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ABSTRACT 

Exascale computers will enable the unraveling of significant 

scientific mysteries. Predictions are that by 2019, 

supercomputers will reach exascales with millions of nodes 

and billions of threads of execution. Many-task computing 

(MTC) is a new viable distributed paradigm for 

extreme-scale supercomputing. The MTC paradigm can 

address four of the five major challenges of exascale 

computing, namely concurrency, resilience, heterogeneity, 

and I/O and memory; this work specifically addresses the 

first three major challenges. This paper presents a new 

light-weight and scalable discrete event simulator, 

SimMatrix, that enables the exploration of distributed 

scheduling for MTC workloads at exascale levels with up to 

1 million nodes and 1 billion cores. SimMatrix is validated 

against real MTC workloads executed under Falkon at 

petascale levels, with 40K nodes and 160K-cores. 

Centralized scheduling is compared and contrasted to 

distributed scheduling; this work adopts work stealing, as an 

efficient and scalable approach to distributed load balancing. 

It explores a wide range of parameters important to 

understand work stealing at exascale levels, such as number 

of tasks to steal, number of neighbors of a node, static or 

dynamic neighbors, and different workloads. Experiment 

results show that the centralized scheduling saturates at small 

number of nodes, while the distributed scheduler configured 

with optimal parameters could scale up to 1 million nodes 

and 1 billion cores without any explicit upper bound. 

SimMatrix is light-weight and scalable, having been tested 

up to 1 billion cores and 10 billion tasks with modest 

resources (e.g. 200GB of memory and 256-core hours).  

Categories and Subject Descriptors 

C.2.4 [Distributed Systems]; C.5.1 [Large and Medium 

(``Mainframe'') Computers]; D.4.8 [Performance] 

General Terms 

Management, Performance. 

Keywords 

Exascale, Many-Task Computing, MTC, Scheduling, Work 

Stealing, Load Balancing. 

1. INTRODUCTION 
Exascale (i.e. 1018 operations/sec) computers will enable the 

unraveling of significant scientific mysteries. The US 

President made reaching exascales a top national priority, 

claiming it will "dramatically increase our ability to 

understand the world around us through simulation". [1] 

There are many domains (e.g. weather modeling, global 

warming, national security, energy, drug discovery, etc.) that 

will achieve revolutionary advancements due to exascale 

computing. Predictions are that 2019 will be the year of 

exascales, with millions of nodes and billions of threads of 

execution. [2][3][4] 

1.1 Challenges at Exascale 
The era of manycore and exascales computing will bring new 

fundamental challenges in how we build computing systems 

and its hardware, how we manage them, and how we 

program them. The techniques that have been designed 

decades ago will have to be dramatically changed to support 

the coming wave of extreme-scale general purpose parallel 

computing. The five most significant challenges of exascale 

computing are: concurrency, resilience, I/O and memory, 

heterogeneity, and energy. Any one of these challenges, if 

left unaddressed, could halt progress towards exascale 

computing. 

Concurrency refers to programmability, and how we will 

harness the many magnitude orders of increased parallelism 

fueled by the manycore computing era. The largest 

supercomputers have increased in parallelism at an alarming 

rate. In 1993, the largest supercomputers had 1K-cores 

(0.00006PF/s), in 2004 8K-cores (0.035PF/s) and in 2011 

688K-cores (10.5PF/s); by 2019, supercomputers will likely 

reach billions of threads/cores (~1000PF/s). [2] Many have 

said that the “free ride” software had for many decades, has 
finally come to a halt, and a new age is upon us which paints 

a bleak picture unless revolutionary progress is made in the 

entire computing stack. Today’s programming languages are 
inadequate to automatically harness even modest parallelism. 

Popular programming languages (e.g. C/C++, Java) are 

unlikely to scale to manycore levels given the level of 

expertise needed to parallelize applications; furthermore, 

their imperative nature makes them difficult to parallelize 

automatically.  

Resilience refers to the capability of making both the 

infrastructure (hardware) and applications fault tolerant in 

face of a decreasing mean-time-to-failure (MTTF). The MPI 

programming model [5] is unlikely to survive in its current 

form, given how brittle the programming paradigm is due to 
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its synchronous nature. MPI was designed in the 1980s, 

when parallelism was on the order of 10s of processors; MPI 

has already evolved significantly, however it is facing 

difficulty in scaling up on large machines due to an 

increasing cost to checkpoint (the state-of-the-art in HPC 

reliability) and decreasing MTTF [6]. In order to achieve 

exascale levels with millions of nodes and billions of threads 

of execution, revolutionary advancements must be made in 

the programming paradigm. A more abstract and modern 

programming paradigm could allow parallelism to be 

harnessed with greater ease, as well as making applications 

fault tolerant diminishing the effects of the decreasing system 

MTTF. 

I/O and memory refers to optimizing and minimizing data 

movement through the memory hierarchy (e.g. persistent 

storage, solid state memory, volatile memory, caches, and 

registers). Exascale will bring unique challenges to the 

memory hierarchy never seen before in supercomputing, 

such as a significant increase in concurrency at both the node 

level (number of cores is increasing at a faster rate than the 

memory subsystem performance), and at the infrastructure 

level (number of cores is increasing at a faster rate than 

persistent storage performance). The memory hierarchy will 

change with new technologies (e.g. non-volatile memory), 

implying that programming models and optimizations must 

adapt. Optimizing exascale systems for data locality will be 

critical to the realization of future extreme scale systems. 

Heterogeneous systems offer the opportunity to exploit the 

extremely high performance heterogeneous computing 

resources (e.g. accelerators, GPUs, MIC, FPGA) while still 

providing a general purpose platform. In the November 2011 

Top500 rankings, four of the top ten supercomputers had a 

heterogeneous architecture. A recent study [3] has also 

shown that exascale systems will more likely have 

heterogamous architectures, as opposed to strawman or 

heavyweight architectures.  

