d

between any two access control requests. The former, called the

simple similarity, is based on the lexical distance of the requests

parameters (subject, resource, action, environment). In this case

the distance dss can be generally defined as follows:

dss :
R� R ! f0;1;2;3;4g

ðRi;RjÞ # dssðRi;RjÞ
:

The latter, called the XACML similarity, takes into account the

requests attributes values (as the simple similarity) and the XACML

policy. The idea is to go through all levels of a policy, from the pol-

icy set target to the rules targets, and compare the request attri-

butes values with the targets values at each level.

The comparison between an XACML request and an XACML pol-

icy is performed following a relation called here Applicability. Spe-

cifically, if the request matches a target at some level (policy set,

policy or rule), then it is considered to be applicable.

For the XACML similarity, the distance dxs between requests is

policy-dependent and can be generally defined as follows:

dxs :
R� R� XP ! Rþ

ðRi;Rj;XPkÞ # dxsðRi;Rj;XPkÞ
:

For both simple similarity and XACML similarity, we adopt the

convention that the higher is the resulting distance value, the more

dissimilar are the two requests, with a distance value equal to 0

meaning that two requests are identical.

Fig. 2 outlines the main steps for computing the two distance

metrics given two requests Ri and Rj belonging to a test suite of r

access control requests fR1; . . . ;Rrg.

As shown in Fig. 2 (light gray part), the simple similarity distance

dssðRi;RjÞ is derived by parsing each pair of requests ðRi;RjÞ, where

1 6 i; j 6 r, so as to extract their attributes values {subject; resource,

action and environment}.

These values are represented in Fig. 2 by the vectors called

ðVRi ;VRj Þ, where 1 6 i; j 6 r. The similarity distance dssðRi;RjÞ is

computed by comparing the vectors ðVRi ;VRj Þ and counting the

number of attributes having different values in the two vectors.

As an example we consider the attribute values of a set of six

requests R1;R2; . . . ;R6 obtained by the application of the Simple

Combinatorial Strategy described in Section 2.2 to the policy of

Listing 1.

� R1 ¼ fStudent;Book;Buy;nullg,

� R2 ¼ fProfessor;Book;Borrow;nullg,

� R3 ¼ fStudent;Book;Return;nullg,

� R4 ¼ fProfessor;Book;Return;nullg,

� R5 ¼ fProfessor;Book;Buy;nullg,

� R6 ¼ fStudent;Book;Borrow;nullg.

For instance, dssðR1;R3Þ ¼ 1 and dssðR3;R6Þ ¼ 1 since only the

action attribute is different in the two requests, while

dssðR1;R2Þ ¼ 2 since both the subject and the action differ in R1

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 359



and R2. More details about the simple similarity distance are pro-

vided in Section 4.2.

The XACML similarity distance dxsðRi;Rj;XPÞ, of each couple of

requests fRi;Rjg, where 1 6 i; j 6 r, is a policy-dependent measure

that uses three different values: (i) the simple similarity distance

dssðRi;RjÞ; (ii) the Applicability value of the couple ðRi;RjÞ to the

policy XP; and (iii) the value of a priority relation of Ri and Rj.

The computation of the Applicability value of a couple ðRi;RjÞ to

the policy XP includes two steps:

1. the derivation of the applicability degrees of each request to the

XACML policy;

2. the summing up of the applicability degrees of the couple

ðRi;RjÞ.

Precisely, for each request Ri, where 1 6 i 6 r, five degrees of

applicability are considered: rule applicability (ruad): for each rule

of the policy, it represents the degree to which the request can sat-

isfy first the targets of the policy sets and the policy which the rule

belongs to, and then the target of the rule itself; subject applicability

(sad) [resource applicability (rad), action applicability (aad), environ-

ment applicability (ead) respectively]: it represents the degree to

which the subject [resource, action, environment] of the request

can match first the subjects [resources, actions, environments] of

the targets of the policy sets and the target of the policy which

the rule belongs to, and then the target of the rule itself.

For instance, considering the XACML request R3 and the rule

Rule1 of Listing 1 (line 33–67), the five applicability degrees of R3

to the rule Rule1 are as follows:

ðruad; sad; rad; aad; eadÞ ¼ 1;1;1;
1

2
;0

� �

Specifically, the ruad value is 1 because the request R3 exactly

matches the target of the policy set, that of the policy and that of

the rule Rule1; sad is 1 because the subject of R3, i.e., Student

exactly matches the subject of the target of the policy set, that of

the policy and that of the rule Rule1; similarly rad is 1 because

the resource of R3, i.e., Book exactly matches the resource of the

target of the policy set, that of the policy and that of the rule

Rule1; aad is 1
2
since the action of R3, i.e., Return matches only

one of the two actions of the target of the rule Rule1, i.e., Borrow

and Return and the target of the policy set and that of the policy

do not contain action values. Finally, ead is 0 since R3 does not

specify any environment value.

As shown in Fig. 2 (dark gray part), for each request Ri, the first

step of the computation of the applicability values provides a 5� n

matrix (where n is the cardinality of the XACML policy rules),

Applicability Matrix, of the request Ri ðAMRi Þ. Each column h of

the matrix AMRi contains the ruad, sad, rad, aad, ead values that

refer to the h-th rule of the policy P.

For instance the applicability matrix of the request R3 to the

rules of the policy of Listing 1 is:

AMR3 ¼

1:0 2
3

1:0 1:0

1:0 1:0
1
2

0:0

0:0 0:0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

where the first column is the applicability vector of R3 to rule Rule1

described above, whereas the second one is the applicability vector

of R3 to rule Rule2.

Similarly, the applicability matrix of the request R6 to the rules

of the same policy is:

AMR6 ¼

1:0 2
3

1:0 1:0

1:0 1:0
1
2

0:0

0:0 0:0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

The second step in the computation of the Applicability value

consists in summing up the applicability degrees of each couple

of matrices ðAMRi ;AMRj Þ, where 1 6 i; j 6 r. In Fig. 2 the result of

this sum is called appValueðRi;RjÞ.

For instance the applicability value of ðAMR3 ;AMR6 Þ is

6.17 + 6.17 = 12.34 where 6.17 and 6.17 are the sum of all the val-

ues of AMR3 and AMR6 , respectively.

The third value used in the computation of the XACML similar-

ity distance dxsðRi;Rj;XPÞ is represented by the priority of each pair

of access control requests. The priority value for the couple ðRi;RjÞ

Fig. 2. Main steps for computing similarity metrics.

360 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372



is computed according to the applicability of the requests to the

XACML policy and can be equal to 3, 2, 1, 0. This priority value will

be equal to: 3 when both requests are applicable to at least a rule, 0

when both requests are not applicable to any rule. The aim is to

give higher priority to those couples of requests able to trigger

the Effect (Permit or Deny) of the rules.

As in Fig. 2, the computation of the priority value (called

priorityðRi;RjÞ) is performed by analyzing each couple of matrices

ðAMRi ;AMRj Þ. For instance, considering the above presented matri-

ces AMR3 and AMR6 , the priority value associated to the pair of

requests ðR3;R6Þ is 3 since both requests are applicable to the rule

Rule1.

The XACML similarity distance dxsðRi;Rj;XPÞ is finally computed

by summing the three obtained values ðdssðRi;RjÞ; appValue

ðRi;RjÞ; priorityðRi;RjÞÞ.

For instance the XACML similarity distance between the

requests R3 and R6 is 1 + 12.34 + 3 = 16.34 where 1 is the simple

similarity distance between R3 and R6, 12.34 is the applicability

value and 3 is the priority value computed as before.

In the following sections details about the computation of the

two distance measures are provided.

4.2. Simple similarity

Given two requests ðRi;RjÞ, the simple similarity dssðRi;RjÞ

is defined based on a comparison between the request attri-

butes values. There are four attributes in each request:

{subject; action; resource and environment}. For each attribute, the

simple similarity compares the values in the two requests ðRi;RjÞ.

