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Abstract

It is important to perform measurement and monitoring in

order to understand network performance and debug prob-

lems encountered by distributed applications. Despite many

products and much research on these topics, in the context

of data centers, performing accurate measurement at scale in

near real-time has remained elusive. There are two main ap-

proaches to network telemetry–switch-based and end-host-

based–each with its own advantages and drawbacks.

In this paper, we attempt to push the boundary of edge-

based measurement by scalably and accurately reconstruct-

ing the full queueing dynamics in the network with data gath-

ered entirely at the transmit and receive network interface

cards (NICs). We begin with a Signal Processing frame-

work for quantifying a key trade-off: reconstruction accu-

racy versus the amount of data gathered. Based on this,

we propose SIMON, an accurate and scalable measurement

system for data centers that reconstructs key network state

variables like packet queuing times at switches, link utiliza-

tions, and queue and link compositions at the flow-level. We

use two ideas to speed up SIMON: (i) the hierarchical nature

of data center topologies, and (ii) the function approxima-

tion capability of multi-layered neural networks. The for-

mer gives a speedup of 1,000x while the latter implemented

on GPUs gives a speedup of 5,000x to 10,000x, enabling

SIMON to run in real-time. We deployed SIMON in three

testbeds with different link speeds, layers of switching and

number of servers. Evaluations with NetFPGAs and a cross-

validation technique show that SIMON reconstructs queue-

lengths to within 3-5 KBs and link utilizations to less than

1% of actual. The accuracy and speed of SIMON enables

sensitive A/B tests, which greatly aids the real-time develop-

ment of algorithms, protocols, network software and appli-

cations.

1 Introduction

Background and motivation. Measurement and telemetry

are long-standing important problems in Networking; there’s

a lot of research on these topics and there are several prod-

ucts providing these functionalities (e.g., [42, 21, 19, 56, 55,

57, 27, 13, 20, 50, 44, 40, 49, 7, 1, 2, 3, 4]). The primary use

cases are monitoring the health of networks, measuring their

performance, billing, traffic engineering, capacity planning,

troubleshooting in the case of breakdowns or failures, and

for detecting anomalies and security threats. The key chal-

lenges are: (i) accuracy: how to accurately observe and mea-

sure events or phenomena of interest; (ii) scalability: how to

scale the measurement method to large networks, involving

hundreds or thousands of nodes and high line rates, hence

a very large “event frequency”; and (iii) speed: how to per-

form accurate and scalable measurement in near real-time as

opposed to offline. Since these are conflicting requirements,

most solutions seek to make effective trade-offs.

Measurement methods can be classified as “switch-based”

or “edge-based”. Switch-based methods can be approximate

or exact. We survey the literature on this topic in Section 7.

For now, it suffices to say that most early work (and prod-

ucts; e.g., NetFlow [50] and sFlow [44]) consider approxi-

mate measurement since accurate measurement was deemed

prohibitively expensive. These methods only give approxi-

mate counts of packets/bytes passing through a single switch,

requiring a lot of extra processing to stitch together network-

wide, flow-level views. Further, they also require extra

bandwidth to move the measurement data to the network’s

edge for processing. Recent developments in programmable

switches and in-band network telemetry [58, 30, 32, 28] en-

able accurate, per-packet measurement. However, they gen-

erate a lot of data (per-packet, per-switch), whereas we shall

see that network phenomena of interest can be captured with

a lot smaller data. The effectiveness of INT also relies on

all nodes being able to perform it. Finally, because switches

are not adjacent to the end-hosts (in the way that NICs are),

they cannot easily relate network bottlenecks to application

performance.

Edge-based methods record “events” at end-hosts with lit-

tle or no help from the network. The events are used to infer

some network state that is of interest to an application or

to the operator. Since storage is distributed and resources

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation    549



in the end-hosts are abundant, these methods are inherently

scalable. The question is how much network state can be in-

ferred and how accurately? Existing work, surveyed in Sec-

tion 7, only obtains a partial or approximate view of the net-

work state from edge observations, such as end-to-end delay

distributions, which link dropped a packet, detecting traffic

spikes, silent packet drops, load imbalance, or routing loops.

By contrast, our work, which is also edge-based, obtains a

near exact reconstruction of network state variables.1 That is,

we obtain key variables like queuing delays, link utilizations

and queue/link compositions over small time intervals and

on a per-packet or per-flow basis. Our approach is based on

network tomography.