Power refers to the ability to keep the power consumption at 

a reasonable level, so that the cost to power a system does 

not dominate the cost of ownership. The DARPA Exascale 

report [2] defined probably the single most important metric, 

namely the energy per flop. Given the energy consumption of 

current state-of-the-art technologies which uses 12.7MW of 

power, the increase in performance by 100X (to reach 

exascales), and the upper cap of 20MW of power for a single 

supercomputer, we can conclude that we need to reduce the 

energy per flop by 50X to 100X to make exascale computing 

viable.   

1.2 Defining Many-Task Computing 
Many-Task Computing (MTC) was introduced by Raicu et al. 

[7][8] in 2008 to describe a class of applications that did not 

fit easily into the categories of traditional high-performance 

computing (HPC) or high-throughput computing (HTC). 

Many MTC applications are structured as graphs of discrete 

tasks, with explicit input and output dependencies forming 

the graph edges. In many cases, the data dependencies will 

be files that are written to and read from a file system shared 

between the compute resources; however, MTC does not 

exclude applications in which tasks communicate in other 

manners.  

MTC applications have features that distinguish them from 

typical HTC applications. HTC applications have 

traditionally run on platforms such as grids and clusters, 

through either workflow systems or parallel programming 

systems. MTC applications, in contrast, will often demand a 

short time to solution, may be communication intensive or 

data intensive, and may comprise of a large number of short 

tasks. Tasks may be small or large, uniprocessor or 

multiprocessor, compute-intensive or data-intensive. The set 

of tasks may be static or dynamic, homogeneous or 

heterogeneous, loosely coupled or tightly coupled. The 

aggregate number of tasks, quantity of computing, and 

volumes of data may be extremely large.  

For many applications, a graph of distinct tasks is a natural 

way to conceptualize the computation and is often a natural 

way to build the application. Structuring an application in 

this way also gives increased flexibility. For example, it 

allows tasks to be run on multiple different supercomputers 

simultaneously; it simplifies failure recovery and allows the 

application to continue when nodes fail, if tasks write their 

results to persistent storage as they finish; and it permits the 

application to be tested and run on varying numbers of nodes 

without any rewriting or modification. 

The hardware of current and future large-scale HPC systems, 

with their high degree of parallelism and support for 

intensive communication, is well suited for achieving low 

turnaround times with large, intensive MTC applications. 

However, HPC systems often lack a dynamic resource 

provisioning feature, are not ideal for task communication 

via the file system, and have an I/O system that is not 

optimized for MTC-style applications. Hardware and 

software for MTC must be engineered to support the 

additional communication and I/O, must minimize task 

dispatch overheads, queue management, and support 

resource management at finer granularity (e.g. at the core 

level, or node level, as opposed to the partition level). The 

MTC paradigm has been defined and built with the 

scalability of tomorrows systems as a priority and can 

address many of the HPC shortcomings at extreme scales.  

1.3 Contributions 
The main contributions of this paper are as follows:  

(1) Develop a new light-weight and scalable discrete event 

simulator that enables distributed scheduling for MTC 

workloads at exascales. 

(2) Provide evidence that work stealing is a scalable 

method to achieve load balance, even at exascales. 

(3) Identified optimal parameters affecting the 

performance of work stealing; at the largest scales, in 

order to achieve the best work stealing performance, 

we found the number of tasks to steal is half and there 

must be a squared root number of dynamic neighbors 

(e.g. at 1M nodes, we would need 1K neighbors). 

1.4 Organization 
The rest of the paper is organized as follows: Section 2 gives 

some background information, which is necessary to make 

the paper self-contained. In Section 3, we propose the system 

architecture and the implementation of the simulator. We 



show the evaluation and the experiment results of the 

performances of the simulator in Section 4. In Section 5, 

related works about job scheduling systems, work stealing 

and load balancing are discussed. Conclusions are drawn and 

future work is envisioned in Section 6. 

2. BACKGROUND INFORMATION 
The goal of Job Scheduling System is to efficiently manage 

the distributed computing power of workstations, servers, 

and supercomputers in order to maximize job throughput and 

system utilization. Job management in MTC should support 

the granularity at the node/core level at extreme scales. The 

system could be centralized, where a single dispatcher 

manages the job submission, job assignment, and job 

execution state updates, or hierarchical, where several 

dispatchers are organized in a tree-based topology, or 

distributed, where each computing node maintains its own 

job execution framework. Centralized dispatcher suffers 

scalability, due to its limited processing capacity. 

Hierarchical dispatchers have the problem of long job 

turnaround time, because of the communications between 

different-layer dispatchers. Distributed scheduling with 

innovative load balancing techniques is an efficient way to 

maintain scalability, high performance and reliability at 

exascale systems.  

Distributed Load balancing is the technique of distributing 

computational and communication loads evenly across 

processors of a parallel machine, or across nodes of a 

supercomputer, so that no single processor or computing 

node is overloaded. Load balancing strategies can be divided 

into two broad categories – those for applications where new 

tasks are created and scheduled during execution (i.e. task 

scheduling) and those for iterative applications with 

persistent load patterns. [9] Clients will be able to submit 

work to any queue, and each queue will have the choice of 

executing the work locally, or forwarding the work to 

another queue based on some function it is optimizing. Load 

balancing can be used to optimize resource utilization, data 

movement, power consumption, or any combination of these. 