The distance increases each time a given attribute has different

values in the two requests. Since the evaluation is based on four

attributes, the final distance varies between 0 and 4. Formally,

the simple similarity is defined as follows:

dssðRi;RjÞ ¼
X

4

k¼1

d
k
attributeðRi;RjÞ

where

d
k
attributeðRi;RjÞ ¼

1 Ri:attribute½k� – Rj:attribute½k�

0 otherwise

�

The similarity distance values relative to a set of requests

fR1; . . . ;Rrg are represented by a r � r matrix, called the Simple

Similarity Matrix (SSM)

SSM : ðR� RÞ ! f0;1;2;3;4g

defined as:

½SSM�i;j ¼ dssðRi;RjÞ i; j ¼ 1;2; . . . ; r and i < j:

Considering the six requests R1;R2; . . . ;R6 presented in the pre-

vious section, the SSM matrix is

4.3. XACML similarity

In this section, we first provide some definitions about the

applicability of a couple of requests to an XACML policy (Sec-

tion 4.3.1), then we present the priority relation (Section 4.3.2),

and finally we formally define the XACML similarity distance

(Section 4.3.3).

4.3.1. Applicability definitions

Applicability is a relation between an XACML request and an

XACML policy. We introduce first the Applicability Degree, which

represents the percentage of a rule that is satisfied by a request.

For each request the Applicability Degree values associated to the

whole set of rules are collected into a matrix called the Applicability

Matrix (Definition 1). This matrix summarizes the applicability of

the request to the XACML policy. In particular, the sum of the ele-

ments of the Applicability Matrix provides the Request Applicability

Value, which is used for assessing the requests against each other

in terms of overall applicability to the policy. Then, for each couple

of requests, we compute their Applicability Value, calculated as the

sum of their respective Request Applicability Values, which repre-

sents the overall applicability degree of a couple of requests to

the XACML policy.

As already introduced in Section 4.1, for each request Ri, where

1 6 i 6 r, five degrees of applicability are considered: rule applica-

bility (ruad); subject applicability (sad); resource applicability (rad);

action applicability (aad), environment applicability (ead). These five

values are represented into a Column Vector of length 5 called

Applicability Degree, ADRU , defined as follows:

ADRU ¼

ruadRU

sadRU

radRU

aadRU

eadRU

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

For instance, considering the XACML request R3 and the rule

Rule1 of Listing 1 (line 33–67), the Applicability Degree of R3 to

the rule Rule1, as already explained in Section 4.1, can be shown

by the following Column Vector:

ADRURule1
¼

1

1

1
1
2

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

To each request we associate a 5� n matrix, where n is cardi-

nality of the XACML policy rules, called Applicability Matrix of

the request RiðAMRi Þ. Each column k of the matrix AMRi contains

the ruadk; sadk, radk; aadk; eadk values that refer to the k-th rule

of the XACML policy XP.

Definition 1 (Applicability Matrix). Given a request R and a set of n

element Rules {RUi}, where i ¼ 1; . . . ; n, the Applicability Matrix

of R, called AMR, is a 5� n matrix defined as:

AMR ¼ ADRU1
ADRU2

. . . ADRUn½ �:

Considering the set of XACML requests introduced in Section 4.1,

{R1;R2; . . . ;R6}, and according to Definition 1, we have the follow-

ing Applicability Matrices:

AMR1 ¼

2
3

2
3

1:0 1:0

1:0 1:0

0:0 0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

AMR2 ¼

1
3

1
3

0:0 0:0

1:0 1:0

0:0 0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

AMR3 ¼

1:0 2
3

1:0 1:0

1:0 1:0

1
2

0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 361



AMR4 ¼

1
3

1
3

0:0 0:0

1:0 1:0

0:0 0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

AMR5 ¼

1
3

1
3

0:0 0:0

1:0 1:0

0:0 0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

AMR6 ¼

1:0 2
3

1:0 1:0

1:0 1:0

1
2

0:0

0:0 0:0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

Definition 2 (Request Applicability Value). Given an XACML

request R, and its 5� n Applicability Matrix AMR, the Request

Applicability Value associated to R, called RAR is defined as:

RAR ¼
X

5

h¼1

X

n

k¼1

½AMR�h;k:

Definition 3 (Applicability Value). Given a couple of requests

ðRi;RjÞ and their Request Applicability Values RARi ;RARj , the Appli-

cability Value associated to the couple of requests, called AppValue

ðRi;RjÞ is defined as:

AppValueðRi;RjÞ ¼ RARi þ RARj :

Considering the XACML requests, R1 and R3, their Applicability

Matrices AMR1 ; AMR3 , and according to Definition 2, the Request

Applicability Value associated to R1 is

RAR1 ¼
X

5

h¼1

X

2

k¼1

½AMR1 �h;k ¼ 5:33

while the Request Applicability Value associated to R3 is

RAR3 ¼
X

5

h¼1

X

2

k¼1

½AMR3 �h;k ¼ 6:17

Hence, according to Definition 3, the Applicability Value associated

to ðR1;R3Þ is:

AppValueðR1;R3Þ ¼ RAR1 þ RAR3 ¼ 11:5:

4.3.2. Priority Definition

The Priority Value (Definition 4) establishes the priority degree

of a couple of requests. This Priority Value is computed consider-

ing the combined Applicability Degree of both requests to the pol-

icy. Depending on how the respective applicabilities combine, it

can take four values (generically represented by a; b; c; d). Spe-

cifically, it yields the highest value when both requests trigger

the effect of at least a rule. This value is decreased when only

one request can trigger the effect of at least a rule, and further

if none of the two requests can trigger the effect of a rule. From

an empirical experimentation on a set of six policies described in

Section 5.1, we observed that the best values for a, b; c; d are 3,

2, 1, 0 respectively. We cannot exclude though that different val-

ues of a; b, c; d could perform better for a different set of

policies.

Definition 4 (Priority Value). Given a set of XACML requests,

{R1;R2; . . . ;Rr}, and the set of their 5� n Applicability Matrices

{AMR1
;AMR2

; . . . ;AMRr
}, the Priority Value associated to a pair of

requests ðRi;RjÞ, where 1 6 i; j 6 r and i– j, called PriorityValue

ðRi;RjÞ

PriorityValueðRi;RjÞ : ðR� RÞ ! fa; b; c; dg

is defined as:

PriorityValueðRi;RjÞ ¼

a if ½AMRi �1;h ¼ ½AMRj �1;k ¼ 1 9 h; k s:t: 0 6 h; k < n

b if ½AMRi �1;h ¼ 1 ^ 0 6 ½AMRj �1;k < 1 9 h s:t: 0 6 h < n;

8k s:t: 0 6 k < n

OR

0 6 ½AMRi �1;h < 1 ^ ½AMRj �1;k ¼ 1 8h s:t: 0 6 h < n;

9 k s:t: 0 6 k < n

c if 0 < ½AMRi �1;h; ½AMRj �1;k < 1 8h; k s:t: 0 6 h; k < n

d otherwise

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

According with Definition 4, the requests R1 and R3, and their

Applicability Matrices, AMR1 , AMR3 , the Priority Value associated

to the pair of requests ðR1;R3Þ is PriorityValue ðR1;R3Þ ¼ 2 since

½AMR1 �1;1 ¼ ½AMR1 �1;2 ¼
2
3
6 1 and ½AMR3 �1;1 ¼ 1.

Otherwise considering also the request R6 we have: Priority-

Value ðR3;R6Þ ¼ 3 since ½AMR3 �1;1 ¼ ½AMR6 �1;1 ¼ 1.

4.3.3. XACML similarity definition

In this section, we formally specify the XACML similarity (Defi-

nition 5) representing the distance between a pair of requests. Spe-

cifically, given two requests ðRi;RjÞ, the XACML similarity distance

dxsðRi;RjÞ is defined as the sum of the simple similarity distance, the

Applicability Value and the Priority Value associated to the pair of

requests ðRi;RjÞ.

