
SimMatrix: SIMulator for MAny-Task computing
execution fabRIc at eXascales

Ke Wang1, Ioan Raicu1,2
kwang22@hawk.iit.edu, iraicu@cs.iit.edu

1
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

2
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

ABSTRACT

Exascale computers will enable the unraveling of significant

scientific mysteries. Predictions are that by 2019,

supercomputers will reach exascales with millions of nodes

and billions of threads of execution. Many-task computing

(MTC) is a new viable distributed paradigm for

extreme-scale supercomputing. The MTC paradigm can

address four of the five major challenges of exascale

computing, namely concurrency, resilience, heterogeneity,

and I/O and memory; this work specifically addresses the

first three major challenges. This paper presents a new

light-weight and scalable discrete event simulator,

SimMatrix, that enables the exploration of distributed

scheduling for MTC workloads at exascale levels with up to

1 million nodes and 1 billion cores. SimMatrix is validated

against real MTC workloads executed under Falkon at

petascale levels, with 40K nodes and 160K-cores.

Centralized scheduling is compared and contrasted to

distributed scheduling; this work adopts work stealing, as an

efficient and scalable approach to distributed load balancing.

It explores a wide range of parameters important to

understand work stealing at exascale levels, such as number

of tasks to steal, number of neighbors of a node, static or

dynamic neighbors, and different workloads. Experiment

results show that the centralized scheduling saturates at small

number of nodes, while the distributed scheduler configured

with optimal parameters could scale up to 1 million nodes

and 1 billion cores without any explicit upper bound.

SimMatrix is light-weight and scalable, having been tested

up to 1 billion cores and 10 billion tasks with modest

resources (e.g. 200GB of memory and 256-core hours).

Categories and Subject Descriptors

C.2.4 [Distributed Systems]; C.5.1 [Large and Medium

(``Mainframe'') Computers]; D.4.8 [Performance]

General Terms

Management, Performance.

Keywords

Exascale, Many-Task Computing, MTC, Scheduling, Work

Stealing, Load Balancing.

1. INTRODUCTION
Exascale (i.e. 1018 operations/sec) computers will enable the

unraveling of significant scientific mysteries. The US

President made reaching exascales a top national priority,

claiming it will "dramatically increase our ability to

understand the world around us through simulation". [1]

There are many domains (e.g. weather modeling, global

warming, national security, energy, drug discovery, etc.) that

will achieve revolutionary advancements due to exascale

computing. Predictions are that 2019 will be the year of

exascales, with millions of nodes and billions of threads of

execution. [2][3][4]

1.1 Challenges at Exascale
The era of manycore and exascales computing will bring new

fundamental challenges in how we build computing systems

and its hardware, how we manage them, and how we

program them. The techniques that have been designed

decades ago will have to be dramatically changed to support

the coming wave of extreme-scale general purpose parallel

computing. The five most significant challenges of exascale

computing are: concurrency, resilience, I/O and memory,

heterogeneity, and energy. Any one of these challenges, if

left unaddressed, could halt progress towards exascale

computing.

Concurrency refers to programmability, and how we will

harness the many magnitude orders of increased parallelism

fueled by the manycore computing era. The largest

supercomputers have increased in parallelism at an alarming

rate. In 1993, the largest supercomputers had 1K-cores

(0.00006PF/s), in 2004 8K-cores (0.035PF/s) and in 2011

688K-cores (10.5PF/s); by 2019, supercomputers will likely

reach billions of threads/cores (~1000PF/s). [2] Many have

said that the “free ride” software had for many decades, has
finally come to a halt, and a new age is upon us which paints

a bleak picture unless revolutionary progress is made in the

entire computing stack. Today’s programming languages are
inadequate to automatically harness even modest parallelism.

Popular programming languages (e.g. C/C++, Java) are

unlikely to scale to manycore levels given the level of

expertise needed to parallelize applications; furthermore,

their imperative nature makes them difficult to parallelize

automatically.

Resilience refers to the capability of making both the

infrastructure (hardware) and applications fault tolerant in

face of a decreasing mean-time-to-failure (MTTF). The MPI

programming model [5] is unlikely to survive in its current

form, given how brittle the programming paradigm is due to

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

HPDC’12, June 18–22, 2012, Delft, The Netherlands.

Copyright 2012 ACM 0-00000-000-0/00/0010…$10.00.

its synchronous nature. MPI was designed in the 1980s,

when parallelism was on the order of 10s of processors; MPI

has already evolved significantly, however it is facing

difficulty in scaling up on large machines due to an

increasing cost to checkpoint (the state-of-the-art in HPC

reliability) and decreasing MTTF [6]. In order to achieve

exascale levels with millions of nodes and billions of threads

of execution, revolutionary advancements must be made in

the programming paradigm. A more abstract and modern

programming paradigm could allow parallelism to be

harnessed with greater ease, as well as making applications

fault tolerant diminishing the effects of the decreasing system

MTTF.

I/O and memory refers to optimizing and minimizing data

movement through the memory hierarchy (e.g. persistent

storage, solid state memory, volatile memory, caches, and

registers). Exascale will bring unique challenges to the

memory hierarchy never seen before in supercomputing,

such as a significant increase in concurrency at both the node

level (number of cores is increasing at a faster rate than the

memory subsystem performance), and at the infrastructure

level (number of cores is increasing at a faster rate than

persistent storage performance). The memory hierarchy will

change with new technologies (e.g. non-volatile memory),

implying that programming models and optimizations must

adapt. Optimizing exascale systems for data locality will be

critical to the realization of future extreme scale systems.

Heterogeneous systems offer the opportunity to exploit the

extremely high performance heterogeneous computing

resources (e.g. accelerators, GPUs, MIC, FPGA) while still

providing a general purpose platform. In the November 2011

Top500 rankings, four of the top ten supercomputers had a

heterogeneous architecture. A recent study [3] has also

shown that exascale systems will more likely have

heterogamous architectures, as opposed to strawman or

heavyweight architectures.

Power refers to the ability to keep the power consumption at

a reasonable level, so that the cost to power a system does

not dominate the cost of ownership. The DARPA Exascale

report [2] defined probably the single most important metric,

namely the energy per flop. Given the energy consumption of

current state-of-the-art technologies which uses 12.7MW of

power, the increase in performance by 100X (to reach

exascales), and the upper cap of 20MW of power for a single

supercomputer, we can conclude that we need to reduce the

energy per flop by 50X to 100X to make exascale computing

viable.