Work stealing [10] refers to a distributed load balancing 

approach in which processors needing work steal 

computational tasks from other processors. There are several 

parameters which could affect the performance of work 

stealing to achieve load balancing, such as steal tasks from 

global space or just some neighbors, how to select neighbors, 

how many number of neighbors a node could have, how 

many tasks to steal, and the length of waiting time if a node 

fails to steal takes from others.  

3. PROPOSED SOLUTION 
This work investigates the usability of work stealing towards 

exascale levels of parallelism, and investigate the optimal 

parameters (e.g. worker’s connectivity, number of tasks to 
steal, static/dynamic neighbors, etc) needed to make work 

stealing a viable and efficient distributed load balancing 

mechanism. This work seeks to prove that given certain work 

stealing parameters, that good load balancing can be obtained 

in a finite amount of time, and that resource partitioning is 

unlikely to occur.  

3.1 SimMatrix Architecture 
SimMatrix supports both centralized and distributed 

scheduling, whose architectures are shown in Figure 1. For 

simplicity, we assign consecutive integer numbers as the ids 

of each node, ranging from 0 to the number of nodes N-1.  

In the centralized situation, the clients submit tasks to the 

task waiting queue of the single dispatcher, which then 

assigns tasks to the first available node based on the load 

information of every node in the FIFO way. None nodes 

have task waiting queue. If all cores are occupied, the 

dispatcher will wait until some tasks are finished, and then 

send tasks again until all finished.  

 

Figure 1:  Simulation architectures; the left part is the 

centralized one with a single dispatcher connecting all 

nodes, the right part is the homogeneous distributed 

topology with each node having the same number of cores 

and neighbors 

In the distributed scheduler case, the clients submit tasks to 

any arbitrary node. For simplicity, we let the clients submit 

tasks to the first node, whose id is 0. This is the worst 

scenario from a load balancing perspective. Every node has 

its own task waiting queue, and the same number of 

neighbors. Figure 1 shows a fully connected topology of the 

nodes; in this example, the neighbors of a node are just its 

several left and right nodes with consecutive ids. Anytime 

when a node has no tasks in its task waiting queue, it will ask 

the load information from all the neighbors one by one, and 

try to steal tasks from the one having the heaviest load. When 

a node receives a load information request, it will send its 

load information to the neighbor. If a node receives work 

stealing request, it then checks its task waiting queue, if 

which is not empty, it will send some tasks to the neighbor, 

or it will send information to signal a steal failure. When a 

node fails to steal tasks, it will wait some time, and then try 

again. We call this waiting time the poll interval. The 

termination condition is that all the tasks submitted by client 

are finished. We do this by setting a global counter which 

can be read by all simulator threads to signal the termination 

of the simulation.  

3.2 Task Description 
The tasks in our simulator are MTC per-core tasks, which are 

independent with each other. Each task has the attributes 

such as task length (the time taken by a core to finish the 

task), task size (data size required by the task), task 

timestamps recording the times when a task is submitted by 

client, when a task arrives the computing node, and when it 

is finished. We expect that some other higher level system is 



managing all the task dependencies, such as some parallel 

programming system (e.g. Swift [13], Charm++ [14], etc). 

3.3 Global Variables 
There are several global variables in our simulator. These 

variables define the communication networks, the scale of 

the system, the work stealing parameters, etc. The names and 

descriptions of the variables are listed in Table 1. The bolded 

ones are specific for the distributed scheduling, while others 

are for both the centralized and distributed scheduling. 

Table 1: Global Variables and Descriptions 

Name type Description 

numNode int 
Number of nodes of 

the system 

linkSpeed double 
The link speed of the 

network 

procTimePerTask double 

Time the server takes 

to determine which 

node to dispatch tasks 

networkLatency double 
Network latency for 

every communication 

numCoresPerNode int 
Number of cores of a 

node 

logTimeInterval double 
The time interval to 

write log 

numNeighbors int 
Number of neighbors a 

node has 

numStealWork int 
Number of tasks to 

steal 

StealInterv double The initial poll interval 

3.4 Discrete Event Simulation 
SimMatrix is built as a discrete event simulator as it was the 

only viable approach to ensuring scalability to exascales 

(millions of nodes and billions of cores) on a single shared 

memory system. The single shared memory system 

requirement came from aiming for a simple to implement 

and run simulator. 

Before settling on SimMatrix being a discrete event driven 

simulator, we performed experiments to explore how many 

threads could be supported under Java, and we found that on 

our 48-core system with 256GB of memory, we were limited 

to 32K threads. Furthermore, at this scale of concurrent 

threads, the threads active state was so infrequent (as there 

were only 48 physical cores) that it made the simulator 

extremely slow and inaccurate. Since it was not feasible for 

us to run 1M threads in Java (or C/C++ which we also 

explored), we abandoned the idea of creating a separate 

thread per simulated node.  

We therefore decided on creating a unique object per 

simulated node, and convert any behavior to an event. All 

events are put in a global event queue (see Section 3.5), and 

sorted based on the occurrence time. 

3.5 Global Event Queue 
The global event queue is the heart of the SimMatrix 

simulator, and it is used to keep the millions to billions of 

events active at any point in time (when simulating an 

exascale system) in an organized fashion. There is only one 

global event queue for the entire simulation, no matter how 

many nodes or tasks are being simulated. The first event in 

the queue is always the next event to be process. Every time 

an event is removed from the event queue for processing, we 

advance the simulation time to the occurrence time of the 

event.  

There are several events in the simulator listed below, and 

the ones marked with an * are specific for the distributed 

scheduling: 

 TaskEnd: Signals a task completion event (which 

inherently frees a processing core). This event causes 

the scheduler to advance to the next task to schedule. In 

the centralized scheduler, the compute node (with the 

available core) will wait for the dispatcher to assign 

more tasks. In the distributed scheduler, the compute 

node starts to execute another task (assuming it has 

tasks in the waiting queue) by inserting another 

‘TaskEnd’ event with a future time (when the new task 
is expected to complete), or it invokes the work stealing 

algorithm to take tasks from its neighbors.  