In particular, if the two requests are identical, namely their sim-

ple similarity is equal to zero, then the XACML similarity distance is

also set to zero.

Definition 5 (XACML Similarity Distance). Given a set of XACML

requests, {R1;R2; . . . ;Rr} and an XACML Policy XP, the XACML

Similarity Distance between a pair of requests ðRi;RjÞ, where

1 6 i; j 6 r and i – j, called dxsðRi;Rj;XPÞ, is defined as:

dxsðRi;Rj;XPÞ ¼

0 if dssðRi;RjÞ ¼ 0

dssðRi;RjÞþ

AppValueðRi;RjÞþ

PriorityValueðRi;RjÞ otherwise

8

>

>

>

<

>

>

>

:

Using Definition 5 we define the XACML Similarity Matrix

(XSM), in which the entry in the i-th row and j-th column with

i < j represents the XACML Similarity Distance between the pair

of XACML Requests Ri;Rj. Formally, given an XACML Policy XP

and given a set of XACML requests {R1;R2; . . . ;Rr}, the correspond-

ing XACML Similarity Matrix is defined as:

For instance, considering the XACML policy of Listing 1 and the

set of XACML requests introduced in Section 4.1, {R1;R2; . . . ;

R6}, the corresponding XACML Similarity Matrix is the

following:

362 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372



where for instance, according to Definition 5, the XACML Similarity

Distance between the pair of XACML Requests ðR1;R3Þ is repre-

sented by the following element of XSM:

½XSM�R1 ;R3 ¼ dxsðR1;R3;XPÞ

¼ dssðR1;R3Þ þ AppValueðR1;R3Þ þ PriorityValueðR1;R3Þ

¼ 1þ 11:5þ 2 ¼ 14:5:

4.4. Ordering the access control requests

This section presents the algorithm used for the prioritization of

the requests, which can be applied to both distance metrics defined

in the previous sections. The idea is to order the requests so that

the first executed are those most dissimilar, i.e., the requests shar-

ing the highest distance. To prioritize the XACML requests we

adapt the technique proposed in [19]. The procedure steps are out-

lined in Algorithm 1 below.

Algorithm 1. Prioritization.

1: input: S ¼ fR1; . . . ;Rng, distMatrix

2: output: L . Prioritized list of n XACML requests

3: L ½�

4: Select Ri;Rj where max distMatrixðRi;RjÞ
� �

;1 6 i; j 6 n

5: . Take the first ones in case of equality

6: L:addðRiÞ

7: L:addðRjÞ

8: S S n fRi;Rjg

9: while #S > 0 do

10: s sizeðLÞ

11: Select Ri 2 S where

max
Ps

j¼1distMatrixðRi; L:getðjÞ
� �

;1 6 i 6 n

12: . Take the first one in case of equality

13: L:addðRiÞ

14: S S n fRig . Remove Ri from S

15: end while

16: return L

Informally, the algorithm selects the request that is the most

distant from all the requests already selected during the previous

steps of the approach. It takes as input the set of XACML request

S ¼ fR1; . . . ;Rng and a distance matrix (distMatrix), which can

be either the SSMmatrix or the XSMmatrix defined in the previous

sections. Using the distances between the requests collected into

the matrix, it first selects the two XACML requests having the high-

est distance (Algorithm 1, line 4). In case of equality the first pair of

requests is selected. Then these two requests are removed from the

set of XACML requests to be prioritized, i.e., the set S (Algorithm 1,

line 8). In the next step, the algorithm considers among the

remaining XACML requests the one yielding the maximum sum

of the distances from all the already selected requests (Algorithm

1, line 11). In case of equality, the first request is selected. Then,

the selected request is removed from the XACML requests to be

prioritized (Algorithm 1, line 14). The process is repeated until

all requests are selected.

Considering for instance the SSMmatrix at the end of Section 4.2

according to Algorithm 1 (line 4), the pair ðR1;R2Þ is selected

because this is the first pair having the maximum distance equal

to 2 ðSSMð1;2Þ ¼ 2Þ. For the remaining set of requests

fR3;R4;R5;R6g the sum of the distances between each of them

and the requests R1 and R2 is computed. Then the request having

the maximum sum is selected (Algorithm 1, line 9–15).

Specifically:

� for R3 : SSMð1;3Þ þ SSMð2;3Þ ¼ 1þ 2 ¼ 3,

� for R4 : SSMð1;4Þ þ SSMð2;4Þ ¼ 2þ 1 ¼ 3,

� for R5 : SSMð1;5Þ þ SSMð2;5Þ ¼ 1þ 1 ¼ 2,

� for R6 : SSMð1;6Þ þ SSMð2;6Þ ¼ 1þ 1 ¼ 2.

Thus the request R3 is selected because it is the first one having

the maximum sum (equal to 3). According to Algorithm 1 (line 9–

15), the above described steps are repeated for the set of remaining

requests. Finally, the obtained ordered set of requests is

fR1;R2;R3;R4;R5;R6g.

Applying Algorithm 1 to the XSMmatrix presented at the end of

Section 4.3.3, instead, the obtained final ordered set of requests is

fR3;R6;R1;R2;R4;R5g.

It is worth noting that this prioritization algorithm belongs to

the category of prioritizations that do not rely on a feedback to

adjust the selection of test cases as it goes forth (they are also

called ‘‘total’’ prioritizations as opposed to the ‘‘additional’’ priori-

tizations that rely on a feedback).

5. Experiments

This section presents the experimental results obtained by

applying the proposed similarity-based prioritization metrics. Spe-

cifically, we used the tool SIMTAC to evaluate the effectiveness of

the simple similarity and XACML similarity metrics when applied

to the test suites related to a set of real-world XACML policies.

We aim at evaluating the effectiveness in terms of fault detection

rate of the two similarity-based prioritization metrics, by answer-

ing to the following research questions:

RQ1: Similarity Effectiveness: can the similarity-based prioritiza-

tion techniques outperform other prioritization methods in

terms of fault detection rate? In particular, we will assess

whether the similarity-based prioritization techniques are

more effective than prioritization based on a mutation-based

heuristic, or on a random selection, or on n-wise combinatorial

approaches.

RQ2: Similarity Variability: is the effectiveness of a test suite pri-

oritized using similarity-based approaches influenced by its

size? In other words, we will assess whether the effectiveness

in terms of fault detection of a test suite prioritized using sim-

ilarity-based approaches depends on the size of the test suite.

By answering RQ1, we want to assess the effectiveness of sim-

ilarity-based prioritization techniques against: (i) a mutation-

based heuristic, which is able to optimize the fault detection rate

and therefore represents the upper bound for the comparison;

(ii) random selection, which is commonly used as baseline

approach, and (iii) n-wise combinatorial approaches, which repre-

sent a widely adopted methodology for test cases derivation.

By answering RQ2, we want to show that the effectiveness of

the proposed prioritization approaches does not depend on the size

of the initial test suite of the X-CREATE tool. This experiment has

been performed by using ten test suites of various sizes randomly

selected from the initial X-CREATE test set.

To answer the first research question, we used the simple sim-

ilarity and the XACML similarity metrics for ordering the test suites

related to six XACML policies, and compared the effectiveness of

the prioritized test suites in terms of fault detection rate. For mea-

suring the latter, a mutation approach specifically conceived for

XACML language has been used for introducing faults in the six

XACML policies and the prioritized test suites have been run to

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 363



asses their capability to detect the introduced faults. In this paper

for deriving a set of XACMLmutants we have adopted the XACMUT

tool.3 Specifically, Table 1 lists the XACMUT mutation operators.

As said, the fault detection rate of the prioritized test suites has

been compared with the ones obtained by: a greedy-optimal selec-

tion of test cases, computed based on the mutation coverage,

which was able to maximize the fault detection rate (called muta-

tion-based heuristic); a random selection of test cases (called ran-

dom order); and the default X-CREATE requests order (see

Section 2.2), which represents per se a possible prioritization tech-

nique based on an n-wise combinatorial approach (called X-CRE-

ATE order).