1.2 Defining Many-Task Computing
Many-Task Computing (MTC) was introduced by Raicu et al.

[7][8] in 2008 to describe a class of applications that did not

fit easily into the categories of traditional high-performance

computing (HPC) or high-throughput computing (HTC).

Many MTC applications are structured as graphs of discrete

tasks, with explicit input and output dependencies forming

the graph edges. In many cases, the data dependencies will

be files that are written to and read from a file system shared

between the compute resources; however, MTC does not

exclude applications in which tasks communicate in other

manners.

MTC applications have features that distinguish them from

typical HTC applications. HTC applications have

traditionally run on platforms such as grids and clusters,

through either workflow systems or parallel programming

systems. MTC applications, in contrast, will often demand a

short time to solution, may be communication intensive or

data intensive, and may comprise of a large number of short

tasks. Tasks may be small or large, uniprocessor or

multiprocessor, compute-intensive or data-intensive. The set

of tasks may be static or dynamic, homogeneous or

heterogeneous, loosely coupled or tightly coupled. The

aggregate number of tasks, quantity of computing, and

volumes of data may be extremely large.

For many applications, a graph of distinct tasks is a natural

way to conceptualize the computation and is often a natural

way to build the application. Structuring an application in

this way also gives increased flexibility. For example, it

allows tasks to be run on multiple different supercomputers

simultaneously; it simplifies failure recovery and allows the

application to continue when nodes fail, if tasks write their

results to persistent storage as they finish; and it permits the

application to be tested and run on varying numbers of nodes

without any rewriting or modification.

The hardware of current and future large-scale HPC systems,

with their high degree of parallelism and support for

intensive communication, is well suited for achieving low

turnaround times with large, intensive MTC applications.

However, HPC systems often lack a dynamic resource

provisioning feature, are not ideal for task communication

via the file system, and have an I/O system that is not

optimized for MTC-style applications. Hardware and

software for MTC must be engineered to support the

additional communication and I/O, must minimize task

dispatch overheads, queue management, and support

resource management at finer granularity (e.g. at the core

level, or node level, as opposed to the partition level). The

MTC paradigm has been defined and built with the

scalability of tomorrows systems as a priority and can

address many of the HPC shortcomings at extreme scales.

1.3 Contributions
The main contributions of this paper are as follows:

(1) Develop a new light-weight and scalable discrete event

simulator that enables distributed scheduling for MTC

workloads at exascales.

(2) Provide evidence that work stealing is a scalable

method to achieve load balance, even at exascales.

(3) Identified optimal parameters affecting the

performance of work stealing; at the largest scales, in

order to achieve the best work stealing performance,

we found the number of tasks to steal is half and there

must be a squared root number of dynamic neighbors

(e.g. at 1M nodes, we would need 1K neighbors).

1.4 Organization
The rest of the paper is organized as follows: Section 2 gives

some background information, which is necessary to make

the paper self-contained. In Section 3, we propose the system

architecture and the implementation of the simulator. We

show the evaluation and the experiment results of the

performances of the simulator in Section 4. In Section 5,

related works about job scheduling systems, work stealing

and load balancing are discussed. Conclusions are drawn and

future work is envisioned in Section 6.

2. BACKGROUND INFORMATION
The goal of Job Scheduling System is to efficiently manage

the distributed computing power of workstations, servers,

and supercomputers in order to maximize job throughput and

system utilization. Job management in MTC should support

the granularity at the node/core level at extreme scales. The

system could be centralized, where a single dispatcher

manages the job submission, job assignment, and job

execution state updates, or hierarchical, where several

dispatchers are organized in a tree-based topology, or

distributed, where each computing node maintains its own

job execution framework. Centralized dispatcher suffers

scalability, due to its limited processing capacity.

Hierarchical dispatchers have the problem of long job

turnaround time, because of the communications between

different-layer dispatchers. Distributed scheduling with

innovative load balancing techniques is an efficient way to

maintain scalability, high performance and reliability at

exascale systems.

Distributed Load balancing is the technique of distributing

computational and communication loads evenly across

processors of a parallel machine, or across nodes of a

supercomputer, so that no single processor or computing

node is overloaded. Load balancing strategies can be divided

into two broad categories – those for applications where new

tasks are created and scheduled during execution (i.e. task

scheduling) and those for iterative applications with

persistent load patterns. [9] Clients will be able to submit

work to any queue, and each queue will have the choice of

executing the work locally, or forwarding the work to

another queue based on some function it is optimizing. Load

balancing can be used to optimize resource utilization, data

movement, power consumption, or any combination of these.

Work stealing [10] refers to a distributed load balancing

approach in which processors needing work steal

computational tasks from other processors. There are several

parameters which could affect the performance of work

stealing to achieve load balancing, such as steal tasks from

global space or just some neighbors, how to select neighbors,

how many number of neighbors a node could have, how

many tasks to steal, and the length of waiting time if a node

fails to steal takes from others.

3. PROPOSED SOLUTION
This work investigates the usability of work stealing towards

exascale levels of parallelism, and investigate the optimal

parameters (e.g. worker’s connectivity, number of tasks to
steal, static/dynamic neighbors, etc) needed to make work

stealing a viable and efficient distributed load balancing

mechanism. This work seeks to prove that given certain work

stealing parameters, that good load balancing can be obtained

in a finite amount of time, and that resource partitioning is

unlikely to occur.

3.1 SimMatrix Architecture
SimMatrix supports both centralized and distributed

scheduling, whose architectures are shown in Figure 1. For

simplicity, we assign consecutive integer numbers as the ids

of each node, ranging from 0 to the number of nodes N-1.

In the centralized situation, the clients submit tasks to the

task waiting queue of the single dispatcher, which then

assigns tasks to the first available node based on the load

information of every node in the FIFO way. None nodes

have task waiting queue. If all cores are occupied, the

dispatcher will wait until some tasks are finished, and then

send tasks again until all finished.

Figure 1: Simulation architectures; the left part is the

centralized one with a single dispatcher connecting all

nodes, the right part is the homogeneous distributed

topology with each node having the same number of cores

and neighbors

In the distributed scheduler case, the clients submit tasks to

any arbitrary node. For simplicity, we let the clients submit

tasks to the first node, whose id is 0. This is the worst

scenario from a load balancing perspective. Every node has

its own task waiting queue, and the same number of

neighbors. Figure 1 shows a fully connected topology of the

nodes; in this example, the neighbors of a node are just its

several left and right nodes with consecutive ids. Anytime

when a node has no tasks in its task waiting queue, it will ask

the load information from all the neighbors one by one, and

try to steal tasks from the one having the heaviest load. When

a node receives a load information request, it will send its

load information to the neighbor. If a node receives work

stealing request, it then checks its task waiting queue, if

which is not empty, it will send some tasks to the neighbor,

or it will send information to signal a steal failure. When a

node fails to steal tasks, it will wait some time, and then try

again. We call this waiting time the poll interval. The

termination condition is that all the tasks submitted by client

are finished. We do this by setting a global counter which

can be read by all simulator threads to signal the termination

of the simulation.