 Submission: In the centralized scheduler, the client 

submits some number of tasks to the centralized 

dispatcher. 

 Log: Signals the record writing to a summary log file, 

including the information such as the simulation time, 

number of all cores, number of executing cores, waiting 

queue length, throughput, etc. The Log event can be 

used to generate periodic logs for monitoring and 

visualization purposes.  

 *Steal: Signals the work stealing algorithm to invoke 

the steal operation. In particular, a node asks for tasks 

from its neighbors. First, the node will ask for the load 

information of its neighbors one by one, and then selects 

the one that has the heaviest load to steal tasks by 

inserting a ‘TaskReception’ event. If all neighbors have 
no tasks, the node will wait for some time to ‘Steal’ 
again.  

 *TaskDispatch: Signals the task dispatch to a neighbor. 

If at the current time, the node happens to have no tasks, 

it will inform the neighbor to ask for tasks again, by 

inserting a ‘Steal’ event on the neighbor’s side. Else, the 
node will dispatch a part of its waiting tasks to the 

neighbor by inserting a ‘TaskReception’ event on that 
neighbor’s side.  

 *TaskReception: Signals the receiving node to increase 

the length of its task waiting queue. The task received 

could be from the submitted client, or from a neighbor. 

 *Visualization: It is used as an event to visualize the 

load information of all nodes.  

The state diagram of all the events are shown in Figure 2, 

where each state is an event that is executing, and the next 

state is the event to be inserted in the event queue signaled 

after finishing current event. The performance of the event 

queue is central to that of the simulator. It has to be scalable 

to many events (billions), and be subjected to frequently 

updates. All these operations need to re-order the queue. In 

our implementation, we use the TreeSet data structure [15], 



which is a set whose elements are ordered using their natural 

ordering, or by a comparator provided at set creation time. In 

SimMatrix, it is ordered by a comparator based on the event 

occurrence time, along with the node ids, task ids or the 

event ids in the distributed scheduling. The TreeSet is 

implemented based on Red-Black tree [16], which guarantees  (    ) time for removing and inserting, and  ( ) time 

for getting the first event.  
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3.6 Node Load Information 
In the centralized scheduler, the load information of all nodes 

is accessed by the dispatcher to determine the next node to 

assign tasks. The load is the number of busy cores ranging 

from 0 to the number of cores. The dispatcher can access the 

load information continuously as long as there are still 

waiting tasks. If we were to naively go through all the nodes 

to get the load information, the simulator would be highly 

inefficient when the number of nodes is large (e.g. 1 million). 

We implement the load information using a Hash Map [17]. 

The ‘Keys’ are the node load, while the ‘Value’ is 
corresponds to a hash set which contains the node ids whose 

loads are all equal to the ‘Key’.  

Each time when the dispatcher wants to assign some tasks to 

a node, it goes through all the ‘Keys’, and finds where the 

corresponding node’s information is at. As the number of 
cores per node is relatively small (e.g. 1000 cores), we 

consider this lookup operation taking  ( )  time, where 

c=1000. Once the right load level is identified, inserting, 

getting or removing an element in the nested hash set only 

takes  ( )  time. This hierarchical nested data-structure 

helped reduce the practical time complexity by orders of 

magnitude, from a  (   ( )) to  ( ). 
In the distributed scheduling, the load of a node is the 

number of waiting tasks minus the number of idle cores. In 

order to keep programming easy, every node could access the 

load information of its neighbors directly. However, the 

simulator keeps track of the query and response overheads 

when asking for this load information.  

3.7 Logs  
In order to do statistical analysis, to help generate the results 

from Section 4, as well as for visualization purposes, we 

write some information into logs. We have two logs, one 

recording the per task information (can be very large for 

exascale simulations), while the other recording the summary 

over some defined unit of time (quite efficient regardless of 

scale of experiment). The per task log records information 

such as task ID, compute node ID, submission time, queue 

wait time, execution time, and exit code (whether it was 

successful or not). The summary log records information 

such as the ‘simulation time’, ‘number of all cores’, ‘number 
of executing cores’, ‘wait queue length’, ‘throughput’, etc.  

The per task log is optional due to the potential large 

overhead and storage requirement. If enabled, a record gets 

logged whenever a ‘TaskEnd’ event happens. The summary 
log is mandatory, and is implemented by submitting events to 

the global event queue. At the beginning when simulation 

time is 0, we insert a ‘Log’ event. Every time when handling 

a ‘Log’ event, we remove it and insert the next ‘Log’ event 
which would happen some fixed simulation time later. In this 

way, we ensure that the increment of the simulation time 

between two consecutive records is constant.  

3.8 Dynamic Task Submission  
Both the centralized and distributed scheduling support 

dynamic task submission. Client could submit a couple of 

tasks to the dispatcher, or an arbitrary node dynamically 

when the number of waiting tasks is below some threshold. 

Dynamic task submission aims to reduce the memory 

foot-print of having more tasks submitted than available 

compute nodes/cores.  

3.9 Poll Interval for Work Stealing 
In the distributed scheduler, we implement a dynamic poll 

interval policy in order to achieve reasonable simulation 

performance while still keeping the work stealing algorithm 

responsive. Without a dynamic poll interval, we observed 

that under idle conditions, many nodes would poll neighbors 

to do work stealing, which would ultimately fail and would 

lead to more work stealing requests. If the polling interval 

was set large enough to limit the number of work steal events, 

the work stealing algorithm would not respond quickly to 

changing conditions, and would lead to poor load balancing. 