To address the second research question, we repeated the pre-

viously mentioned experiment considering several test suites of

various sizes. In this experiment the test suites have been derived

by a random selection of a different subset from the available

requests set. The comparison between the different prioritized

subsets has been provided again in terms of fault detection rate.

In the rest of this section we first provide details about the six

XACML policies and the mutation approach used for introducing

faults in them (Section 5.1). Then we describe the experiments per-

formed to reply to RQ1 (Section 5.2) and to RQ2 (Section 5.3).

5.1. Policies and setup

Table 2 presents the sizes of the six XACML policies used in our

experiments in terms of the number of subjects, resources, actions

and environments in addition to the number of rules. Table 3

shows the structure of these policies in terms of policy sets and

policies. Some policies contain several policy sets and the same

rules appear in more than one policy.

With reference to this table, LMS is a Library Management Sys-

tem, VMS is a Virtual Meeting System and ASMS is an Auction Sales

Management System. LMS, VMS, and ASMS are policies from three

Java-based systems, which were used previously in several

research papers (for instance in [21]). continue-a [22] is a policy

that is used by the Continue application, a web-based conference

management tool. pluto policy is used by the ARCHON system, a

digital library management tool [23]. Finally, itrust policy is part

of the itrust system, a health-care management system [24].

As explained previously, we have compared the effectiveness of

the proposed similarity-based prioritization metrics (namely

XACML similarity and simple similarity) with those of three other

prioritization approaches: the random order, the mutation-based

heuristic and the X-CREATE order. In particular the random order

is presented in Algorithm 2. For each randomly selected request,

we evaluated the number of killed mutants. To avoid experimental

bias, we performed the random Algorithm 10 times and computed

the average number of killed mutants on the 10 runs. We executed

the requests with the original policy first and collected for each

request the obtained response. Then, we run these requests with

all mutated policies and collected the responses for each request.

A given request kills a given mutant when the obtained response

from the mutant is different from the original policy response.

Algorithm 2. Random Prioritization.

1: input: S ¼ fR1; . . . ;Rng . Unordered set of n XACML

requests

2: output: L . Prioritized list of n XACML

requests

3: L ½�

4: while #S > 0 do

5: i randomð1;#SÞ . Choose a random integer between 0

and #S

6: L:addðRiÞ

7: S S n fRig . Remove Ri from S

8: end while

9: return L

The mutation-based heuristic is a nearly optimal algorithm

since it orders the requests according to the cumulative number

of different mutants killed by the requests. The algorithm used in

this case is similar to Prioritization Algorithm 1 (Section 4.4).

Instead of using the distance to select the test cases, it relies on

the numbers of mutants killed by each request (the mutation

results) to order the requests. Therefore, this approach requires

performing the mutation analysis by running all requests on

mutated policies to get the mutation results. Then requests are

ordered according to the numbers of killed mutants per requests.

For the sake of consistency, we decided to always follow the alpha-

betical order when handling the XACML requests. The way files are

Table 1

Mutation operators [20].

ID Description

PSTT Policy Set Target True

PSTF Policy Set Target False

PTT Policy Target True

PTF Policy Target False

RTT Rule Target True

RTF Rule Target False

RCT Rule Condition True

RCF Rule Condition False

CPC Change Policy Combining Algorithm

CRC Change Rule Combining Algorithm

CRE Change Rule Effect

RPT (RTT) Rule Type is replaced with another one

ANR Add a New Rule

RER Remove an Existing Rule

RUF RemoveUniquenessFunction

AUF AddUniquenessFunction

CNOF Change-N-OF-Function

CLF ChangeLogicalFunction

ANF AddNotFunction

RNF RemoveNotFunction

CCF ChangeComparisonFunction

FPR First the Rules having a Permit effect

FDR First the Rules having a Deny effect

Table 2

Description of the six policies.

Policy name Rules Subjects Resources Actions Environments

ASMS 117 8 5 11 3

Itrust 64 7 46 9 0

VMS 106 7 3 15 4

Continue-a 298 16 29 4 0

LMS 42 8 3 10 3

Pluto 21 4 90 1 0

Table 3

Structure of the six policies.

Policy name ] Policy sets ] Policies

ASMS 1 1

Itrust 1 1

VMS 1 1

Continue-a 111 266

LMS 1 1

Pluto 1 1

3 A release of the XACMUT tool is available at http://labse.isti.cnr.it/tools/xacmut.

364 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372

http://labse.isti.cnr.it/tools/xacmut


ordered by the Java virtual machine might change depending on

the underlying platform (windows, Linux, etc.). In order to avoid

any issue that could occur when running our Java tool on Linux

based systems, Windows or MAC OS, we order files alphabetically

before handling them.

Finally, the last prioritization approach that we consider is the

default X-CREATE order. We consider the order in which the

requests are generated by the X-CREATE tool, considered as a pri-

oritization approach. This allows for evaluating the effectiveness of

our approach compared to the default order of generation of

requests.

5.2. Similarity effectiveness evaluation

In this section we discuss the results of the experiment per-

formed to reply to RQ1 (see Figs. 3–8)

The results are depicted in a separate plot for each policy in the

next six figures. The plots illustrate the cumulative number of

mutants killed by each prioritized request set. They show the effec-

tiveness of each approach, especially how effective are the first

requests in improving the overall number of mutants killed. For

instance, we can consider the first 200 requests and compare the

number of mutants killed by each prioritized request set. After run-

ning the first 200 requests (out of the 1400 requests that are gen-

erated) for the continue-a policy, we can clearly see that the

requests obtained from the XACML similarity prioritization are

killing almost 1200 mutants (out of the 1800 mutants), which rep-

resents 66% of mutation score, while the other three approaches

(X-CREATE, simple similarity and random prioritization) enable

killing 800, which represents about 44% of mutation score.

The results that we obtained for the six policies allow us to eval-

uate how effective are the first tests. Specifically, the results pre-

sented in Table 4 show that: 10% of the XACML similarity-based

prioritized test suite guarantees at least 50% of mutation score

for 5 of the six policies (for pluto, it reaches 21%); 20% of the

XACML similarity-based prioritized test suite guarantees at least

60% of the mutation score for 5 of the six policies (for pluto, it

reaches 41%); 30% of the XACML similarity-based prioritized test

suite guarantees at least 85% of the mutation score for 4 of the

six policies (it reaches around 60% for pluto and itrust). It is out

of the scope of the paper to provide a general criterion to select

the best subset of the overall prioritized test suite. However, from

the analysis of the above results, 20% of the test suite seems to be a

good cutoff point. More detailed results are included in the addi-

tional material document, which show the numbers of mutants

killed by first 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the pri-

oritized test suites for all the presented prioritization criteria and

policies.Fig. 3. ASMS policy.

Fig. 4. Continue-a policy.

Fig. 5. Itrust policy.

Fig. 6. LMS policy.

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 365



To evaluate the performance of the presented prioritization

approaches we also computed the APFD metric that is commonly

used in prioritization research. It is defined as follows [25]:

APFD ¼

Pn�1
i¼1 F i

n� l
þ

1

2n

where n is the number of test cases in the test suite T, l is the num-

ber of faults, and F i is the number of faults detected by at least one

test case among the first i test cases in T. The results in Table 5 show

the APFD value of each proposed criterion for each of the six policies

and confirm that the XACML Similarity approach outperforms the

other approaches (except the mutation-based one).

To sum up, we can notice from the results that for all the poli-

cies the best results are, as expected, obtained from the mutation-

based prioritization. Among the remaining prioritization

approaches, there are three approaches leading to almost similar

results; the random, the X-CREATE and the simple similarity. The

plots also show that the XACML similarity outperforms these three

techniques. This result is obtained for all the six policies.