3.2 Task Description
The tasks in our simulator are MTC per-core tasks, which are

independent with each other. Each task has the attributes

such as task length (the time taken by a core to finish the

task), task size (data size required by the task), task

timestamps recording the times when a task is submitted by

client, when a task arrives the computing node, and when it

is finished. We expect that some other higher level system is

managing all the task dependencies, such as some parallel

programming system (e.g. Swift [13], Charm++ [14], etc).

3.3 Global Variables
There are several global variables in our simulator. These

variables define the communication networks, the scale of

the system, the work stealing parameters, etc. The names and

descriptions of the variables are listed in Table 1. The bolded

ones are specific for the distributed scheduling, while others

are for both the centralized and distributed scheduling.

Table 1: Global Variables and Descriptions

Name type Description

numNode int
Number of nodes of

the system

linkSpeed double
The link speed of the

network

procTimePerTask double

Time the server takes

to determine which

node to dispatch tasks

networkLatency double
Network latency for

every communication

numCoresPerNode int
Number of cores of a

node

logTimeInterval double
The time interval to

write log

numNeighbors int
Number of neighbors a

node has

numStealWork int
Number of tasks to

steal

StealInterv double The initial poll interval

3.4 Discrete Event Simulation
SimMatrix is built as a discrete event simulator as it was the

only viable approach to ensuring scalability to exascales

(millions of nodes and billions of cores) on a single shared

memory system. The single shared memory system

requirement came from aiming for a simple to implement

and run simulator.

Before settling on SimMatrix being a discrete event driven

simulator, we performed experiments to explore how many

threads could be supported under Java, and we found that on

our 48-core system with 256GB of memory, we were limited

to 32K threads. Furthermore, at this scale of concurrent

threads, the threads active state was so infrequent (as there

were only 48 physical cores) that it made the simulator

extremely slow and inaccurate. Since it was not feasible for

us to run 1M threads in Java (or C/C++ which we also

explored), we abandoned the idea of creating a separate

thread per simulated node.

We therefore decided on creating a unique object per

simulated node, and convert any behavior to an event. All

events are put in a global event queue (see Section 3.5), and

sorted based on the occurrence time.

3.5 Global Event Queue
The global event queue is the heart of the SimMatrix

simulator, and it is used to keep the millions to billions of

events active at any point in time (when simulating an

exascale system) in an organized fashion. There is only one

global event queue for the entire simulation, no matter how

many nodes or tasks are being simulated. The first event in

the queue is always the next event to be process. Every time

an event is removed from the event queue for processing, we

advance the simulation time to the occurrence time of the

event.

There are several events in the simulator listed below, and

the ones marked with an * are specific for the distributed

scheduling:

 TaskEnd: Signals a task completion event (which

inherently frees a processing core). This event causes

the scheduler to advance to the next task to schedule. In

the centralized scheduler, the compute node (with the

available core) will wait for the dispatcher to assign

more tasks. In the distributed scheduler, the compute

node starts to execute another task (assuming it has

tasks in the waiting queue) by inserting another

‘TaskEnd’ event with a future time (when the new task
is expected to complete), or it invokes the work stealing

algorithm to take tasks from its neighbors.

 Submission: In the centralized scheduler, the client

submits some number of tasks to the centralized

dispatcher.

 Log: Signals the record writing to a summary log file,

including the information such as the simulation time,

number of all cores, number of executing cores, waiting

queue length, throughput, etc. The Log event can be

used to generate periodic logs for monitoring and

visualization purposes.

 *Steal: Signals the work stealing algorithm to invoke

the steal operation. In particular, a node asks for tasks

from its neighbors. First, the node will ask for the load

information of its neighbors one by one, and then selects

the one that has the heaviest load to steal tasks by

inserting a ‘TaskReception’ event. If all neighbors have
no tasks, the node will wait for some time to ‘Steal’
again.

 *TaskDispatch: Signals the task dispatch to a neighbor.

If at the current time, the node happens to have no tasks,

it will inform the neighbor to ask for tasks again, by

inserting a ‘Steal’ event on the neighbor’s side. Else, the
node will dispatch a part of its waiting tasks to the

neighbor by inserting a ‘TaskReception’ event on that
neighbor’s side.

 *TaskReception: Signals the receiving node to increase

the length of its task waiting queue. The task received

could be from the submitted client, or from a neighbor.

 *Visualization: It is used as an event to visualize the

load information of all nodes.

The state diagram of all the events are shown in Figure 2,

where each state is an event that is executing, and the next

state is the event to be inserted in the event queue signaled

after finishing current event. The performance of the event

queue is central to that of the simulator. It has to be scalable

to many events (billions), and be subjected to frequently

updates. All these operations need to re-order the queue. In

our implementation, we use the TreeSet data structure [15],

which is a set whose elements are ordered using their natural

ordering, or by a comparator provided at set creation time. In

SimMatrix, it is ordered by a comparator based on the event

occurrence time, along with the node ids, task ids or the

event ids in the distributed scheduling. The TreeSet is

implemented based on Red-Black tree [16], which guarantees () time for removing and inserting, and () time

for getting the first event.

Log
Visual

Steal

Submit

Has tasks

First node

empty

A steal request

Global Event Queue

S
o
r
t
e
d

b
y

t
i
m
e

Insert

Event(time:t)

No waiting tasks

TaskEnd

Has Waiting

Tasks

Failed

No
 T
as
ks

D
i
s
p
a
t
c
h

t
a
s
k
s

First node empty

Available

cores

TaskRec

TaskDisp

Figure 2: Event State Diagram

3.6 Node Load Information
In the centralized scheduler, the load information of all nodes

is accessed by the dispatcher to determine the next node to

assign tasks. The load is the number of busy cores ranging

from 0 to the number of cores. The dispatcher can access the

load information continuously as long as there are still

waiting tasks. If we were to naively go through all the nodes

to get the load information, the simulator would be highly

inefficient when the number of nodes is large (e.g. 1 million).

