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Iterated Local Search (ILS) is one of the most popular single-solution-based metaheuristics. ILS is recognized by many authors as a
relatively simple yet efficient framework able to deal with complex combinatorial optimization problems (COPs). ILS-based algo-
rithms have been successfully applied to provide near-optimal solutions to different COPs in logistics, transportation, production,
etc. However, ILS is designed to solve COPs under deterministic scenarios. In some real-life applications where uncertainty is
present, the deterministic assumption makes the model less accurate since it does not reflect the real stochastic nature of the system.
This paper presents the SimILS framework that extends ILS by integrating simulation to be able to cope with Stochastic COPs in a
natural way. The paper also describes several tested applications that illustrate the main concepts behind SimILS and give rise to a
new brand of ILS-based algorithms.
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1. Introduction

This paper proposes and discusses the SimILS framework, a
simulation-based extension of the well-known Iterated Local
Search (ILS) metaheuristic. The SimILS framework integrates
simulation methods inside the classical ILS framework in order to
naturally deal with random components in the mathematical
model of the combinatorial optimization problem. As described
in Lourenço et al (2003), ILS is a conceptually simple yet
powerful metaheuristic that has proven to be very efficient in
solving complex Combinatorial Optimization Problems (COPs)-
—a COP is a problem in which the best solution needs to be
obtained from a finite or countably infinite set of objects
(integers, permutations, graphs, etc). The underlying idea behind
ILS is to narrow the search for candidate local optimal solutions
returned by some embedded algorithm, typically a local search
heuristic. Burke et al (2010) show that ILS obtains the best
average performance among a set of selected metaheuristic
approaches in three classical COPs: bin packing, permutation
flow shop, and personnel scheduling. The authors also emphasize
two main factors for its success: (i) an excellent balance between
exploration and exploitation by ‘systematically combining a
perturbation followed by local search’, and (ii) the reduced
number of parameters required.

Numerous ILS applications in a myriad of contexts have been
studied in the literature. Lourenço et al (2010) review some of
them up to 2010. In fact, the use of ILS has been steadily

increasing in the last years as shown in Figure 1. More recent
implementations include Vehicle Routing Problems (VRP)
(Penna et al, 2011; Nguyen et al, 2012; Vansteenwegen and
Mateo, 2014), scheduling problems (Dong et al, 2013;
Subramanian et al, 2014; Juan et al, 2014c), or travelling
salesman problems (Delévacq et al, 2012; Subramanian and
Battarra, 2012), just to name a few.

Despite its popularity, and as it happens with most other
metaheuristics, ILS assumes that all input data is deterministic,
there are no probabilistic constraints to meet, and there is no other
source of randomness in the system being analysed. In most real-
life problems, however, uncertainty is present; therefore, the
deterministic assumption only allows simplifying the mathema-
tical model to become tractable. Of course, this turns into a less
accurate model that does not reflect the stochastic nature of the
real-life system. In order to overcome this divergence, this paper
conceptualizes the SimILS framework, an extension of the ILS
metaheuristic that integrates simulation into its architecture
(Figure 2). The result is an easy-to-implement simheuristic able
to deal with stochastic COPs in a natural way. In stochastic
COPs, some problem information may be unknown due to
uncertainty, and in some cases, a decision must be made before
knowing the realization of random variables (Kall and Wallace,
1994). Obviously, the integration between simulation and the
ILS architecture must be done carefully in order to avoid
incurring in prohibitive computational times due to the simulation
component.

The remaining of this paper is structured as follows: Section 2
provides an overview of common stochastic COPs and different
approaches used to address them; Section 3 presents the SimILS
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framework from an algorithmic standpoint; Section 4 illustrates
specific SimILS implementations already used to solve stochastic
COPs in different fields; and, finally, Section 5 summarizes the
main contributions of this article.

2. Solving stochastic combinatorial optimization
problems

This section reviews some of the most popular stochastic COPs
analysed in the scientific literature and then provides an overview
of the different approaches that have been used to cope with
them. The following stochastic COPs have received special
attention during the last decades:

● Stochastic VRP (Gendreau et al, 1996b): The most common
variant is the VRP with Stochastic Demands (Bertsimas,
1992), where customers’ demands are unknown a priori,
which might cause the planned routes to become infeasible
during actual delivery (eg, due to vehicle capacity constraint).
An extension of this problem also considers visiting customers
only with a given probability (Gendreau et al, 1995).