From these obtained results, we can draw the following

conclusions:

� Effectiveness of the XACML similarity approach: We can notice

clearly that for all policies the XACML similarity provides

always better results and is close to the nearly optimal solution

(the mutation-based prioritization results). This indicates that

taking into account the policy is very useful when it comes to

test prioritization.

� Lack of effectiveness of the simple similarity: The obtained

results show clearly that the simple similarity is providing poor

prioritization results. Ignoring the policy and relying only on the

requests content to perform similarity prioritization leads to

poor results that are comparable to the random prioritization

results.

� X-CREATE results are similar to random prioritization results:

Interestingly, the six policies results demonstrate that the

default order in which the X-CREATE tool creates the requests

is providing a mutation-killing capability similar to the random

one. This result is important because it shows clearly that we

need to apply other prioritization approaches (like similarity)

because the default order in which requests are created leads

to poor results.

As a summary, the experiments that we conducted clearly rec-

ommend the use of the XACML similarity approach. It showed to

be very effective for all the six policies that we used and outper-

formed the other prioritization approaches. In addition, the exper-

iments confirm the need to use prioritization because the default

order (the X-CREATE prioritization) is providing poor fault detec-

tion rate.

5.3. Influence of test-suite size

In this section we discuss the results of the experiment per-

formed to reply to RQ2. We assess whether the effectiveness, mea-

sured in terms of fault detection rate of the prioritized test suites,

depends on the size of the test suite. In the previous section, we

showed that all the studied prioritization approaches, except of

the XACML similarity, did not provide good mutation results when

compared to the mutation-based prioritization. Therefore, here we

only consider the XACML similarity.

For each of the six XACML policies of Section 5.1, different test

suites of various sizes were selected at random from the set of

requests (called here initial test population) generated by the X-

CREATE tool. In particular, ten sets of size ratios 10%, 20%, 30%,

40%, 50%, 60%, 70% and 80% of the initial test population were

selected per each considered policy. For each selected set, the pro-

posed XACML similarity approach and the random order were

applied. We record the APFD values for each policy and repetition

of the experiment. Thus, a total of 60 values (6 policies � 10 inde-

pendent repetitions) per examined size were collected.

Fig. 9 shows the obtained results as box plots per selected size.

Generally, the box plot representation graphically represents the

distribution of the collected values. The area within the boxes rep-

resents the data that have values higher than the 25% and lower

than the 75% of all the population data values. The horizontal line

inside the box represents the median value. In Fig. 9 the two boxes

of each graph represent the results of the XACML similarity. Each

one of the graphs corresponds to the examined test suite sizes.

Thus, the results evidence that XACML similarity kills a higher

number of mutants than the random order. So, in reply to RQ2,

we can conclude that the XACML similarity is not affected by the

size of the prioritized test sets.

To investigate further RQ2 we formally compared the XACML

similarity and the random approach, using the Mann–Whitney U

test. This is a non-parametric statistical hypothesis test that allows

for comparing two samples without making assumptions about the

distribution of the underlying population. We test the hypothesis

Fig. 7. Pluto policy.

Fig. 8. VMS policy.

366 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372



that the mutation score achieved by the test cases of the XACML

similarity (MSSim) is higher than the mutation score achieved by

the test cases of the random order (MSRand). Thus, we test the fol-

lowing hypothesis (MSSim > MSRand) with the confidence level 95%.

Given a set of test cases of size n, the hypothesis test involves n

comparisons of the mutation scores of the twomethods (prioritiza-

tion and random order). Since the random order involved ten dif-

ferent orderings, we compare the prioritization technique against

Table 4

Mutant-kill ratios achieved by ordered sub-sets of X-CREATE requests.

Row Policy %R %M %R %M %R %M %R %M %R %M %R %M %R %M %R %M %R %M

1 ASMS

2 XACML requests Killed mutants

3 1760 6649

4 Mutation-based 10 80 20 92 30 98 40 100 50 100 60 100 70 100 80 100 90 100

5 XACML similarity 10 76 20 83 30 89 40 94 50 96 60 97 70 98 80 99 90 99

6 Simple similarity 10 26 20 44 30 56 40 65 50 72 60 80 70 84 80 90 90 95

7 X-CREATE 10 33 20 47 30 63 40 76 50 79 60 87 70 89 80 92 90 96

8 Random 10 26 20 43 30 55 40 65 50 74 60 80 70 86 80 92 90 93

9 Policy Continue-a

10 XACML requests Killed mutants

11 1392 1741

12 Mutation-based 10 94 20 100 30 100 40 100 50 100 60 100 70 100 80 100 90 100

13 XACML similarity 10 53 20 73 30 85 40 93 50 99 60 99 70 99 80 99 90 100

14 Simple similarity 10 41 20 52 30 63 40 71 50 78 60 84 70 88 80 92 90 95

15 X-CREATE 10 34 20 51 30 58 40 59 50 65 60 72 70 79 80 88 90 94

16 Random 10 40 20 51 30 60 40 69 50 75 60 82 70 88 80 93 90 96

17 Policy Itrust

18 XACML requests Killed mutants

19 2835 11949

20 Mutation-based 10 52 20 62 30 66 40 71 50 76 60 81 70 85 80 90 90 95

21 XACML similarity 10 50 20 60 30 65 40 71 50 75 60 80 70 85 80 90 90 95

22 Simple similarity 10 26 20 41 30 51 40 59 50 68 60 76 70 83 80 88 90 94

23 X-CREATE 10 27 20 40 30 49 40 56 50 64 60 72 70 80 80 86 90 93

24 Random 10 23 20 37 30 48 40 58 50 66 60 74 70 81 80 88 90 94

25 Policy LMS

26 XACML requests Killed mutants

27 720 2183

28 Mutation-based 10 77 20 90 30 98 40 100 50 100 60 100 70 100 80 100 90 100

29 XACML similarity 10 73 20 86 30 91 40 94 50 97 60 98 70 99 80 99 90 99

30 Simple similarity 10 28 20 46 30 57 40 70 50 79 60 82 70 85 80 91 90 96

31 X-CREATE 10 33 20 48 30 60 40 74 50 80 60 86 70 88 80 92 90 96

32 Random 10 30 20 47 30 60 40 70 50 78 60 84 70 89 80 94 90 97

33 Policy Pluto

34 XACML requests Killed mutants

35 360 14721

36 Mutation-based 10 23 20 42 30 61 40 79 50 96 60 97 70 98 80 99 90 99

37 XACML similarity 10 21 20 41 30 61 40 79 50 95 60 96 70 97 80 98 90 99

38 Simple similarity 10 14 20 27 30 39 40 49 50 59 60 68 70 77 80 85 90 93

39 X-CREATE 10 17 20 29 30 38 40 48 50 58 60 67 70 76 80 84 90 92

40 Random 10 15 20 27 30 38 40 48 50 58 60 67 70 76 80 84 90 92

41 Policy VMS

42 XACML requests Killed mutants

43 945 5550

44 Mutation-based 10 67 20 87 30 93 40 98 50 100 60 100 70 100 80 100 90 100

45 XACML similarity 10 65 20 80 30 85 40 89 50 93 60 97 70 98 80 99 90 99

46 Simple similarity 10 18 20 28 30 41 40 53 50 63 60 71 70 79 80 87 90 95

47 X-CREATE 10 17 20 29 30 38 40 48 50 58 60 67 70 76 80 84 90 92

48 Random 10 19 20 34 30 44 40 52 50 63 60 70 70 77 80 83 90 91

Table 5

APFD values for the six policies.

Policy name Mutation-based XACML similarity Simple similarity X-CREATE Random

ASMS 0.933 0.895 0.673 0.718 0.676

Itrust 0.748 0.742 0.645 0.626 0.627

VMS 0.904 0.864 0.594 0.591 0.657

Continue-a 0.962 0.856 0.728 0.659 0.715

LMS 0.923 0.902 0.695 0.716 0.708

pluto 0.747 0.741 0.565 0.563 0.558

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 367



(a) 10% of the test suite size (b) 20% of the test suite size

(c) 30% of the test suite size (d) 40% of the test suite size

(e) 50% of the test suite size (f) 60% of the test suite size

(g) 70% of the test suite size (h) 80% of the test suite size

Fig. 9. APFD values for the different test set sizes.