We implement the load information using a Hash Map [17].

The ‘Keys’ are the node load, while the ‘Value’ is
corresponds to a hash set which contains the node ids whose

loads are all equal to the ‘Key’.

Each time when the dispatcher wants to assign some tasks to

a node, it goes through all the ‘Keys’, and finds where the

corresponding node’s information is at. As the number of
cores per node is relatively small (e.g. 1000 cores), we

consider this lookup operation taking () time, where

c=1000. Once the right load level is identified, inserting,

getting or removing an element in the nested hash set only

takes () time. This hierarchical nested data-structure

helped reduce the practical time complexity by orders of

magnitude, from a (()) to ().
In the distributed scheduling, the load of a node is the

number of waiting tasks minus the number of idle cores. In

order to keep programming easy, every node could access the

load information of its neighbors directly. However, the

simulator keeps track of the query and response overheads

when asking for this load information.

3.7 Logs
In order to do statistical analysis, to help generate the results

from Section 4, as well as for visualization purposes, we

write some information into logs. We have two logs, one

recording the per task information (can be very large for

exascale simulations), while the other recording the summary

over some defined unit of time (quite efficient regardless of

scale of experiment). The per task log records information

such as task ID, compute node ID, submission time, queue

wait time, execution time, and exit code (whether it was

successful or not). The summary log records information

such as the ‘simulation time’, ‘number of all cores’, ‘number
of executing cores’, ‘wait queue length’, ‘throughput’, etc.

The per task log is optional due to the potential large

overhead and storage requirement. If enabled, a record gets

logged whenever a ‘TaskEnd’ event happens. The summary
log is mandatory, and is implemented by submitting events to

the global event queue. At the beginning when simulation

time is 0, we insert a ‘Log’ event. Every time when handling

a ‘Log’ event, we remove it and insert the next ‘Log’ event
which would happen some fixed simulation time later. In this

way, we ensure that the increment of the simulation time

between two consecutive records is constant.

3.8 Dynamic Task Submission
Both the centralized and distributed scheduling support

dynamic task submission. Client could submit a couple of

tasks to the dispatcher, or an arbitrary node dynamically

when the number of waiting tasks is below some threshold.

Dynamic task submission aims to reduce the memory

foot-print of having more tasks submitted than available

compute nodes/cores.

3.9 Poll Interval for Work Stealing
In the distributed scheduler, we implement a dynamic poll

interval policy in order to achieve reasonable simulation

performance while still keeping the work stealing algorithm

responsive. Without a dynamic poll interval, we observed

that under idle conditions, many nodes would poll neighbors

to do work stealing, which would ultimately fail and would

lead to more work stealing requests. If the polling interval

was set large enough to limit the number of work steal events,

the work stealing algorithm would not respond quickly to

changing conditions, and would lead to poor load balancing.

Therefore, we change the poll interval of an idle node

dynamically by doubling it each time when all of the

neighbors have no tasks, and setting the poll interval back to

the default small value whenever it steals some tasks

successfully; this algorithm is similar to the exponential

backoff algorithm in the TCP networking protocol. We set

the default poll interval to be small value (e.g. 1 sec).

3.10 Implementation Details
SimMatrix has been developed in Java, and includes about

1500 lines of code. It has been tested on a variety of

operating systems, from Linux to Windows. SimMatrix uses

the uniform random distribution generator for producing

workloads, and BufferedWriter for logging, as we found this

to be the most efficient writer in Java (after comparing 6

ways to write to a file [18]). Also, we implement a Gamma

Distribution random generator to produce the popular

many-task computing workload. The source code is open

source, and can be accessed from [12].

4. EVALUATION
This section present the evaluation methodology, metrics

measured, the experimental hardware and software

environments, as well as the results showing the scalability

and performance of SimMatrix, plus the feasibility of

utilizing work stealing at exascale levels.

Methodology: Since exascales is not anticipated until the

end of the decade, we decided to explore work stealing

through simulations to evaluate its feasibility at exascales

with millions of nodes and billions of cores.

Hardware Environment: All experiments presented in this

section are performed on fusion.cs.iit.edu, which boasts 48

AMD Opteron cores at 1.93GHz, 256GB RAM, and a 64-bit

Linux kernel 2.6.31.5.

Software Environment: SimMatrix is developed 100% in

JAVA; we used the Sun 64-bit JDK version 1.6.0_22.

SimMatrix has no other dependencies.

4.1 Metrics
We use important metrics to evaluate the performance of our

simulators. They are listed below:

 Throughput: Number of tasks finished per second.

Calculated as total-number-of-tasks/simulation-time.

 Efficiency: the ratio between the ideal simulation

time of completing a given workload and the real

simulation time. The ideal simulation time is

calculated by taking the average task execution time

multiplied by the number of tasks per core.

 Load Balancing: We adopted the coefficient

variance [19] of the number of tasks finished by each

node as a measure the load balancing. The smaller the

coefficient variance, the better the load balancing is.

It is calculated as the standard-deviation/average in

terms of number of tasks finished by each node.

 Scalability: Total number of tasks, number of nodes,

and number of cores supported.

4.2 Simulator Parameters

For all the experiments, we set some global variables to be

appropriate constants, which are listed in Table 2.

Table 2: Values of Some Global Variables

Variables Values

linkSpeed 10Gb/s

procTimePerTask 1 millisecond

networkLatency 10 microseconds

numCoresPerNode 1000

logTimeInterval 1 second

We choose values based on the BlueGene/P machine

configured with Falkon [20] scheduler, and make the

‘linkSpeed’ 10 times faster, and ‘networkLatency’ ten times

lower. This assumption is realistic given the rate of

improvements in network performance.

4.3 Workloads
A variety of workloads, in terms of the task length, have

been used in our experiments, including synthetic and real

ones.

For synthetic workloads, we use uniform distributions with

different average task lengths, such as 10s, 100s, 1000s,

5000s, 10000s, and 100000s. We name them ave_1, ave_10,

ave_100, ave_5000, ave_10000, and ave_100000,

respectively. Also, we use the workload where each task has

the same length, i.e. 1s, and name it all_1.

For more realistic application workloads, we use the general

64 486s many task one, which has been shown to represent

years of MTC workloads, comprising of hundreds of millions

of tasks. [21] We generate this workload called mtc_64 by

using a Gamma Distribution.

4.4 Validation
Before we try to explore MTC at exascales, we validated

SimMatrix against the state-of-the-art MTC systems (e.g.