● Probabilistic Travelling Salesman Problem (Jaillet, 1985):
Customers need to be visited with a prescribed probability.
Consequently, an aprioristic tour must be planned before
knowing which customers will be visited.

● Inventory Routing Problems with Stochastic Demands

(Federgruen and Zipkin, 1984): In this extension of the VRP,
the delivery of products must be planned jointly with the
inventory management at each retail centre, which is subjected
to the effect of final users’ random demands.

● Stochastic Arc Routing Problem (Fleury et al, 2002; Fleury

et al, 2005): At least one of the parameters or structural
variables is random.

● Stochastic Scheduling Problems (Rothkopf, 1966): Job proces-
sing times are random variables with known probability
distributions. Some popular cases include the Permutation
Flow Shop Problem with Stochastic Times (Banerjee, 1965;
Makino, 1965) and the Stochastic Job Shop Scheduling
Problem (Kise et al, 1982).

● Probabilistic Set-Covering Problem (Beraldi and Ruszczyński,
2002): The right-hand-side constraints constitute a random
binary vector and the covering constraint has to be satisfied
with a given probability.

● Stochastic Time-cost Trade-off Problem (Gutjahr et al, 2000):
There is an uncertain cost associated with the reduction of the
random duration of activities.

● Stochastic Knapsack Problem (Ross and Tsang, 1989):

Objects arrive randomly to the knapsack. Other stochastic
variants include random item sizes (Kleinberg et al, 2000) or
random rewards (Steinberg and Parks, 1979).

2.1. Solving stochastic COPs through exact methods

Exact methods can not only provide optimal solutions to small-
and medium-size problems, but they can also be used as building
blocks for other approximation methods when facing large-size
problems. Gendreau et al (1995) and Christiansen and Lysgaard
(2007) use, respectively, an integer L-shaped method and a
branch-and-price algorithm for the VRP with Stochastic
Demands. Laporte et al (1994) solve the Probabilistic Travelling
Salesman Problem with a branch-and-cut algorithm. Federgruen
and Zipkin (1984) adapt generalized Bender’s decomposition for
the Inventory Routing Problem with Stochastic Demands.
Christiansen et al (2009) formulate the Arc Routing Problem
with Stochastic Demands as a Set Partitioning Problem, and
develop a branch-and-price algorithm for solving it. Pinedo
(1984) surveys optimal policies in Stochastic Open Shop, Flow
Shop and Job Shop Scheduling Problems. Beraldi and
Ruszczyński (2002) propose a branch-and-bound method for the
Probabilistic Set-Covering Problem based on partial and com-
plete enumeration. Despite the theoretical interest of the
described exact approaches, and due to the complexity of the
stochastic COPs, most of their practical applications are restricted
to small-size instances and to a reduced set of probability
distributions—for example, Normal or Exponential distributions-
—to model the randomness in the system. Therefore, they are not
suitable for solving large-size instances or instances in which
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system randomness is modelled with general distributions, as it
frequently occurs in real life.

2.2. Solving stochastic COPs through metaheuristics

As the complexity of the problem grows, approximate methods
such as heuristics and metaheuristics are more appropriate than
exact methods to deal with stochastic COPs, especially when
‘high-quality’ solutions are needed in reasonable computing
times. Different types of metaheuristics have been used to solve
a wide range of stochastic COPs. The following examples
illustrate the use of different metaheuristics for solving stochastic
VRPs: Ant Colony Optimization (Dorigo, 1992; Bianchi et al,
2006; Zhang, 2007); Evolutionary Computation and Genetic
Algorithms (Holland, 1973; Bianchi et al, 2006; Tan et al, 2007;
Ismail, 2008; Shanmugam et al, 2011); Iterated Local Search
(Lourenço et al, 2003; Bianchi et al, 2006); Large Neighbour-
hood Search (Shaw, 1998; Lei et al, 2011); Particle Swarm
Optimization (Kennedy and Eberhart, 1995; Shanmugam et al,
2011; Moghaddam et al, 2012; Marinakis et al, 2013); Scatter
Search (Glover, 1977; Zhang et al, 2012); Simulated Annealing
(Kirkpatrick et al, 1983; Teodorovic and Pavkovic, 1992;
Bianchi et al, 2006); and Tabu Search (Glover, 1986; Gendreau
et al, 1996a, b; Bianchi et al, 2006; Ismail, 2008; Shen
et al, 2009). The reader is referred to Bianchi et al (2009)
for a thorough survey of metaheuristics applied to other
stochastic COPs.