368 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372



the average values of these ten orders. Overall, based on the statis-

tical analysis we can identify the following four cases:

True with significance (TS): the prioritization method kills

statistically significantly more

mutants than the random

ordering.

True without significance (TNS): the prioritization method kills

more mutants than the ran-

dom ordering but without sta-

tistical significance.

False without significance (FNS): the prioritization method kills

less mutants than the random

ordering but without statisti-

cal significance.

False with significance (FS): the prioritization method kills

statistically significantly less

mutants than the random

ordering.

Following these lines, we conduct 60 statistical tests (ten

repetitions per subject policy for the six considered policies) per

considered set size (10%, 20%, 30%, 40%, 50%, 60%, 70% and 80% of

thewhole test suite). The respective results are recorded on Table 6.

The results show that the XACML similarity approach performs sig-

nificantly better than the random orderings in all the cases. This

fact signifies the ability of the proposed approach to effectively

prioritize the test sets even of a small size.

6. Threats to validity

This section discusses threats to the internal, external and con-

struct validity of the experiments presented in this paper. Concern-

ing the internal validity, i.e., the amount of confidence on the

reported results, different aspects can be considered: the used

mutation operators, the employed test set, the correctness of the

implementation and the tools used.

Since the effectiveness of the approach is evaluated in term of

fault detection rate, the set of utilized mutation operators may

influence the reported results. It could be that a different choice

of mutation operators might have provided different effectiveness

results. To reduce this risk, the present study employs a combina-

tion of three different mutant sets: first, the set of mutants used in

[26] (this set was adapted to XACML policies); second, the opera-

tors from Martin and Xie [27]; third, some new operators based

on our most recent work [20]. However, it would be very interest-

ing to investigate other mutants and even real faults to provide

confidence in the proposed approach and reduce the threat related

to the use of mutation analysis.

Another threat to our proposal is due to the employed test sets.

We used those derived by X-CREATE, but it is likely that other test

sets may produce different results. However, X-CREATE represents

the current state of the art in XACML test generation tools. It

employs combinatorial interaction testing, which is a well-estab-

lished test technique in various domains.

Other threats may be attributed to the implementations of the

SIMTAC tool, the XACMUT mutation tool and the X-CREATE test

generation tool. These tools may have flaws, the presence of which

may influence the reported results. To reduce these threats, several

manual tests were performed. Additionally, at least two authors

independently tested all the implemented parts.

External validity of the experiment concerns potential issues

that may prevent the generalization of the results. While this is

an issue concerning all empirical studies, including ours, to the

authors’ knowledge, the present study forms one of the largest

studies conducted on XACML testing. Additionally, the six policies

have quite different structures. Some have few rules whereas other

ones have a large number of rules. In some cases, the number of

resources is much bigger than the number of subjects and actions

(this is the case for itrust and pluto policies) while in other cases it

is the opposite (for VMS policy). Since similar results (our approach

performs much better than random) are observed on all the cases,

some confidence that our approach will behave similarly on other

subjects is provided.

With respect to construct validity, i.e., threats regarding the

extent of the utilized measures to the intended properties, some

potential issues can also be identified. One such issue is the use

of mutants as a means of effectiveness evaluation. While this is a

potential problem of the conducted experiment, in practice evalu-

ating one criterion in terms of another one is a usual practice, e.g.,

[28]. Since the similarity approach is independent from the

employed mutants, this threat should be balanced. Moreover,

using mutants for effectiveness evaluation forms a common prac-

tice in this kind of experiments, e.g., [29,30].

7. Related work

This work spans over several research directions, including:

test case prioritization, access control testing and similarity

approaches.

Test case prioritization. Test case prioritization relies on test

cases re-ordering techniques to improve the fault detection rate

at a given test execution time [22]. In [9], the authors have

assessed the fault detection rate of JUnit and TSL test suites on

open-source Java systems through mutation faults. This rate is

impacted by mutation faults number and by test suites effective-

ness to detect faults.

In [31], the authors have conducted a series of controlled exper-

iments to evaluate test case prioritization techniques based on

time constraints and fault detection rate. Their results favor the

application of heuristics when the software contains considerable

faults number and when the testing process has no time

constraints. In [8,32], the authors have conducted experimental

studies to show the effectiveness of prioritization techniques to

improve fault detection rate in the context of regression testing.

Our approach does not address regression testing, although it

could be adapted to be applicable in a regression testing context

when the access control policy evolves [33].

While most of the prioritization techniques in the literature rely

on code coverage [34–36], some recent approaches have adopted

different metrics. In [37], the authors use system models and sys-

tem behavior to prioritize test cases. They have compared their

approach with other prioritization techniques and have shown

its effectiveness in early fault detection. The authors in [38] have

used expert knowledge to achieve pair-wise comparison of test

cases and have proposed similarity metrics, like we have done in

the current work, between test cases clusters. Finally, the work

in [12] improves the similarity-based test case prioritization using

Table 6

Hypothesis tests for the similarity prioritization and the random orderings.

MSSim > MSRand (%) TS TNS FNS FS

10 43 17 0 0

20 51 9 0 0

30 60 0 0 0

40 60 0 0 0

50 60 0 0 0

60 60 0 0 0

70 60 0 0 0

80 60 0 0 0

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 369



the ordered sequence of program elements measured by execution

counts. The authors show that the proposed technique increases

the rate of fault detection with respect to other coverage-based

approaches.

Testing Access Control Systems. Testing Access Control Systems is

a critical issue and the complexity of the XACML language specifi-

cation prevents the manual specification of a set of test cases capa-

ble of covering all the possible interesting critical situations or

faults. This implies the need of automated test cases generation

for testing on the one side the XACML policy specification and on

the other that the PDP behavior conforms to the policy

specification.

Among the available proposals, the Targen tool [4] generates

test inputs using combinatorial coverage of the truth values of

independent clauses of XACML policy values. This approach has

been proven to be more effective than random generation strategy

in terms of structural coverage of the policy and fault detection

rate [4].

A more recent tool is X-CREATE [13,5,14] that provides different

strategies based on combinatorial approaches of the subject,

resource, action and environment values taken from the XACML

policy for deriving the access requests. Experimental results pre-

sented in [13] show that the fault detection rate of X-CREATE test

suites is similar or higher than that of Targen test suites. Specifi-

cally, three main generation strategies are defined into X-CREATE:

(i) the Simple Combinatorial testing strategy [5] that derives an

XACML request for each of the possible combinations of the sub-

ject, resource, action and environment values taken from the pol-

icy; (ii) the XPT-based testing strategy [13,5] that generates

requests using the structures obtained applying the XPT strategy

[39] to the XACML Context Schema [3]; (iii) the Multiple Combina-

torial strategy that relies on combinations of more than one sub-

ject, resource, action and environment values for generating

XACML requests. This last strategy automatically establishes the

number of subjects, resources, actions and environments of each

request according to the complexity of the policy structure and tar-

gets the policy rules in which the effect is simultaneously depen-

dent on more than one constraint [14]. A detailed comparison of

X-CREATE test generation strategies in terms of fault detection is

presented in [5,14]. Among the X-CREATE generation strategies

we selected in this paper Simple Combinatorial for deriving test

suites used to empirically validate the effectiveness of the pro-

posed approach. This strategy is simple and easy-to-apply while

at the same time it can reach the coverage of the policy values

combinations. More detail about this strategy are presented in

Section 2.2.

The work in [21] addresses model-based testing and provides a

methodology for the generation of test cases based on combinato-

rial approaches of the elements of the model (role names, permis-

sion names, context names). Such approach automatically derives

abstract test cases that have to be then refined into concrete

XACML requests for being executed on a PDP.