Therefore, we change the poll interval of an idle node 

dynamically by doubling it each time when all of the 

neighbors have no tasks, and setting the poll interval back to 

the default small value whenever it steals some tasks 

successfully; this algorithm is similar to the exponential 

backoff algorithm in the TCP networking protocol. We set 

the default poll interval to be small value (e.g. 1 sec).  

3.10 Implementation Details 
SimMatrix has been developed in Java, and includes about 

1500 lines of code. It has been tested on a variety of 

operating systems, from Linux to Windows. SimMatrix uses 

the uniform random distribution generator for producing 

workloads, and BufferedWriter for logging, as we found this 

to be the most efficient writer in Java (after comparing 6 

ways to write to a file [18]). Also, we implement a Gamma 

Distribution random generator to produce the popular 

many-task computing workload. The source code is open 

source, and can be accessed from [12].  

4. EVALUATION 
This section present the evaluation methodology, metrics 

measured, the experimental hardware and software 

environments, as well as the results showing the scalability 

and performance of SimMatrix, plus the feasibility of 

utilizing work stealing at exascale levels. 



Methodology: Since exascales is not anticipated until the 

end of the decade, we decided to explore work stealing 

through simulations to evaluate its feasibility at exascales 

with millions of nodes and billions of cores.  

Hardware Environment: All experiments presented in this 

section are performed on fusion.cs.iit.edu, which boasts 48 

AMD Opteron cores at 1.93GHz, 256GB RAM, and a 64-bit 

Linux kernel 2.6.31.5. 

Software Environment: SimMatrix is developed 100% in 

JAVA; we used the Sun 64-bit JDK version 1.6.0_22. 

SimMatrix has no other dependencies.   

4.1 Metrics 
We use important metrics to evaluate the performance of our 

simulators. They are listed below:  

 Throughput: Number of tasks finished per second. 

Calculated as total-number-of-tasks/simulation-time.  

 Efficiency: the ratio between the ideal simulation 

time of completing a given workload and the real 

simulation time. The ideal simulation time is 

calculated by taking the average task execution time 

multiplied by the number of tasks per core.  

 Load Balancing: We adopted the coefficient 

variance [19] of the number of tasks finished by each 

node as a measure the load balancing. The smaller the 

coefficient variance, the better the load balancing is. 

It is calculated as the standard-deviation/average in 

terms of number of tasks finished by each node.  

 Scalability: Total number of tasks, number of nodes, 

and number of cores supported. 

4.2 Simulator Parameters 

For all the experiments, we set some global variables to be 

appropriate constants, which are listed in Table 2.  

Table 2: Values of Some Global Variables 

Variables Values 

linkSpeed 10Gb/s 

procTimePerTask 1 millisecond 

networkLatency 10 microseconds 

numCoresPerNode 1000 

logTimeInterval 1 second 

We choose values based on the BlueGene/P machine 

configured with Falkon [20] scheduler, and make the 

‘linkSpeed’ 10 times faster, and ‘networkLatency’ ten times 

lower. This assumption is realistic given the rate of 

improvements in network performance.  

4.3 Workloads 
A variety of workloads, in terms of the task length, have 

been used in our experiments, including synthetic and real 

ones.  

For synthetic workloads, we use uniform distributions with 

different average task lengths, such as 10s, 100s, 1000s, 

5000s, 10000s, and 100000s. We name them ave_1, ave_10, 

ave_100, ave_5000, ave_10000, and ave_100000, 

respectively. Also, we use the workload where each task has 

the same length, i.e. 1s, and name it all_1.  

For more realistic application workloads, we use the general 

64 486s many task one, which has been shown to represent 

years of MTC workloads, comprising of hundreds of millions 

of tasks. [21] We generate this workload called mtc_64 by 

using a Gamma Distribution.   

4.4 Validation 
Before we try to explore MTC at exascales, we validated 

SimMatrix against the state-of-the-art MTC systems (e.g. 

Falkon), to ensure that the simulator can accurately predict 

the performance of current petascale systems. The results are 

shown in Figure 4 and Figure 4. 

 

Figure 3: SimMatrix validation for the centralized 

scheduler, compared to the Falkon centralized scheduler 

up to 2K-cores [8] 

 

Figure 4: SimMatrix performance comparing work 

stealing efficiency to the Falkon naïve distributed 

scheduler up to 160K-cores [8] 

Figure 3 presents the validation results when compared to the 

centralized Falkon scheduler up to 2K-cores; we measured a 

2.5% difference in reported efficiency between our simulator 

(dotted lines) and Falkon (solid lines). In Figure 4, the work 

stealing approach is able to maintain a 96%+ efficiency even 

with 1 second tasks at full 160K-core scales, when Falkon 

was only able to achieve 2% efficiency with 1 sec tasks at 
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full scale, requiring task lengths of 256 seconds to achieve 

upper 90% efficiencies.For these experiments, we set the 

number of cores per node to be 4, as the case of BlueGene/P 

machine. The total number of tasks is 50000000, large 

enough to ensure that the experiments completed in a 

reasonable amount of time. The parameters of work stealing 

are set as the optimal values (as discovered by Sections 1.3). 

These results show that our simulator performs correctly 

(with less than 2.5% difference in predicted efficiency), and 

the distributed scheduling with work stealing configured with 

optimal parameters outperforms Falkon distributed 

dispatcher significantly (96% efficiency for work stealing 

when compared to 2% for Falkon).  

4.5 Scalability of SimMatrix 
We show our simulator’s scalability, efficiency and resource 
requirement (time and memory) to run exascale experiments 

using ave_5000 workload. Figure 5 and Figure 6 show the 

results.  