2.3. Solving stochastic COPs through simheuristics

In the last decades, there has been a growing interest for
combining simulation and optimization techniques. This allows
tackling stochastic optimization problems using the virtues of
both realms. Fu et al (2000) categorize the four major approaches
to simulation optimization, namely: (i) gradient-based and ran-
dom search algorithms; (ii) evolutionary algorithms and meta-
heuristics; (iii) mathematical programming-based approaches;
and (iv) statistical search techniques. Glover et al (1996), after a
review of the classical simulation-optimization approach, high-
light the emerging role of the integration of simulation and
metaheuristics, that is, simheuristics. They unveil how a com-
bined Scatter Search and Tabu Search metaheuristic can effec-
tively guide a series of simulations to uncover near-optimal
solutions to stochastic COPs with large solution spaces. In their
words: ‘The importance of integrating the complementary realms
of optimization [metaheuristics] and simulation assures that
future advances will have a high impact on real world applica-
tions’. It is worth mentioning that this integration is the most
widely used approach in commercial simulation-optimization
software (Fu et al, 2000; April et al, 2003), and is becoming
more popular among the scientific community (Figure 3).

Several authors have combined simulation and metaheuristics
to solve different stochastic COPs. In the area of distribution,
Gutjahr (2004) compares the performance of an Ant Colony
Optimization stochastic algorithm to that of a stochastic

Simulated Annealing algorithm for the Probabilistic Travelling
Salesman Problem. Subramaniam and Gosavi (2007) employ a
combination of simultaneous perturbation and Simulated Anneal-
ing to the inventory allocation problem in a distribution network.
Chiang et al (2009) use Tabu Search to an integrated newspaper
production and distribution supply chain management problem.
Tripathi et al (2009) develop an improved Ant Colony Optimiza-
tion approach for the VRP with Stochastic Demands. González
et al (2012) apply a multi-start search procedure that uses Monte
Carlo simulation inside a biased-randomized version of a classi-
cal heuristic for solving the Stochastic Arc Routing Problem.

In production environments, Dengiz and Alabas (2000) use a
Tabu Search algorithm with a simulation model of a Just-In-Time
system to find the optimal number of kanbans. Altiparmak et al
(2002) develop an artificial neural network together with a
Simulated Annealing algorithm to optimize the buffer size in an
asynchronous assembly system. Arreola-Risa et al (2011) design
a heuristic based on simulation and regression analysis for
stochastic production-inventory systems. Laroque et al (2012)
present a combination of Particle Swap Optimization and Genetic
Algorithms procedures within a material flow simulation pro-
blem. For scheduling problems, Legato et al (2010) investigate a
Simulated Annealing procedure to the quay crane scheduling
problem with stochastic discharge/loading processes. Baker and
Altheimer (2012) tackle the Permutation Flow-Shop with Sto-
chastic Times through the use of hybrid algorithms that combine
simulation with the CDS and NEH heuristics.

In other contexts, Konak and Kulturel-Konak (2005) imple-
ment a simulation-optimization method using Tabu Search for
the Stochastic Knapsack Problem, and Balasubramanian et al
(2007) propose a multi-period Genetic Algorithm approach for
the assignment problem of panel design in primary care.

3. The SimILS framework

ILS extends a problem-specific local search method by introdu-
cing a perturbation at each new local optimal solution before
restarting the search for a new local optimal solution. ILS is based
on four procedures: (i) Generation of an Initial Solution, (ii) Local
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Search, (iii) Perturbation, and (iv) Acceptance Criterion
(Algorithm 1).