Concerning the testing of the XACML PDP, the approach pro-

posed in [17] focuses on running different XACML implementa-

tions for the same test inputs and can detect not correctly

implemented XACML functionalities when different outputs are

observed.

In software testing, mutation analysis [40] is commonly used to

assess the effectiveness of a test suite. It consists of introducing

single faults in a given program and running tests to assess their

capability to detect these faults. Mutation analysis has been

applied on access control policies [27,26,20] to qualify security

tests. By means of mutation operators, the policy under test is

modified to derive a set of faulty policies (mutants) each contain-

ing a fault. A mutant policy is killed if the response of an XACML

request executed on the mutant policy differs from the response

of the same request executed on the original policy. In [27] the

authors define a fault model for access control policies and a set

of mutation operators manipulating the predicates and logical con-

structs of target and condition elements of an XACML policy. They

have used mutation analysis applied on access control policies to

assess coverage criteria for test generation and test selection in

terms of fault detection rate. In [26] the authors try to extend

the mutation operators of [27], focusing on the use of a metamodel

that allows to simulate the faults in the security models indepen-

dently from the used role-based formalism (R-BAC or OrBAC).

Finally, the work in [20] includes and enhances the mutation

operators of [27,26] addressing specific faults of the XACML 2.0

language and providing a tool, called XACMUT, for the derivation

of XACML mutation operators and their application to XACML

policies. In this paper, the XACMUT tool has been adopted for

deriving from an XACML policy a set of mutants used to assess

the effectiveness of the proposed similarity-based prioritization

approaches.

Similarity approaches. Similarity has been used in previous work

for XACML-based policies comparison. In [41,42], the authors have

defined similarity distances to enable comparing access control

policies in order to locate providers that have similar policies in

large scale environments like cloud systems. The number of poli-

cies that have to be evaluated at a given time can be reduced under

the assumption that similar policies might provide the same deci-

sions. Therefore they focus on comparing policies and do not com-

pare requests as done in this current work. In fact, to the best of our

knowledge, similarity has not yet been applied in the context of

XACML policies testing. This heuristic has mainly been applied

in the context of model-based testing. For instance, Cartaxo et al.

[43] presented a strategy for automatic test case selection

based on the use of a similarity function. Labeled transition sys-

tems are the model from which test cases are obtained. The simi-

larity function f used is calculated by observing the number of

identical transitions and the average between paths length. They,

then use a greedy approach to select the test cases. On the same

direction, Hemmati et al. [18,15] investigated and compared

possible similarity functions that can be used for test cases

selection in the context of state machine testing. The selection

strategy used is based on genetic algorithms. Test cases are

encoded using UML state machines with states, transitions and

triggers/guards.

Similarity has also been used to cluster test cases. Sapna and

Mohanty [44] used the Levenshtein distance to compare test

cases and agglomerate hierarchical clustering in order to select

dissimilar test scenarios with maximum coverage and fault

detection rate. UML activity diagrams are the model used from

which test cases are obtained. In this work, we use similarity also

for improving the fault detection rate of the selected subset of

requests.

Finally, in [19,45], similarity is used to generate and prioritize

test suites in the context of Software Product Lines. In these works,

similarity was evaluated in terms of (a) covering t-wise interac-

tions [19] and (b) killing mutants related to the product line repre-

sentation, i.e., feature models [45]. In our work, similarity is used to

distinguish redundant test cases and prioritize them. In line with

our work, Henard et al. [45] uses mutation to evaluate the effec-

tiveness of the selected test suite. Additionally, in [19] the authors

introduce a prioritization technique, called Global Maximum Dis-

tance [19], which is also used in this paper (the mutation-based

strategy).

In our work, we are targeting a completely different and new

context, which is XACML policies testing and we rely on similar-

ity to prioritize XACML requests. All these previous work are

however using the same heuristic and applying it to other

contexts.

370 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372



8. Conclusions and future work

In this paper, we presented a new approach based on similarity,

and implemented into the SIMTAC tool, aiming at prioritizing tests

in the context of XACML access control systems. We proposed two

similarity-based prioritization metrics: the first strategy is the sim-

ple similarity, which is policy-independent and involves compar-

ing the content of requests; the second approach is called XACML

similarity and considers the applicability of the requests to the

XACML policy. We performed an empirical study to evaluate the

effectiveness of the simple and the XACML similarity metrics when

applied to the test suites related to a set of six real-world XACML

policies. The results showed that the second approach is effective

and provides a mutation coverage that is significantly better than

random prioritization and close to a greedy-optimal heuristic cog-

nizant of the requests effectiveness.

In future work, we plan to investigate several other issues

related to the proposed approach. In particular, we want to refine

the proposed applicability relation taking into account further ele-

ments of the XACML policy such as the condition or the combining

algorithm. Indeed this last plays an important role in case of poli-

cies with conflicting rules. Moreover, we plan to extend the simi-

larity-based prioritization metrics in order to consider other test

case generation strategies, also based on the combination of more

than one subject, resource, action, environment.

Future work will also include further experimentation consider-

ing more XACML policies and the application of the SIMTAC tool to

evaluate the effectiveness of the similarity-based prioritization

metrics applied to different test suites.

Acknowledgment

This work has been partially funded by the Network of Excel-

lence on Engineering Secure Future Internet Software Services

and Systems (NESSoS) FP7 Project 256980.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.infsof.2014.07.

003.

References

[1] TAS3 Project, Trusted Architecture for Securely Shared Services. <http://

www.tas3.eu/>.
[2] NESSoS Project, Network of Excellence on Engineering Secure Future Internet

Software Services and Systems. <http://www.nessos-project.eu/>.
[3] OASIS, extensible access control markup language (XACML) version 2.0, 1

February 2005.

[4] E. Martin, T. Xie, Automated Test Generation for Access Control Policies, in:
Supplemental Proc. of 17th International Symposium on Software Reliability

Engineering (ISSRE), 2006.
[5] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, Automatic XACML requests

generation for policy testing, in: Proc. of The Third International Workshop on
Security Testing (SECTEST), 2012, pp. 842–849.

[6] S. Elbaum, A.G. Malishevsky, G. Rothermel, Prioritizing test cases for regression

testing, SIGSOFT Softw. Eng. Notes 25 (5) (2000) 102–112.
[7] Z. Li, M. Harman, R.M. Hierons, Search algorithms for regression test case

prioritization, IEEE Trans. Softw. Eng. 33 (4) (2007) 225–237.
[8] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Prioritizing test cases for

regression testing, IEEE Trans. Softw. Eng. 27 (10) (2001) 929–948.

[9] H. Do, G. Rothermel, On the use of mutation faults in empirical assessments of
test case prioritization techniques, IEEE Trans. Softw. Eng. 32 (9) (2006) 733–

752.
[10] S. Elbaum, G. Rothermel, S. Kanduri, A.G. Malishevsky, Selecting a cost-

effective test case prioritization technique, Software Qual. J. 12 (3) (2004) 185–

210.
[11] L. Zhang, S.-S. Hou, C. Guo, T. Xie, H. Mei, Time-aware test-case prioritization

using integer linear programming, in: Proc. of the Eighteenth International
Symposium on Software Testing and Analysis, ACM, 2009, pp. 213–224.

[12] K. Wu, C. Fang, Z. Chen, Z. Zhao, Test case prioritization incorporating ordered

sequence of program elements, in: Proc. of 7th International Workshop on
Automation of Software Test (AST), 2012, pp. 124–130.

[13] A. Bertolino, F. Lonetti, E. Marchetti, Systematic XACML request generation for
testing purposes, in: Proc. of 36th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA), 2010, pp. 3–11.