Falkon), to ensure that the simulator can accurately predict

the performance of current petascale systems. The results are

shown in Figure 4 and Figure 4.

Figure 3: SimMatrix validation for the centralized

scheduler, compared to the Falkon centralized scheduler

up to 2K-cores [8]

Figure 4: SimMatrix performance comparing work

stealing efficiency to the Falkon naïve distributed

scheduler up to 160K-cores [8]

Figure 3 presents the validation results when compared to the

centralized Falkon scheduler up to 2K-cores; we measured a

2.5% difference in reported efficiency between our simulator

(dotted lines) and Falkon (solid lines). In Figure 4, the work

stealing approach is able to maintain a 96%+ efficiency even

with 1 second tasks at full 160K-core scales, when Falkon

was only able to achieve 2% efficiency with 1 sec tasks at

0.0% 0.1% 0.1% 0.1% 0.2% 0.3% 0.5% 0.7% 1.3% 2.3% 2.2% 2.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff

ic
ie

n
c
y

Scale (cores)

1 sec (Falkon) 1 sec (Simulation)

2 sec (Falkon) 2 sec (Simulation)

4 sec (Falkon) 4 sec (Simulation)

8 sec (Falkon) 8 sec (Simulation)

16 sec (Falkon) 16 sec (Simulation)

32 sec (Falkon) 32 sec (Simulation)

Difference

full scale, requiring task lengths of 256 seconds to achieve

upper 90% efficiencies.For these experiments, we set the

number of cores per node to be 4, as the case of BlueGene/P

machine. The total number of tasks is 50000000, large

enough to ensure that the experiments completed in a

reasonable amount of time. The parameters of work stealing

are set as the optimal values (as discovered by Sections 1.3).

These results show that our simulator performs correctly

(with less than 2.5% difference in predicted efficiency), and

the distributed scheduling with work stealing configured with

optimal parameters outperforms Falkon distributed

dispatcher significantly (96% efficiency for work stealing

when compared to 2% for Falkon).

4.5 Scalability of SimMatrix
We show our simulator’s scalability, efficiency and resource
requirement (time and memory) to run exascale experiments

using ave_5000 workload. Figure 5 and Figure 6 show the

results.

Figure 5: Scalability of the SimMatrix up to 1M nodes

and 10B tasks

Figure 6: Efficiency and co-variance of work stealing at

1M nodes and 10B tasks

The results show that up to 1 million nodes, we could run

workloads with 10 billion tasks in about 256 hours and

190GB memory. Work-stealing actually works quite well at

extremely large scales, given the right work-stealing

parameters. In Figure 6, we see an efficiency of 90%+ at a

million node scale, with a co-variance of 0.05 (e.g. meaning

that the standard deviation of the number of tasks run being a

relatively low 500 tasks when on average each node

completed 10K tasks).

4.6 Work Stealing Parameter Space
There are several parameters that could affect the

performance of work stealing, such as number of tasks to

steal, number of neighbors of a node, static neighbors vs.

dynamic random neighbors. We investigate them in great

detail in this section. The experiments scale up to 8192 nodes,

with each one 1000 cores. The number of tasks is 10 times of

the number of cores. The ave_5000 workload is used. We do

each experiment five times, and show the average

efficiencies and standard deviations. We do weak scaling

experiments.

4.6.1 Number of tasks to steal
In our five groups of experiments, steal_1, steal_2, steal_log,

steal_sqrt, steal_half means steal 1, 2, logarithm base-2,

square root, and half number of tasks respectively. We set

numNeighbors = 2. The changes of the efficiency of each

group with respect to the number of nodes are shown in

Figure 7.

Figure 7: Efficiencies of different numbers of tasks to

steal with respect to number of nodes

From Figure 7, we see that as the number of nodes increases,

the efficiencies of steal_1, steal_2, steal_log, steal_sqrt

decrease. The efficiency of steal_half keeps at the value of

about 97% up to 8 nodes, and decreases after that. And the

decrease speed of steal_half is the slowest. These results

show that stealing half number of tasks is optimal, which

confirms both our intuition and the results from prior work

on work stealing [22]. The reason that steal_half is not

perfect (efficiency is very low at large scale) for these

experiments is that 2 neighbors of a node is not enough, and

starvation can occur for some nodes that are too far in the ID

namespace from the original compute node who is receiving

all the task submissions. The conclusion of this experiment is

that having a small number of static neighbors is not

sufficient to achieve high efficiency even at modest scales.

We also can generalize that stealing more tasks (less than

half) generally produces higher efficiencies.

4.6.2 Number of neighbors of a node

4.6.2.1 Static Neighbors
In our experiments, nb_2, nb_log, nb_sqrt, nb_eighth,

nb_quar, nb_half means 2, logarithm base-2, square root,

eighth, a quarter, half neighbors of all nodes, respectively. In

this case, neighbors are chosen statically as consecutive ids

in the ring topology at the beginning, and will not change.

The changes of the efficiency of each group with respect to

the number of nodes are shown in Figure 8.

The result shows that when the number of neighbors is no

less than a quarter of all nodes, the efficiency will keep at the

value of higher than 95% within 8192 nodes’ scale. For other
numbers of static neighbors, the efficiencies could not

remain, and will drop down to very small values. We

conclude that the optimal number of static neighbors is a

quarter, as more neighbors do not improve performance

significantly.

Figure 8: Efficiencies of different numbers of static

neighbors with respect to number of nodes

However, in reality, a quarter neighbors is too many to make

work stealing practical, especially for an exascale system

with millions of nodes. In the search for a lower number of

needed neighbors, we explore a dynamic random neighbor

selection policy.

4.6.2.2 Dynamic Random Neighbors
For each node, whenever it does work stealing, it randomly

selects some neighbors with uniform distribution. This policy

will reduce the requirement of number of neighbors. We do 4

groups of experiments, nb_1, nb_2, nb_log, nb_sqrt. We first

do nb_1 experiment until starting to saturate (the efficiency

is less than 90%), then at that point, do nb_2, then nb_log,

and nb_sqrt at last. The results are shown in Figure 9.

Figure 9 shows that nb_1 scales up to 512 nodes, nb_2 scales

up to 2048 nodes, nb_log sclares up to 16384 nodes, and

nb_sqrt scales up to 1 million nodes, remaining the efficiency

at the value about 90%. Our conclusion is that dynamic

random nb_sqrt is the best and could be used in general, but

it might produce more neighbors than needed for 90%

efficiency level. Even with 1M nodes in an exascale system,

the square root implies having 1K neighbors, a reasonable

number of nodes for which each node to keep track of.