Algorithm 1 Iterated Local Search framework

Procedure Iterated Local Search
s0=GenerateInitialSolution
s*=LocalSearch (s0)
Repeat

s′=Perturbation (s*, history)
s′*=LocalSearch (s′)
s*=AcceptanceCriterion (s*, s′*, history)

Until termination condition met
End

ILS aims at avoiding the disadvantages of random restarts by
exploring the region of feasible solutions using a walk that steps
from one local optimal solution s* to a ‘nearby’ one. Given the
current solution s*, a change or perturbation is first applied
leading to an intermediate feasible solution, s′. Then, a Local
Search is applied to s′ to obtain a new local optimal solution, s′*.
If s′* passes an acceptance test, it becomes the new current
solution; otherwise, one returns to the previous one, s*. Given the
structure in Algorithm 1, a basic version of ILS can be easily
developed for most COPs: (i) it is possible to start with a random
solution or with one obtained by a simple constructive heuristic;
(ii) for most problems, a local search algorithm is readily
available; (iii) for the perturbation, a random move in a neigh-
bourhood of higher order than the one used by the local search
algorithm can be surprisingly effective; and (iv) a reasonable first
guess for the acceptance criterion is to force the cost to decrease,
corresponding to a first-improvement descent. Basic ILS imple-
mentations of this type usually lead to much better performance
than random restart approaches and, in many cases, even better
than sophisticated metaheuristics with a large number of para-
meters to configure. The developer can then run this basic ILS to
build her intuition and try to improve the overall algorithm
performance by improving each of the four modules and tuning
their interaction. Two important aspects to consider are the
perturbation phase and the interaction among the different
elements of ILS. On the one hand, the perturbation applied to
the current local solution should permit to escape from this local
optimum. On the other, the interaction among the elements
should lead to a large search on the space of feasible solutions.
Thus, for example, the perturbation should not be easily undone
by the local search or the acceptance criterion should avoid early
convergence to an initial local optimal solution.

A well-designed ILS algorithm has all the important attributes
of a metaheuristic according to the desirable set of properties
described in Cordeau et al (2002): accuracy, speed, simplicity,
and flexibility. ILS requires few parameters, and they can be
easily adapted to different variants or extensions of a given COP.
Given its attributes, we consider that ILS is an excellent
candidate, as a metaheuristic framework, to be combined with

simulation in order to solve stochastic COPs following a natural
and easy-to-implement approach.

The general SimILS framework, described in Algorithm 2,
integrates simulation at some specific steps, resulting in a
simulation-optimization procedure capable of dealing with sto-
chastic COPs. In particular, simulations are inserted after apply-
ing the Local Search to evaluate the current local optimal
solution, s* or s′*. These simulations take this solution and a
parameter indicating whether the simulation should be run for a
long or a short time, and then obtain the corresponding simulated
objective function, sf(·), along with other relevant statistics that
can be used later to improve the search (eg, satisfaction degree of
the probability constraints). A simulation component is also
inserted at the end of the ILS process.

Notice that, whenever possible, the simulation component
inside the main loop should be applied just over a selected and
reduced subset of newly generated solutions. Otherwise, the
execution of simulation runs for every newly generated solution
will consume most of the algorithm’s computational time, thus
avoiding the ILS framework to converge to pseudo-optimal
solutions in reasonable computing times. One way to do this is
by performing short-run simulations only when a newly gener-
ated solution (almost) improves the deterministic value of the
base solution, that is, whenever a newly generated solution is a
‘promising’ solution. Also, since the accuracy of a simulation
depends on the number of runs executed, it might be worthy to
keep in memory a selected list of top solutions obtained during
the ILS process. If cost differences among solutions are small, a
long-run simulation after the main ILS process is justified on
these solutions to increase the accuracy of the results and to select
the best-found solution for the stochastic COP being analysed.