[14] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, L. Schilders, Automated
testing of extensible access control markup language-based access control

systems, IET Software 7 (4) (2013) 203–212.
[15] H. Hemmati, L. Briand, An industrial investigation of similarity measures for

model-based test case selection, in: Proc. of the 21st International Symposium

on Software Reliability Engineering (ISSRE), 2010, pp. 141–150.
[16] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, B. Xu, An improved regression test

selection technique by clustering execution profiles, in: Proc. of 10th
International Conference on Quality Software (QSIC), 2010, pp. 171–179.

[17] N. Li, J. Hwang, T. Xie, Multiple-implementation testing for xacml
implementations, in: Proc. of the Testing, Analysis, and Verification of Web

Services and Applications (TAV-WEB), 2008, pp. 27–33.

[18] H. Hemmati, A. Arcuri, L. Briand, Achieving scalable model-based testing
through test case diversity, ACM Trans. Softw. Eng. Methodol. 22 (1) (2013) 1–42.

[19] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. Le Traon,
Bypassing the combinatorial explosion: Using similarity to generate and

prioritize t-wise test configurations for software product lines, IEEE Trans.

Software Eng. 40 (7) (2014) 650–670. http://doi.ieeecomputersociety.org/
10.1109/TSE.2014.2327020, bibsource: http://dblp.uni-trier.de.

[20] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, XACMUT: XACML 2.0
mutants generator, in: Proc. of 8th International Workshop on Mutation

Analysis (associated with ICST 2013), 2013, pp. 28–33.

[21] A. Pretschner, T. Mouelhi, Y.L. Traon, Model-based tests for access control
policies, in: Proc. of First International Conference on Software Testing,

Verification (ICST), 2008, pp. 338–347.
[22] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an

empirical study, in: Proc. of IEEE International Conference on Software
Maintenance (ICSM), IEEE, 1999, pp. 179–188.

[23] K. Maly, M. Zubair, M. Nelson, X. Liu, H. Anan, J. Gao, J. Tang, Y. Zhao, Archon – a

digital library that federates physics collections.
[24] Realsearch group at NCSU, iTrust: Role-Based Healthcare. <http://

agile.csc.ncsu.edu/iTrust/wiki/doku.php>.
[25] L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei, Bridging the gap between the

total and additional test-case prioritization strategies, in: Proc. of the

International Conference on Software Engineering (ICSE), 2013, pp. 192–201.
[26] T. Mouelhi, F. Fleurey, B. Baudry, A generic metamodel for security policies

mutation, in: Proc. of Software Testing Verification and Validation Workshop
(ICSTW), 2008, pp. 278–286.

[27] E. Martin, T. Xie, A fault model and mutation testing of access control policies,
in: Proc. of 16th International Conference on World Wide Web (WWW), pp.

667–676.

[28] D.F. Yates, N. Malevris, An objective comparison of the cost effectiveness of
three testing methods, Inform. Software Technol. 49 (9) (2007) 1045–1060.

[29] J.H. Andrews, L.C. Briand, Y. Labiche, A.S. Namin, Using mutation analysis for
assessing and comparing testing coverage criteria, IEEE Trans. Softw. Eng. 32

(8) (2006) 608–624.

[30] H. Do, G. Rothermel, On the use of mutation faults in empirical assessments of
test case prioritization techniques, IEEE Trans. Softw. Eng. 32 (9) (2006) 733–

752.
[31] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of time constraints on

test case prioritization: a series of controlled experiments, IEEE Trans. Softw.
Eng. 36 (5) (2010) 593–617.

[32] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family of

empirical studies, IEEE Trans. Softw. Eng. 28 (2) (2002) 159–182.
[33] J. Hwang, T. Xie, D. El Kateb, T. Mouelhi, Y. Le Traon, Selection of regression

system tests for security policy evolution, in: Proc. of the 27th International
Conference on Automated Software Engineering (ASE), 2012, pp. 266–269.

[34] A. Kaur, S. Goyal, A genetic algorithm for regression test case prioritization

using code coverage, Int. J. Comput. Sci. Eng. 3 (5) (2011) 1839–1847.
[35] D. Leon, A. Podgurski, A comparison of coverage-based and distribution-based

techniques for filtering and prioritizing test cases, in: Proc. of 14th
International Symposium on Software Reliability Engineering (ISSRE), 2003,

pp. 442–453.
[36] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, R.S. Roos, Timeaware test suite

prioritization, in: Proc. of the 2006 International Symposium on Software

Testing and Analysis, 2006, pp. 1–12.
[37] L. Tahat, B. Korel, M. Harman, H. Ural, Regression test suite prioritization using

system models, Softw. Test. Verif. Reliab. 22 (7) (2012) 481–506.
[38] S. Yoo, M. Harman, P. Tonella, A. Susi, Clustering test cases to achieve effective

and scalable prioritisation incorporating expert knowledge, in: Proc. of the

18th International Symposium on Software Testing and Analysis, 2009, pp.
201–212.

[39] A. Bertolino, J. Gao, E. Marchetti, A. Polini, Automatic test data generation for
XML schema-based partition testing, in: Proc. of Second International

Workshop on Automation of Software Test (AST), 2007, pp. 4–10.

[40] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Trans. Softw. Eng. 37 (5) (2011) 649–678.

[41] D. Lin, P. Rao, E. Bertino, J. Lobo, An approach to evaluate policy similarity, in:
Proc. of the 12th ACM Symposium on Access Control Models and Technologies

(SACMAT), 2007, pp. 1–10.

A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372 371

http://dx.doi.org/10.1016/j.infsof.2014.07.003
http://dx.doi.org/10.1016/j.infsof.2014.07.003
http://www.tas3.eu/
http://www.tas3.eu/
http://www.nessos-project.eu/
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0030
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0030
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0035
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0035
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0040
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0040
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0045
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0045
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0045
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0050
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0050
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0050
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0055
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0055
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0055
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0055
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0070
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0070
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0070
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0090
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0090
http://doi.ieeecomputersociety.org/10.1109/TSE.2014.2327020
http://doi.ieeecomputersociety.org/10.1109/TSE.2014.2327020
http://dblp.uni-trier.de
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0110
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0110
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0110
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0110
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0140
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0140
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0145
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0145
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0145
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0150
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0155
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0155
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0155
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0160
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0160
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0170
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0170
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0185
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0185
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0200
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0200


[42] D. Lin, P. Rao, R. Ferrini, E. Bertino, J. Lobo, A similarity measure for

comparing XACML policies, IEEE Trans. Knowl. Data Eng. 25 (9) (2013)
1946–1959.

[43] E.G. Cartaxo, P.D.L. Machado, F.G.O. Neto, On the use of a similarity function for
test case selection in the context of model-based testing, Softw. Test. Verif.

Reliab. 21 (2011) 75–100.

[44] P.G. Sapna, H. Mohanty, Clustering test cases to achieve effective test selection,

in: Proc. of the 1st Amrita ACM-W Celebration on Women in Computing in
India (A2CWiC), 2010, pp. 15:1–15:8.

[45] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y.L. Traon, Assessing software
product line testing via model-based mutation: an application to similarity

testing, in: ICST Workshops, 2013, pp. 188–197.

372 A. Bertolino et al. / Information and Software Technology 58 (2015) 355–372

http://refhub.elsevier.com/S0950-5849(14)00157-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0210
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0215
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0215
http://refhub.elsevier.com/S0950-5849(14)00157-8/h0215

	Similarity testing for access control
	1 Introduction
	2 Background
	2.1 XACML language
	2.2 Test cases generation

	3 Motivation
	4 Similarity metrics
	4.1 Distance metrics between access control requests
	4.2 Simple similarity
	4.3 XACML similarity
	4.3.1 Applicability definitions
	4.3.2 Priority Definition
	4.3.3 XACML similarity definition

	4.4 Ordering the access control requests

	5 Experiments
	5.1 Policies and setup
	5.2 Similarity effectiveness evaluation
	5.3 Influence of test-suite size

	6 Threats to validity
	7 Related work
	8 Conclusions and future work
	Acknowledgment
	Appendix A Supplementary material
	References