The optimal parameters for the aver_5000 workload and

work stealing are to steal half the number of tasks from their

neighbors, and to use the square root number of dynamic

random neighbors.

Figure 9: Efficiencies of different numbers of dynamic

random neighbors with respect to number of nodes

4.7 Optimal Parameters for Different

Workloads
We apply the optimal parameters to different workloads,

such as ave_10, mtc_64, ave_100, ave_1000, ave_10000 to

see how work stealing works. For ave_10, ave_100,

ave_1000, we set the total number of tasks as 10 times of the

number of cores. For mtc_64, we set the total number of

tasks as 10000 times of the number of cores, that means for

16384 nodes, the number of tasks is 163,840,000,000 (163

billion tasks). The reason is that for mtc_64 workload, we

generate it using Gama Distribution. It requires the sample

space to be large enough to ensure the average is 64, and the

standard deviation is 486, even for 1 node. The result is

shown in Figure 10

.

Figure 10: Efficiency of different workloads with

same optimal parameters' configuration

From Figure 10, we see that, work stealing configured with

the optimal parameters works quite well for all these 5

workloads within 16k nodes’ scale (16,384,000 cores). Even
for the real mtc_64 workload, given that the number of tasks

is large enough, work stealing still works well. We do not

expect the same trends to hold true as we scale up to 1M

nodes. There results show that the optimal parameters we

found for work stealing are general at some extent, and work

stealing is a promising approach to load balancing at near

exascale levels. We plan to extend this experiment in the

final manuscript to show the efficiency of these various

workloads up to 1M nodes.

4.8 Visualization of Load Balancing
In the experiments, we capture the changes of loads of all

nodes with respect to the simulation time to visualize the

performance of work stealing. Figure 11 shows 1024 nodes’
situation.

Figure 11: Visualization for 1024 nodes and ave_5000

workload for different number of neighbors; the upper

left has 2 static neighbors, the upper right has square

root static neighbors; the lower left has a quarter static

neighbors, the lower right has square root dynamic

random neighbors.

We present the representative graphs for different number of

neighbors when the system is stable. The nodes are mapped

to tiles depending just on their ‘ids’ and they are assigned in
a row-wise manner. Due to our neighbors’ distribution policy,

it results that nodes that are beside each other row-wise are

neighbors. We map the level of load of the nodes to colors,

and each node it is represented as a tile in a canvas. The red

square means the most loaded node (usually node 0, which

accepted tasks from clients), the right ones are idle nodes,

and the other ones are nodes with different loads represented

with different colors. We see that when the number of

neighbors is small, some nodes are starved (the top two

figures that have some white tiles).

4.9 Comparison between centralized and

distributed scheduling
We compare the centralized and distributed scheduling to

understand the bottleneck of the centralized way, in terms of

throughput. The number of tasks is 10 times of the number of

cores. We do two groups of experiments. The first uses

ave_5000 workload, and the second uses all_1, for both

schedulers. The optimal parameters of work stealing are used.

The throughputs with respect to the number of nodes are

shown in Figure 12.

We see that for ave_5000 workload, after 8192 nodes

(8192000 cores), the centralized scheduling is saturated wi

We see that for ave_5000 workload, after 8192 nodes, the

centralized scheduling is saturated with upper bound

throughput of about 1000, and the distributed one could

perfectly scale up to one million nodes, the throughput

doubles as the number of nodes doubles, and has no explicit

upper bound. For all_1, the centralized scheduling saturates

at about 32 nodes with upper bound throughput of about

1000, while the distributed one saturates at about 131072

nodes with throughput about 60M tasks/sec; it finally reaches

1M nodes with a throughput of 75M tasks/sec. The 1000

upper bound of the centralized scheduling is because of the

processing time of the dispatcher per task (set to 1ms in the

simulator). The reason that the distributed scheduler saturates

is likely due to the growth of messages in relation to the

number of nodes in the system. The average number of

messages per task with respect to the system scale for the

all_1 workload is shown in Figure 13 below. We see that

after 131072 nodes, the average number of messages per task

increases dramatically (and exponentially). We believe that

having sufficiently long tasks to amortize the cost of these

many number of messages would be critical to achieving

good efficiency numbers at exascales.

Also, we give the summary plots showing the information

regarding utilization and throughput in terms of simulation

time in Figure 14. The utilization is calculated as the

area_of_green_region / area_of_red_region. We could see

that the distributed scheduling has about 100% utilization

after about 12K seconds elapsed and big throughput for

ave_5000 workload at exascales (~200K tasks/sec in the

Figure 12: Throughput comparison between centralized

and distributed scheduling

Starvation
Starvation

Good

Load

Balancing

Good

Load

Balancing

steady state part of the experiment), while the centralized one

(not shown below) has just about 0.5% utilization, and a

much lower throughput (~1K tasks/sec) given the same

configuration. The overall efficiency of the distributed

scheduling is about 82% after taking into account the ramp

up and down period of the experiment.

Figure 13: Average number of messages with respect to

the system scale

Figure 14: Summary plot for distributed scheduling at

Exascales for ave_5000 workload

5. RELATED WORK
Since 1990s, a lot of work related to job scheduling systems

has been done. The University of Wisconsin developed one

of the earliest job management systems, Condor [23] to

harness the unused CPU cycles on workstations for

long-running batch jobs. Portable Batch System (PBS) [24]

was originally developed at NASA Ames to address the

needs of HPC, which is a highly configurable product that

manages batch and inter-active jobs, and adds the ability to

signal, rerun and alter jobs. LSF Batch [25] is the

load-sharing and batch-queuing component of a set of

workload-management tools from Platform Computing of

Toronto. All these systems target as the HPC or HTC

applications, and lack the granularity of scheduling jobs at

node/core level, making them hard to be applied to the MTC

applications. What’s more, the centralized dispatcher in these

systems suffers scalability and reliability issues. In 2007, a

light-weight task execution framework, called Falkon [20]

was developed by the University of Chicago and Argonne

National Laboratory for MTC applications (this work was

done by the authors of this work). Falkon also had a

centralized architecture, and although it scaled and

performed magnitude orders better than the state of the art,

its centralized architecture will not even scale to petascale

systems. A naïve distributed Falkon implementation was

shown to scale to a petascale system in [8], the approach

taken by Falkon suffered from poor load balancing under

failures or unpredictable task execution times.