Tomography. The goal of network tomography is to use

the “individual records”2 of unicast or multicast probes and

packets collected at the edge of the network and determine

internal network state quantities such as delays and back-

logs at individual links. The general philosophy of network

tomography is this: While each record conveys a limited

amount of information about network conditions, it may be

possible to combine the records of all the probes or packets

to get a detailed picture of internal network state and condi-

tions.

Despite much research (surveyed in Section 7), network

tomography hasn’t proved successful in wide area networks.

As [25] notes, one major impediment is ignorance of the

underlying network topology. This leads tomography algo-

rithms to make unrealistically simple assumptions, which, in

turn, lead to inaccurate inferences. Even if the exact topol-

ogy were known, the end-to-end traversal times in the wide

area setting are at least a few milliseconds and typically a few

tens of milliseconds, much longer than the queuing times at

routers. So two probes whose network dwell times overlap

might encounter quite different queuing times at a common

router buffer on their path. Since the accurate determination

of queuing times is infeasible in the wide area setting, [25]

advocates determining their distributions instead.

Reconstructing data center state variables. We revisit net-

work tomography in the data center context. By restricting

ourselves to data centers, we sidestep the problems plaguing

tomography in wide area networks and obtain the following

advantages. (a) A data center is operated by a single admin-

istrative entity, hence, the network topology is easy to know.

The path followed by a probe or packet is also knowable

(e.g., using traceroute or because the hash functions which

assign packets to paths are known). (b) A modular network

topology of the Clos type provides multiple paths between

any pair of nodes, making congestion and bottlenecks sparse.

(c) As a consequence of (a) and (b), the network traversal

time of a probe or packet is dominated by queueing times at

1“near exact reconstruction” is defined in Section 2.1.
2An individual record, described formally later, consists of the standard

5-tuple, transmit and receive timestamps, and the byte-count.

one or two queues and the wire times are negligible.3

It is important to note that we do not reconstruct the in-

stantaneous values of network state variables, rather we re-

construct a I-average of these quantities, where I is a short

interval (e.g., 0.25 msec–1 msec in 10–40 Gbps networks).

In Section 2.1, we demonstrate that packet queuing times

and backlog processes viewed at the granularity of packet

enqueuing and dequeuing times are very noisy. By analyzing

the queuing process in the frequency domain (specifically, by

looking at its power spectral density), we propose to recon-

struct the I-averaged queuing times and link utilizations and

show that these quantities retain 97.5% of the power of the

corresponding instantaneous quantities, and are practically

the same in value except for the noise. A major benefit is

that the I-averaged network state quantities are obtained with

much less data and processing effort! For example, in a 10

Gbps, 256-server network with 3 tiers of switching operating

at 40% load, going from per-packet to per-millisecond data

capture at the edge reduces total storage by 60x and speeds

up computation by 40x with negligible reduction in accuracy

(see Table 1).

If it works in the data center setting, the advantages of

a tomography-based measurement system are several: (i) it

doesn’t require any modification to the existing switching

infrastructure since it only needs data to be gathered at the

edge, and most current-generation NICs are able to times-

tamp packets at wirespeed, (ii) by injecting extra probes at

roughly 0.3% of the link bandwidth to obtain network state

information, its bandwidth overhead is negligible when com-

pared with switch-centric approaches which need to send

data collected at the switches to the network’s edge, (iii) be-

ing edge-based, it is readily able to relate application-level

performance to network bottlenecks, and (iv) most impor-

tantly, it has the potential to be accurate, scalable and near

real-time.

Our contributions.

We propose SIMON, a sensing, inference and measurement

system for data centers that reconstructs key network state

variables such as queuing times, link utilizations and queue

and link compositions (i.e., breaking down the packets in a

queue according to flow ids). SIMON uses a mesh of probes

to cover all the linearly independent paths in the network,

and the delays of the probes in a reconstruction interval are

processed by the LASSO inference algorithm [53] to obtain

the queue size and other related variables. We present:

(1) A signal processing framework for analyzing the basic

elements of tomography-based measurement methods (Sec-

tion 2.1). The main finding is that queue sizes and wait times

fluctuate noisily when viewed at packet enqueuing and de-

queuing times, but a low-pass filtered version of these pro-

cesses is both easier to reconstruct and carries more than

3For example, the propagation time is 5ns for 1 meter or 0.5 microsecs

for 100 meters which is comparable to the raw switching (zero queuing)

time at a node.