 

Figure 5:  Scalability of the SimMatrix up to 1M nodes 

and 10B tasks 

 

Figure 6:  Efficiency and co-variance of work stealing at 

1M nodes and 10B tasks 

The results show that up to 1 million nodes, we could run 

workloads with 10 billion tasks in about 256 hours and 

190GB memory. Work-stealing actually works quite well at 

extremely large scales, given the right work-stealing 

parameters. In Figure 6, we see an efficiency of 90%+ at a 

million node scale, with a co-variance of 0.05 (e.g. meaning 

that the standard deviation of the number of tasks run being a 

relatively low 500 tasks when on average each node 

completed 10K tasks). 

4.6 Work Stealing Parameter Space 
There are several parameters that could affect the 

performance of work stealing, such as number of tasks to 

steal, number of neighbors of a node, static neighbors vs. 

dynamic random neighbors. We investigate them in great 

detail in this section. The experiments scale up to 8192 nodes, 

with each one 1000 cores. The number of tasks is 10 times of 

the number of cores. The ave_5000 workload is used. We do 

each experiment five times, and show the average 

efficiencies and standard deviations. We do weak scaling 

experiments.  

4.6.1 Number of tasks to steal 
In our five groups of experiments, steal_1, steal_2, steal_log, 

steal_sqrt, steal_half means steal 1, 2, logarithm base-2, 

square root, and half number of tasks respectively. We set 

numNeighbors = 2. The changes of the efficiency of each 

group with respect to the number of nodes are shown in 

Figure 7. 

 

Figure 7: Efficiencies of different numbers of tasks to 

steal with respect to number of nodes 

From Figure 7, we see that as the number of nodes increases, 

the efficiencies of steal_1, steal_2, steal_log, steal_sqrt 

decrease. The efficiency of steal_half keeps at the value of 

about 97% up to 8 nodes, and decreases after that. And the 

decrease speed of steal_half is the slowest. These results 

show that stealing half number of tasks is optimal, which 

confirms both our intuition and the results from prior work 

on work stealing [22]. The reason that steal_half is not 

perfect (efficiency is very low at large scale) for these 

experiments is that 2 neighbors of a node is not enough, and 

starvation can occur for some nodes that are too far in the ID 

namespace from the original compute node who is receiving 

all the task submissions. The conclusion of this experiment is 

that having a small number of static neighbors is not 

sufficient to achieve high efficiency even at modest scales. 

We also can generalize that stealing more tasks (less than 

half) generally produces higher efficiencies.  



4.6.2 Number of neighbors of a node 

4.6.2.1 Static Neighbors 
In our experiments, nb_2, nb_log, nb_sqrt, nb_eighth, 

nb_quar, nb_half means 2, logarithm base-2, square root, 

eighth, a quarter, half neighbors of all nodes, respectively. In 

this case, neighbors are chosen statically as consecutive ids 

in the ring topology at the beginning, and will not change. 

The changes of the efficiency of each group with respect to 

the number of nodes are shown in Figure 8. 

The result shows that when the number of neighbors is no 

less than a quarter of all nodes, the efficiency will keep at the 

value of higher than 95% within 8192 nodes’ scale. For other 
numbers of static neighbors, the efficiencies could not 

remain, and will drop down to very small values. We 

conclude that the optimal number of static neighbors is a 

quarter, as more neighbors do not improve performance 

significantly. 

 

Figure 8: Efficiencies of different numbers of static 

neighbors with respect to number of nodes 

However, in reality, a quarter neighbors is too many to make 

work stealing practical, especially for an exascale system 

with millions of nodes. In the search for a lower number of 

needed neighbors, we explore a dynamic random neighbor 

selection policy. 

4.6.2.2 Dynamic Random Neighbors 
For each node, whenever it does work stealing, it randomly 

selects some neighbors with uniform distribution. This policy 

will reduce the requirement of number of neighbors. We do 4 

groups of experiments, nb_1, nb_2, nb_log, nb_sqrt. We first 

do nb_1 experiment until starting to saturate (the efficiency 

is less than 90%), then at that point, do nb_2, then nb_log, 

and nb_sqrt at last. The results are shown in Figure 9. 

Figure 9 shows that nb_1 scales up to 512 nodes, nb_2 scales 

up to 2048 nodes, nb_log sclares up to 16384 nodes, and 

nb_sqrt scales up to 1 million nodes, remaining the efficiency 

at the value about 90%. Our conclusion is that dynamic 

random nb_sqrt is the best and could be used in general, but 

it might produce more neighbors than needed for 90% 

efficiency level. Even with 1M nodes in an exascale system, 

the square root implies having 1K neighbors, a reasonable 

number of nodes for which each node to keep track of.   

The optimal parameters for the aver_5000 workload and 

work stealing are to steal half the number of tasks from their 

neighbors, and to use the square root number of dynamic 

random neighbors. 

 

Figure 9: Efficiencies of different numbers of dynamic 

random neighbors with respect to number of nodes 

4.7 Optimal Parameters for Different 

Workloads 
We apply the optimal parameters to different workloads, 

such as ave_10, mtc_64, ave_100, ave_1000, ave_10000 to 

see how work stealing works. For ave_10, ave_100, 

ave_1000, we set the total number of tasks as 10 times of the 

number of cores. For mtc_64, we set the total number of 

tasks as 10000 times of the number of cores, that means for 

16384 nodes, the number of tasks is 163,840,000,000 (163 

billion tasks). The reason is that for mtc_64 workload, we 

generate it using Gama Distribution. It requires the sample 

space to be large enough to ensure the average is 64, and the 

standard deviation is 486, even for 1 node. The result is 

shown in Figure 10 

.