For simulators of job scheduling systems, SimJava [26] and

GridSim [27] are two of them. SimJava is developed by the

University of Edinburgh, based on which, the University of

Melbourne, Australia developed GridSim. They model nodes

and networks in Grid heterogeneous environment using Java

threads, which likely could just scale up to thousands of

nodes, because it consumes too much resource to manage

many threads, and our experiment shows that the maximum

number of threads a process could create is about 32K.

Most parallel programming systems require load balancing.

Centralized load balancing has been extensive studied in the

past (JSQ [28], least-work-left [29], SITA [30]), but they all

suffer from poor scalability and resilience. Although

distributed load balancing at extreme scales of millions of

nodes and billions of threads of execution is likely a more

scalable and resilient solution, there are many challenges that

must be addressed (e.g. utilization, partitioning). Fully

distributed strategies have been proposed, including

neighborhood averaging scheme (ACWN) [31][32][33][34].

In [34], several distributed and hierarchical load balancing

strategies are studied, such as Sender/Receiver Initiated

Diffusion (SID/RID), Gradient Model (GM) and a

Hierarchical Balancing Method (HBM). Other hierarchical

strategies are explored in [35] and [36]. Charm++ [14]

supports centralized, hierarchical and distributed load

balancing. It has demonstrated that centralized strategies

work still ok for 3000 processors for NAMD. In [9], the

authors present an automatic dynamic hierarchical load

balancing method for Charm++, which scales up to 16384

cores of Ranger (at TACC) for a synthetic benchmark.

Work stealing [37][38][22] has been used at small scales

successfully in parallel languages such as Cilk [39], to load

balance threads on shared memory parallel machines.

Theoretical work has proved that a work-stealing scheduler

can achieve execution space, time, and communication

bounds all within a constant factor of optimal [37][38].

However, the scalability of work stealing has not been well

explored on modern large-scale systems. In particular,

concerns exist that the randomized nature of work stealing

can lead to long idle times and poor scalability on large-scale

clusters. [22]The largest studies to date of work stealing have

been at thousands of cores scales, showing good to excellent

efficiency depending on the workloads. [22] Our work from

the simulation perspective shows that work stealing with

optimal parameters works great for even exascale systems at

millions of nodes and billions of cores.

6. CONCLUSIONS AND FUTURE

WORK
Exascale systems bring great opportunities in unraveling of

significant scientific mysteries. Also, there are challenges,

such as concurrency, resilience, I/O and memory,

heterogeneity, and energy, which require revolutions in

programming languages and models, memory hierarchy

technologies, job management systems, communication

networks, and power efficiency. Many-Task Computing for

exascale applications needs dynamic job scheduling system

at the granularity of node/core levels. Distributed scheduling

is likely the efficient way to achieve load balancing, leading

to high job throughput and system utilization.

We developed a new light-weight and scalable discrete event

simulator that enables distributed scheduling for MTC

workloads at exascales. This work provides evidence that

work stealing is a scalable method to achieve load balance,

even at exascales. It also identified optimal parameters

affecting the performance of work stealing; at the largest

scales, in order to achieve the best work stealing performance,

we found the number of tasks to steal is half and there must

be a squared root number of dynamic neighbors (e.g. at 1M

nodes, we would need 1K neighbors).

We see this work continue in many different directions. One

such direction is to use the same base simulator to explore

work stealing for many-core chips with thousands of cores.

Instead of simulating an exascale system with millions of

nodes and billions of cores, we plan to use the same

simulator to simulate a single chip with 1000 cores. The

challenge will be to model the network accurately with 2D

meshes (or other expected network topologies). We have

started exploring scheduling of direct acyclic graphs (DAGs)

on many-core processors in [40] which takes a computer

architecture perspective, and uses another simulator

NIGRAM [40]. We believe that work stealing could be

applied to improve the work presented in [40].

Another direction for future improvements of SimMatrix is

to allow more complex network topologies for an exascale

system, such as trees, 3D torus networks, daisy chained

switches, etc. Having a more complex network model would

allow us to explore another dimension, specifically on the

placement of the neighbors, and how it might affect overall

system efficiency. It would also allow us to study job

dependency management with more realistic constraints.

The insight we are getting from SimMatrix will ultimately be

used to develop MATRIX, a distributed task execution fabric.

MATRIX will likely employ work stealing for distributed

load balancing, among other techniques to enable extreme

scalability and performance. We expect MATRIX to be

integrated with other projects, such as Swift [13] (a data-flow

parallel programming systems) and FusionFS [41] (a

distributed file systems). We will also investigate the

possibility of MATRIX benefiting other systems such as

Charm++ [14]. MATRIX’s goal would be to allow MTC
applications to scale to extreme scales distributed systems,

including exascale systems. A potential future software stack

is shown in Figure 15.

Figure 15: Proposed software stack

The gray areas represent the traditional HPC-stack,

comprising of applications, MPI, resource managers, parallel

file systems, and HEC hardware. The green areas are

additional components, such as support for many-task

computing applications, using lower level components such

as MATRIX, ZHT[42], and FusionFS[41]. The yellow areas

represent the simulation components (SimMatrix), aimed to

help explore peta/exascales levels on modest terascale

systems.

We envision the SimMatrix and MATRIX projects to be

building blocks for future parallel programming systems,

having the potential to address some of the hardest problems

in exascale computing, namely concurrency and resilience.

Once SimMatrix is extended with all of the features

mentioned earlier this section, I/O and memory (e.g.

data-aware scheduling), as well as heterogeneity could be

addressed.

7. REFERENCES
[1] B. Obama. "A Strategy for American Innovation:

Driving Towards Sustainable Growth and Quality Jobs",

National Economic Council,

http://www.whitehouse.gov/administration/eop/nec/Stra

tegyforAmericanInnovation/, 2009

[2] V. Sarkar, S. Amarasinghe, D. Campbell, W. Carlson, A.

Chien, W. Dally, E. Elnohazy, M. Hall, R. Harrison, W.

Harrod, K. Hill, J. Hiller, S. Karp, C. Koelbel, D.

Koester, P. Kogge, J. Levesque, D. Reed, R. Schreiber,

M. Richards, A. Scarpelli, J. Shalf, A. Snavely, T.

Sterling. "ExaScale Software Study: Software

Challenges in Extreme Scale Systems", ExaScale

Computing Study, DARPA IPTO, 2009

[3] P.M. Kogge, T.J. Dysart. “Using the TOP500 to Trace
and Project Technology and Architecture Trends”,
IEEE/ACM Supercomputing 2011

[4] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W.

Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod,

J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M.

Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,

R. S. Williams, and K. Yelick. Exascale computing

study: Technology challenges in achieving exascale

systems, 2008

[5] M. Snir, S.W. Otto, S.H. Lederman, D.W. Walker, J.

Dongarra. "MPI: The Complete Reference", MIT Press,

1995

[6] I. Raicu, P. Beckman, I. Foster. “Making a Case for
Distributed File Systems at Exascale”, ACM Workshop
on Large-scale System and Application Performance

(LSAP), 2011

Many-Task Computing

(SwiftScript, Charm++, MapReduce)

Applications

Distributed Execution Fabric

(MATRIX)

Distributed File

Systems (FusionFS)

Persistent Distributed

Hash Tables (ZHT)

High-Performance Computing

(MPI)

Parallel File Systems

(GPFS, PVFS)

High-End Computing Hardware

(Petascale to Exascale Systems)

Simulator

(SimMatrix)

Harware

(Terascale)

Resource Manager

(Cobalt, SLURM)

[7] I. Raicu, Y. Zhao, I. Foster. “Many-Task Computing for

Grids and Supercomputers”, 1st IEEE Workshop on
Many-Task Computing on Grids and Supercomputers

(MTAGS) 2008

[8] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.

Iskra, B. Clifford. “Toward Loosely Coupled
Programming on Petascale Systems,” IEEE SC 2008

[9] G. Zhang, E. Meneses, A. Bhatele, and L. V. Kale.

Hierarchical Load Balancing for Charm++ Applications

on Large Supercomputers. In Proceedings of the 2010

39th International Conference on Parallel Processing

Workshops, ICPPW 10, pages 436-444, Washington,

DC, USA, 2010. IEEE Computer Society

[10] http://www.cs.cmu.edu/~acw/15740/proposal.html

[11] Keld Helsgaun. "Discrete Event Simulation in Java".

Department of Computer Science Roskilde University,

Denmark

[12] http://datasys.cs.iit.edu/projects/SimMatrix/index.html

[13] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift:
Fast, Reliable, Loosely Coupled Parallel Computation,”
IEEE Workshop on Scientific Workflows 2007

[14] http://charm.cs.uiuc.edu/research/charm

[15] http://download.oracle.com/javase/6/docs/api/java/util/T

reeSet.html

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction To Algorithms, Third Edition, The MIT

Press, 2009

[17] http://download.oracle.com/javase/1.4.2/docs/api/java/ut

il/HashMap.html

[18] http://tutorials.jenkov.com/java-io/index.html

[19] http://en.wikipedia.org/wiki/Coefficient_of_variation

[20] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde.

“Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007

[21] Ioan Raicu, Ian Foster, Mike Wilde, Zhao Zhang, Yong

Zhao, Alex Szalay, Pete Beckman, Kamil Iskra, Philip

Little, Christopher Moretti, Amitabh Chaudhary,

Douglas Thain. "Middleware Support for Many-Task

Computing", Cluster Computing, The Journal of

Networks, Software Tools and Applications, 2010

[22] J. Dinan, D.B. Larkins, P. Sadayappan, S.

Krishnamoorthy, J. Nieplocha. “Scalable work
stealing”, In Proceedings of the Conference on
High Performance Computing Networking,

Storage and Analysis (SC '09), 2009

[23] Condor: http://www.cs.wisc.edu/condor/, 2012

[24] PBS: http://pbs.mrj.com, 2012

[25] LSF: http://platform.com/Products/TheLSFSuite/Batch,

2012

[26] SimJava: http://dcs.ed.ac.uk/home/hase/simjava/, 2012

[27] GridSim: http://www.buyya.com/gridsim/, 2012

[28] H.C. Lin, C.S. Raghavendra. An approximate analysis

of the join the shortest queue (JSQ) policy, IEEE

Transaction on Parallel and Distributed Systems,

Volume 7, Number 3, pages 301-307, 1996

[29] M. Harchol-Balter. Job placement with unknown

duration and no preemption, ACM SIGMETRICS

Performance Evaluation Review, Volume 28, Number 4,

pages 3-5, 2001

[30] E. Bachmat, H. Sarfati. Analysis of size interval task

assignment policies, ACM SIGMETRICS Performance

Evaluation Review, Volume 36, Number 2, pages

107-109, 2008

[31] L. V. Kal´e. Comparing the performance of two

dynamic load distribution methods. In Proceedings of

the 1988 International Conference on Parallel

Processing, pages 8–11, August 1988

[32] W. W. Shu and L. V. Kal´e. A dynamic load balancing

strategy for the Chare Kernel system. In Proceedings of

Supercomputing ’89, pages 389–398, November 1989

[33] A. Sinha and L.V. Kal´e. A load balancing strategy for

prioritized execution of tasks. In International Parallel

Processing Symposium, pages 230–237, April 1993

[34] M.H. Willebeek-LeMair, A.P. Reeves. Strategies for

dynamic load balancing on highly parallel computers. In

IEEE Transactions on Parallel and Distributed Systems,

volume 4, September 1993

[35] M. Furuichi, K. Taki, and N. Ichiyoshi. A multi-level

load balancing scheme for or-parallel exhaustive search

programs on the multi-psi. In Second ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, 1990

[36] A. Sinha and L.V. Kal´e. A load balancing strategy for

prioritized execution of tasks. In Seventh International

Parallel Processing Symposium, pages 230–237, April

1993

[37] R. D. Blumofe and C. Leiserson. “Scheduling
multithreaded computations by work stealing”, In Proc.
35th Symposium on Foundations of Computer Science

(FOCS), pages 356–368, Nov. 1994

[38] V. Kumar, A. Y. Grama, and N. R. Vempaty. “Scalable
load balancing techniques for parallel computers”, J.
Parallel Distrib. Comput., 22(1):60–79, 1994

[39] M. Frigo, C. E. Leiserson, and K. H. Randall. “The
implementation of the Cilk-5 multithreaded language”,
In Proc. Conf. on Prog. Language Design and

Implementation (PLDI), pages 212–223. ACM

SIGPLAN, 1998

[40] Ke Yue, Ioan Raicu. “Scheduling Direct Acyclic Graphs
on Massively Parallel 1K-core Processors”, under
review at ACM HPDC 2012.

[41] FusionFS: Fusion Distributed File System,

http://datasys.cs.iit.edu/projects/FusionFS/, 2011

[42] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu. “Exploring
Distributed Hash Tables in High-End Computing”,
ACM Performance Evaluation Review (PER), 2011