Algorithm 2 General SimILS framework extending the original
ILS framework

Procedure SimILS
s0=GenerateInitialSolution
s*=LocalSearch(s0)
(s*, sf(s*), statistics)= Simulation(s*, long)
Repeat

s′=Perturbation(s*, history)
s′*=LocalSearch(s′)
(s′*, sf(s′*), statistics)=Simulation(s′*, short)
s*=AcceptanceCriterion(s*, s′*, history)

Until termination condition met
(s*, sf(s*), statistics)= Simulation(s*, long)

Return s*, sf(s*)
End

In practice, the role of simulation is mainly oriented either to:
(i) estimate the expected cost value of a newly generated
solution—whenever the objective function contains some sto-
chastic components—, or (ii) check that a newly generated
solution satisfies some probabilistic constraints. Therefore, two
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variants of the general SimILS framework presented in Algo-
rithm 2 are proposed for COPs with a stochastic objective
function (Algorithm 3), and for COPs with stochastic constraints
(Algorithm 4). Examples of the first case include VRPs with
stochastic travelling times, Scheduling problems with stochastic
processing times, and Location problems with stochastic trans-
portation and inventory costs. Examples of the second case
include VRPs or Location problems with probabilistic constraints
regarding the total demand to be served, and Scheduling
problems with stochastic machine availability. Some specific
implementations of the first case can be found in Juan et al
(2011, 2013, 2014a, b), while an implementation of the second
case is studied in Cabrera et al (2014). These implementations are
discussed in more detail in the next section.

Algorithm 3 SimILS framework for COPs with stochastic
objective function

Procedure SimILS
s0=GenerateInitialSolution
s*=LocalSearch (s0)
ss*= s*
(ss*, sf(ss*), statistics)= Simulation (ss*, long)
bsf*= sf(ss*)
Repeat

s′=Perturbation (s*, history)
s′*=LocalSearch (s′)
s*=AcceptanceCriterion (s*, s′*, history)
(s*, sf(s*), statistics)= Simulation (s*, short)
If sf(s*)< bsf*

bsf*= sf(s*);
ss*= s*

Until termination condition met
(ss*, sf(ss*), statistics)= Simulation (ss*, long)

(s*, sf(s*), statistics)= Simulation (s*, long)
Return (ss*; sf(ss*)) and (s*; sf(s*))

End

In the case of a COP with a stochastic objective function
(Algorithm 3), the SimILS maintains two best solutions: the best
local optimal solution, s*, for the deterministic objective function
(ie, with average data), and the best local optimal solution, ss*,
for the stochastic objective function obtained after the simulation.
The algorithm also keeps track of the corresponding best
objective function values, f(s*) and bsf*= sf(ss*), respectively.
At each iteration, the best solutions along with the corresponding
values are updated, and they are reported at the end of the SimILS
algorithm. Figure 4 illustrates the steps carried out by the SimILS
in the presence of a stochastic objective function for a minimiza-
tion problem. Starting with a local minimum, s*, the Perturbation
phase is applied to obtain a solution s′. A Local Search then finds
a new local minimum s′*. Both s* and ss* are updated (blue and
red lines, respectively). The process is repeated to obtain a new s′
and, afterwards, a new s′*. This time, only s* is updated since
sf(s*)> bsf*.

In the case of a COP with stochastic constraints (Algorithm 4),
the purpose of the simulation is to verify whether the newly
generated solution satisfies these constraints with a certain
probability. One can define this probability as a service level.
The user needs to define a service level threshold, that is, a
probability of satisfying a given constraint. For example, in COPs
with stochastic demands, the user could require a solution to meet
demand with 90% probability. In the initial phase of the SimILS,
the algorithm looks for an initial solution that satisfies this service
level threshold, and, in the second phase, it optimizes the
objective function.

Algorithm 4 SimILS framework for COPs with stochastic
constraints

Procedure SimILS
s0=GenerateInitialSolution (input data: average

values)
s*=LocalSearch(s0)
(s*, sf(s*), service level)= Simulation (s*, long)
Repeat

s′=Perturbation (s*, history)
s*=LocalSearch (s′)
(s*, sf(s*), service level)= Simulation (s*, short)

Until verifying service level threshold
Repeat

s′=Perturbation (s*, history)
s′*=LocalSearch (s′)
(s′*, sf(s′*), service level)=Simulation (s′*, short)

s*=AcceptanceCriterion (s*, s′*, service
level, history)

Until termination condition met
(s*, sf(s*), service level)= Simulation (s*, long)

Return (s*; sf(s*))
End
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Finally, when a COP has both stochastic objective function
and stochastic constraints, Algorithms 3 and 4 can be combined
into Algorithm 5 to tackle the problem. There exist many
problems of this type in real life (eg, a VRP with both stochastic
demands and travelling times).