Figure 10: Efficiency of different workloads with 

same optimal parameters' configuration 



From Figure 10, we see that, work stealing configured with 

the optimal parameters works quite well for all these 5 

workloads within 16k nodes’ scale (16,384,000 cores). Even 
for the real mtc_64 workload, given that the number of tasks 

is large enough, work stealing still works well. We do not 

expect the same trends to hold true as we scale up to 1M 

nodes. There results show that the optimal parameters we 

found for work stealing are general at some extent, and work 

stealing is a promising approach to load balancing at near 

exascale levels. We plan to extend this experiment in the 

final manuscript to show the efficiency of these various 

workloads up to 1M nodes. 

4.8 Visualization of Load Balancing 
In the experiments, we capture the changes of loads of all 

nodes with respect to the simulation time to visualize the 

performance of work stealing. Figure 11 shows 1024 nodes’ 
situation.  

   

  

Figure 11: Visualization for 1024 nodes and ave_5000 

workload for different number of neighbors; the upper 

left has 2 static neighbors, the upper right has square 

root static neighbors; the lower left has a quarter static 

neighbors, the lower right has square root dynamic 

random neighbors. 

We present the representative graphs for different number of 

neighbors when the system is stable. The nodes are mapped 

to tiles depending just on their ‘ids’ and they are assigned in 
a row-wise manner. Due to our neighbors’ distribution policy, 

it results that nodes that are beside each other row-wise are 

neighbors. We map the level of load of the nodes to colors, 

and each node it is represented as a tile in a canvas. The red 

square means the most loaded node (usually node 0, which 

accepted tasks from clients), the right ones are idle nodes, 

and the other ones are nodes with different loads represented 

with different colors. We see that when the number of 

neighbors is small, some nodes are starved (the top two 

figures that have some white tiles). 

4.9 Comparison between centralized and 

distributed scheduling 
We compare the centralized and distributed scheduling to 

understand the bottleneck of the centralized way, in terms of 

throughput. The number of tasks is 10 times of the number of 

cores. We do two groups of experiments. The first uses 

ave_5000 workload, and the second uses all_1, for both 

schedulers. The optimal parameters of work stealing are used. 

The throughputs with respect to the number of nodes are 

shown in Figure 12.  

 

We see that for ave_5000 workload, after 8192 nodes 

(8192000 cores), the centralized scheduling is saturated wi 

We see that for ave_5000 workload, after 8192 nodes, the 

centralized scheduling is saturated with upper bound 

throughput of about 1000, and the distributed one could 

perfectly scale up to one million nodes, the throughput 

doubles as the number of nodes doubles, and has no explicit 

upper bound. For all_1, the centralized scheduling saturates 

at about 32 nodes with upper bound throughput of about 

1000, while the distributed one saturates at about 131072 

nodes with throughput about 60M tasks/sec; it finally reaches 

1M nodes with a throughput of 75M tasks/sec. The 1000 

upper bound of the centralized scheduling is because of the 

processing time of the dispatcher per task (set to 1ms in the 

simulator). The reason that the distributed scheduler saturates 

is likely due to the growth of messages in relation to the 

number of nodes in the system. The average number of 

messages per task with respect to the system scale for the 

all_1 workload is shown in Figure 13 below. We see that 

after 131072 nodes, the average number of messages per task 

increases dramatically (and exponentially). We believe that 

having sufficiently long tasks to amortize the cost of these 

many number of messages would be critical to achieving 

good efficiency numbers at exascales.  

Also, we give the summary plots showing the information 

regarding utilization and throughput in terms of simulation 

time in Figure 14. The utilization is calculated as the 

area_of_green_region / area_of_red_region. We could see 

that the distributed scheduling has about 100% utilization 

after about 12K seconds elapsed and big throughput for 

ave_5000 workload at exascales (~200K tasks/sec in the 

Figure 12: Throughput comparison between centralized 

and distributed scheduling 
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steady state part of the experiment), while the centralized one 

(not shown below) has just about 0.5% utilization, and a 

much lower throughput (~1K tasks/sec) given the same 

configuration. The overall efficiency of the distributed 

scheduling is about 82% after taking into account the ramp 

up and down period of the experiment.  

 

Figure 13: Average number of messages with respect to 

the system scale 

 

Figure 14: Summary plot for distributed scheduling at 

Exascales for ave_5000 workload 

5. RELATED WORK 
Since 1990s, a lot of work related to job scheduling systems 

has been done. The University of Wisconsin developed one 

of the earliest job management systems, Condor [23] to 

harness the unused CPU cycles on workstations for 

long-running batch jobs. Portable Batch System (PBS) [24] 

was originally developed at NASA Ames to address the 

needs of HPC, which is a highly configurable product that 

manages batch and inter-active jobs, and adds the ability to 

signal, rerun and alter jobs. LSF Batch [25] is the 

load-sharing and batch-queuing component of a set of 

workload-management tools from Platform Computing of 

Toronto. All these systems target as the HPC or HTC 

applications, and lack the granularity of scheduling jobs at 

node/core level, making them hard to be applied to the MTC 

applications. What’s more, the centralized dispatcher in these 

systems suffers scalability and reliability issues. In 2007, a 

light-weight task execution framework, called Falkon [20] 

was developed by the University of Chicago and Argonne 

National Laboratory for MTC applications (this work was 

done by the authors of this work). Falkon also had a 

centralized architecture, and although it scaled and 

performed magnitude orders better than the state of the art, 

its centralized architecture will not even scale to petascale 

systems. A naïve distributed Falkon implementation was 

shown to scale to a petascale system in [8], the approach 

taken by Falkon suffered from poor load balancing under 

failures or unpredictable task execution times.   