550    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



97.5% of the signal power.

(2) SIMON, a probe-based sensing, inference and measure-

ment system for accurately determining network state vari-

ables (Section 3). In an ns-3 simulation of a 10 Gbps, 256

server DCN, SIMON achieves an RMSE of 4.14KB in recon-

structing queue compositions, and a 1% error in reconstruct-

ing link utilization for each traffic class (see Figure 11). In

a real-world 1 Gbps, 128 server testbed, SIMON achieves an

RMSE of 5.1KB (just over 3 1500B packets) with respect to

ground truth.

(3) Exploiting the hierarchical (Clos or fat-tree type) struc-

ture of modern data center topologies to devise a modular,

fast version of SIMON (Section 4.1). The resulting speedup

is 1,000x.

(4) Using the function approximation capability of multi-

layered neural networks (NNs) [29] to hardware-accelerate

SIMON, more specifically, to hardware-accelerate the

LASSO inference algorithm used by SIMON. We find that

even unoptimized NNs running on standard GPUs, give up

to 5,000–10,000x acceleration (Section 4), enabling SIMON

to run in near real-time.

(5) A verification of the accuracy and scalability of SIMON

on a 128 server, 1 Gbps data center and a 240 server, 40

Gbps testbed. We comment on the deployment experience

from these testbeds as well as a mixed 10G-40G, 288 server

network (Section 6).

As a consequence of the speed and accuracy of SIMON, it

can support sensitive A/B tests in near real-time, hence en-

abling the rapid development of algorithms, protocols, data

center software and high-level applications. It can also be

coupled with edge-based control in “Smart NICs” which are

a recent and major focus of the industry [37, 10, 14].

2 Network reconstruction using tomography

In this section we describe how to use data sensed from the

edge of the network (servers) to reconstruct key performance

measures in a data center network (DCN). Figure 1 shows

a 3-stage Clos (or fat-tree) DCN, with the path taken by a

probe or data packet shown in red. We introduce the follow-

ing concepts and terminology.

Probe. A probe is a 64 byte UDP or TCP packet sent from

one server to another in the DCN. It travels on the same pri-

orities and through the same queues as regular data packets.

Its purpose is to incur the same queuing times as the payload

in its priority and, hence, provide data for reconstruction.

Probe mesh. This is a graph connecting the N servers in

a DCN to one another along whose edges probes are ex-

changed. Each server picks K other servers randomly and

uniformly (without replacement) from the set of all servers.

Suppose server i picked servers j1, ..., jK . Then i sends

probes to each jl (1 ≤ l ≤ K) at a frequency F Hz. Each jl
sends probes back to i at the same frequency. The path in the

DCN followed by probes between any pair of servers is cho-

sen uniformly at random from the set of all available paths

between them, and independently of the choice of paths for

other pairs.4 The paths are chosen once and held fixed. Note

that each server sends a total of 2KF probes per second on

average.

Remark. We shall later demonstrate (Section 3) that with

10 ≤ K ≤ 20 we can sample all the links (hence queues) in

any Clos (fat-tree) DCN; that is, a constant value of K suf-

fices. We shall also comment on F .

Handling Ethernet priorities. There are 8 priorities in Ether-

net, the dominant L2 technology in DCNs. For convenience,

in this paper we assume that the DCN uses only one priority,

although the verification in the 40 Gbps testbed was con-

ducted in a multi-priority setting. In order to handle multiple

priorities, we simply launch a probe mesh in each priority

and perform reconstruction per priority. The probes will use

the same transport protocol (TCP or UDP) as the traffic in the

given priority and encounter the same queuing delays as the

payload. Indeed, the 40 Gbps testbed also employs priority

flow control (IEEE 802.1Qbb), where packets in a priority

may be paused. Reconstruction works in this case as well.

Individual record. The individual record of a probe or a

data packet is captured at the transmitter network interface

card (NIC) and the receiver NIC. It consists of the 5-tuple

header information (source and destination addresses, source

and destination port numbers, protocol port number), the

transmit and receive timestamps at the corresponding NICs,

and the length of the packets.