Algorithm 5 SimILS framework for COPs with stochastic
objective function and constraints

Procedure SimILS
s0=GenerateInitialSolution
s*=LocalSearch (s0)
Repeat

s′=Perturbation (s*, history)
s*=LocalSearch (s′)
(s*, sf(s*), service level)= Simulation

(s*, short)
Until verifying service level threshold
bdf*= f(s*);
ss*= s*
(ss*, sf(ss*), statistics)=Simulation (ss*, long)
bsf*= sf(ss*)
Repeat

s′=Perturbation (s*, history)
s′*=LocalSearch (s′)
(s′*, sf(s′*), service

level)= Simulation (s′*, short)
s*=AcceptanceCriterion (s*, s′*,

service level, history)
If sf(s*)< bsf*

bsf*= sf(s*);
ss*= s*

Until termination condition met
(ss*, sf(ss*), statistics)= Simulation (ss*,

long)
(s*, sf(s*), statistics)= Simulation (s*, long)
Return (ss*; sf(ss*)) and (s*;sf(s*))

End

4. Some application examples

In this section we describe several examples in which multi-start
or ILS-like algorithms have been successfully extended to solve
stochastic COPs in different fields. Notice that multi-start
approaches can be seen as an extreme case of ILS-based
approaches in which the perturbation process resets the base
solution to the initial one. Following this logic, any multi-start
process can be easily evolved to an ILS-based approach by using
less aggressive perturbation processes—which, as discussed
before, tend to accelerate the algorithm’s convergence by keeping
part of the base solution instead of restarting it to the initial
solution.

The first applications correspond to COPs with a stochastic
objective function (Algorithm 3). In Juan et al (2011, 2013),
the authors combine simulation with a multi-start framework
in order to solve the VRP with Stochastic Demands. In the
former, simulation is used just after the multi-start local search
has finished, whereas in the latter simulation is integrated
inside the multi-start procedure as described in the previous
section. The authors show that, apart from estimating the
total costs associated with a given routing plan, simulation also
allows the decision maker to obtain an estimate of the reliability
level of each routing plan. In other words, by using simulation
more insight into the properties of the provided solutions is
obtained.