For simulators of job scheduling systems, SimJava [26] and 

GridSim [27] are two of them. SimJava is developed by the 

University of Edinburgh, based on which, the University of 

Melbourne, Australia developed GridSim. They model nodes 

and networks in Grid heterogeneous environment using Java 

threads, which likely could just scale up to thousands of 

nodes, because it consumes too much resource to manage 

many threads, and our experiment shows that the maximum 

number of threads a process could create is about 32K.  

Most parallel programming systems require load balancing. 

Centralized load balancing has been extensive studied in the 

past (JSQ [28], least-work-left [29], SITA [30]), but they all 

suffer from poor scalability and resilience. Although 

distributed load balancing at extreme scales of millions of 

nodes and billions of threads of execution is likely a more 

scalable and resilient solution, there are many challenges that 

must be addressed (e.g. utilization, partitioning). Fully 

distributed strategies have been proposed, including 

neighborhood averaging scheme (ACWN) [31][32][33][34]. 

In [34], several distributed and hierarchical load balancing 

strategies are studied, such as Sender/Receiver Initiated 

Diffusion (SID/RID), Gradient Model (GM) and a 

Hierarchical Balancing Method (HBM). Other hierarchical 

strategies are explored in [35] and [36]. Charm++ [14] 

supports centralized, hierarchical and distributed load 

balancing. It has demonstrated that centralized strategies 

work still ok for 3000 processors for NAMD. In [9], the 

authors present an automatic dynamic hierarchical load 

balancing method for Charm++, which scales up to 16384 

cores of Ranger (at TACC) for a synthetic benchmark.  

Work stealing [37][38][22] has been used at small scales 

successfully in parallel languages such as Cilk [39], to load 

balance threads on shared memory parallel machines. 

Theoretical work has proved that a work-stealing scheduler 

can achieve execution space, time, and communication 

bounds all within a constant factor of optimal [37][38]. 

However, the scalability of work stealing has not been well 

explored on modern large-scale systems. In particular, 

concerns exist that the randomized nature of work stealing 

can lead to long idle times and poor scalability on large-scale 

clusters. [22]The largest studies to date of work stealing have 

been at thousands of cores scales, showing good to excellent 

efficiency depending on the workloads. [22] Our work from 

the simulation perspective shows that work stealing with 

optimal parameters works great for even exascale systems at 

millions of nodes and billions of cores.  



6. CONCLUSIONS AND FUTURE 

WORK 
Exascale systems bring great opportunities in unraveling of 

significant scientific mysteries. Also, there are challenges, 

such as concurrency, resilience, I/O and memory, 

heterogeneity, and energy, which require revolutions in 

programming languages and models, memory hierarchy 

technologies, job management systems, communication 

networks, and power efficiency. Many-Task Computing for 

exascale applications needs dynamic job scheduling system 

at the granularity of node/core levels. Distributed scheduling 

is likely the efficient way to achieve load balancing, leading 

to high job throughput and system utilization.  

We developed a new light-weight and scalable discrete event 

simulator that enables distributed scheduling for MTC 

workloads at exascales. This work provides evidence that 

work stealing is a scalable method to achieve load balance, 

even at exascales. It also identified optimal parameters 

affecting the performance of work stealing; at the largest 

scales, in order to achieve the best work stealing performance, 

we found the number of tasks to steal is half and there must 

be a squared root number of dynamic neighbors (e.g. at 1M 

nodes, we would need 1K neighbors). 

We see this work continue in many different directions. One 

such direction is to use the same base simulator to explore 

work stealing for many-core chips with thousands of cores. 

Instead of simulating an exascale system with millions of 

nodes and billions of cores, we plan to use the same 

simulator to simulate a single chip with 1000 cores. The 

challenge will be to model the network accurately with 2D 

meshes (or other expected network topologies). We have 

started exploring scheduling of direct acyclic graphs (DAGs) 

on many-core processors in [40] which takes a computer 

architecture perspective, and uses another simulator 

NIGRAM [40]. We believe that work stealing could be 

applied to improve the work presented in [40].  

Another direction for future improvements of SimMatrix is 

to allow more complex network topologies for an exascale 

system, such as trees, 3D torus networks, daisy chained 

switches, etc. Having a more complex network model would 

allow us to explore another dimension, specifically on the 

placement of the neighbors, and how it might affect overall 

system efficiency. It would also allow us to study job 

dependency management with more realistic constraints.  

The insight we are getting from SimMatrix will ultimately be 

used to develop MATRIX, a distributed task execution fabric. 

MATRIX will likely employ work stealing for distributed 

load balancing, among other techniques to enable extreme 

scalability and performance. We expect MATRIX to be 

integrated with other projects, such as Swift [13] (a data-flow 

parallel programming systems) and FusionFS [41] (a 

distributed file systems). We will also investigate the 

possibility of MATRIX benefiting other systems such as 

Charm++ [14]. MATRIX’s goal would be to allow MTC 
applications to scale to extreme scales distributed systems, 

including exascale systems. A potential future software stack 

is shown in Figure 15. 

 
Figure 15: Proposed software stack 

The gray areas represent the traditional HPC-stack, 

comprising of applications, MPI, resource managers, parallel 

file systems, and HEC hardware. The green areas are 

additional components, such as support for many-task 

computing applications, using lower level components such 

as MATRIX, ZHT[42], and FusionFS[41]. The yellow areas 

represent the simulation components (SimMatrix), aimed to 

help explore peta/exascales levels on modest terascale 

systems.  

We envision the SimMatrix and MATRIX projects to be 

building blocks for future parallel programming systems, 

having the potential to address some of the hardest problems 

in exascale computing, namely concurrency and resilience. 

Once SimMatrix is extended with all of the features 

mentioned earlier this section, I/O and memory (e.g. 

data-aware scheduling), as well as heterogeneity could be 

addressed.  
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