In Juan et al (2014a) the authors integrate simulation into an
ILS framework to solve the Permutation Flow-Shop Problem
with Stochastic Processing Times. First, they ‘transform’ the
original stochastic problem into a deterministic problem using the
expected processing times. Then, the realization of stochastic
processing times converts the objective function into stochastic,
as it has been generally described in Algorithm 3. To obtain an
initial solution for the deterministic version, the NEH heuristic by
Nawaz et al (1983) is applied. Next, to evaluate the performance
of this initial solution when stochastic processing times are
considered, a short Monte Carlo simulation is run and basic
statistics on the stochastic makespan are gathered. The next steps
are the ILS procedures: perturbation and local search. These two
steps are applied as in the deterministic case. However, after
obtaining a new base solution, a short simulation is run to
generate its associated value for the stochastic problem. During
the iteration of these steps, two solutions are always maintained:
the best deterministic solution (ie, using expected processing
times); and the best stochastic solution (ie, that with the best
observed stochastic makespan in the simulation). Of course, the
best solution for the deterministic case may not necessarily be the
best solution for the stochastic version. The last step consists in
performing a longer simulation with these two solutions in order
to obtain more accurate statistics and makespan values. Worth
mentioning is that the simulation phase is quite simple to
implement, and it does not significantly increase the running time
of the SimILS. This simulation phase consists in the following:
given a solution (that is, a permutation of the jobs) and a
probability function associated to the processing times, a random
variable is generated for each job-machine processing time,
and then an observed makespan is calculated (the critical
path length of the associated disjunctive graph). The process is
then repeated according to the number of iterations, using
long or short simulations as desired. Also, it is important
to say that the simulation component not only is used to obtain
accurate estimates of the expected makespan associated with
each proposed solution (permutation of jobs), but it is also
employed to generate insight on the probabilistic characte-
ristics of each proposed solution. In particular, without increasing
the computational effort, simulation allows to estimate the
probabilities of each solution being completed before a specific
deadline.
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In Juan et al (2014b), the authors also use a SimILS approach
for solving the Inventory Routing Problem with Stochastic
Demands and Stock-outs. The problem consists in defining a
routing distribution plan that includes the product quantities to
deliver to a set of retailers. The decision must consider both the
stochastic retailers’ demand and the available stock at each
retailer. Solutions to this problem account not only for routing
costs, but also for inventory-holding and inventory-stockout costs
due to demand stochasticity. This kind of integrated inventory
routing problems, in which uncertainty is also present, are quite
common in supply chain management, and the combination of
simulation with a multi-start or ILS algorithm turns to be an
efficient way to cope with them despite their intrinsic difficulty.
The presence of stochastic demands implies a stochastic objective
function (ie, with inventory holding or stockout costs) plus
stochastic constraints. Now the vehicle capacity constraints are
affected by the quantity delivered, which depends on the
stochastic demands. The authors use a SimILS framework with
stochastic objective function and constraints (Algorithm 5). The
problem solution (ie, routing and quantities delivered) is calcu-
lated using a particular service level for each retailer based on an
estimated demand. The service level is given by a refill policy
that goes from no refill to 100% refill of the estimated demand.
Then, the simulation step calculates the solution’s total costs
(routing plus stocks) while identifying the service level, that is,
the maximum possible quantity delivered without violating
vehicle capacity constraints. As in the previous work, the
algorithm uses short and long Monte Carlo simulations at
different stages, leading to short running times. At the end, the
algorithm yields two solutions, the best deterministic and
stochastic solutions, and runs a long simulation to evaluate the
service level and other relevant statistics. The authors also
perform an extensive computational experiment to conclude that
total costs and refill policies of their algorithm outperform other
proposed approaches in the literature. In these previous
approaches, a general refill policy is usually applied to all
retailers, whereas in the proposed SimILS personalized policies
for each retailer can be obtained. A final advantage of their
SimILS is that any probability function can be used since
the Monte Carlo simulation phase does not require any
special assumption on the demand’s stochastic behaviour. The
method can be easily generalized to different demand probability
functions and applied to different industries and business
environments.

One last example of application can be found in Cabrera et al
(2014), which is a COP with stochastic constraints (Algorithm 4).
Here, the authors face the problem of guaranteeing, at the
minimum possible cost, the availability of Internet services
deployed over a large-scale set of distributed and non-dedicated
resources. For that, they propose a local search algorithm that
integrates discrete-event simulation to check the feasibility of
each newly generated solution. In other words, they use simula-
tion to estimate the availability level of a proposed ‘promising’
solution and make sure this level is over a user-defined threshold
before accepting it as a feasible one.

5. Conclusions

ILS represents one of the most efficient yet easy-to-implement
frameworks for solving medium-size and large-size instances of
COPs in a wide variety of fields. However, as it happens with
other metaheuristics, it was not designed to include stochastic
elements in the objective function or in the constraints of the
mathematical model that represents the real system. Since most
real-life problems are filled with uncertainty, ILS needs to be
extended to cope with this intrinsic stochasticity. By integrating
simulation inside the local search process, the resulting SimILS
framework extends the virtues of ILS to stochastic COPs as well.
When conveniently implemented, the SimILS approach repre-
sents a natural, low parametrized, and efficient way to deal with
complex decision-making problems under uncertain scenarios.
Algorithms based on the SimILS architecture can also be useful
when providing additional insight into the probabilistic character-
istics of the generated solutions, something which cannot be
easily obtained by using components different from simulation.
Moreover, SimILS approaches do not need to assume any
particular behaviour regarding the probability distributions that
model the system’s randomness. Several applications to vehicle
routing, scheduling, inventory routing, and Internet computing
contribute to illustrate the potential of the proposed framework.
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