Remark. We assume that the clocks of all the NICs are accu-

rately synchronized using techniques in [24], [31] or [33].

Note that, even though these techniques can synchronize

clocks up to a 10s of nanoseconds, it suffices for our purposes

that the clocks be synchronized to about 1 microsecond.

Figure 1: Reconstruction from Edge Timestamps

Output-queue assumption. Switches in DCNs can have

queues on both the ingress and egress line cards and packets

can queue at both places. However, switch implementations

4The paths of the probe mesh do not have to be chosen at random; in-

deed, it may sometimes be desirable to choose the path deliberately so as to

cover the DCN’s links more evenly or unevenly, depending on some objec-

tive. Further, probes from i to j can follow a different path in the DCN than

probes from j to i. Whatever the choice, the paths of the probe mesh must

cover all the links in the network uniformly, and cover all the “linearly in-

dependent paths” with an adequate number of probes passing through each

link per unit time so as to enable a good reconstruction of that link. Random

path selection is adequate for these purposes.
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Figure 2: The network in ns-3 simulation setup (NS)

employ a fabric speedup [16], ensuring that most queuing

takes place at the egress line cards. Throughout this paper

we assume that queuing takes place in the output queues of

switches, and measurements done in a real testbed in Sec-

tion 6.2 validate this assumption. Hence, each directed link

in the DCN has a queue associated with it; namely, the output

queue that drains into it. 5

2.1 What to reconstruct

Suppose we have a DCN with a total of Nq queues. Under

some traffic load, let Qi(t) be the queue length at time t and

Wi(t) be the waiting (or queuing) time of a packet arriving at

time t to the ith queue. With a single priority Wi(t)=Qi(t)/L,

where L is the line rate in Bytes/sec, so the waiting time and

queue size are related by a constant.6 Consider a preliminary

statement of the reconstruction problem:

Given the individual records of all the probe packets during

some time [0,T ], obtain a reconstruction Q̂i(t) of Qi(t) so as

to minimize E
[

Qi(t)− Q̂i(t)
]2

for t ∈ [0,T ].
ns-3 simulation (NS) setup. To gain an understanding of

what is involved in solving this problem, let us consider an

ns-3 simulation of a 10 Gpbs, 3-layer, 256-server network.

We shall reuse this simulation set up in the next section as

well; hence, we shall refer to it as the NS setup. This net-

work has 32 ToR switches (8 servers per rack), 32 spine layer

1 switches and 8 spine layer 2 switches, connected as shown

in Figure 2. All switches are output-queued and have 1MB

of buffering per queue. The DCN operates under an incast

traffic7 load of 40%. We have also used a “long flow” work-

load at 40% load, where one file is sent from a server to an-

other randomly chosen one, and the file sizes are uniformly

in [10MB, 1GB] with an average of 505MB.

5Note that the only directed links with which no queues need to be asso-

ciated are those connecting a NIC to a top-of-the-rack (ToR) switch. These

links don’t get oversubscribed.
6Note that the inference equations will be in terms of Wi(t), as in equa-

tion (3). The queue wait times in each priority come from the probes in

that priority. We’re looking at the queue lengths here rather than queue wait

times because the lengths vary directly with packet arrivals and departures.
7The incast traffic pattern is taken from DCTCP [6]. Each server main-

tains a certain level of load by requesting data simultaneously from a random

number (30% 1, 50% 2 and 20% 4) of other servers, referred as the “fanout”

of the request. The gap between adjacent requests are independent expo-

nentials with load-dependent rate. The file sizes are distributed according to

a heavy-tailed distribution in the range [10KB, 30MB] with an average file

size of 2.4MB. We have used incast workload in this paper because it cap-

tures some generic scenarios (long file transfers and short RPC-type traffic)

and causes congestion. In deployments we’ve used map-reduce-type batch

workloads and RDMA-type traffic.

(a) Queue sampled every 1µs (b) The 1ms average

Figure 3: Queue length in a 10Gbps network

Qi(t), measured every microsecond, is plotted in Figure

3a. (Note that packet enqueuing/dequeuing times on a 10G

link are close to 1 microsecond.) The 1 ms-averaged version

of Qi(t), Q̄i(t), in Figure 3b) is obtained by averaging the

1000 consecutive values of Qi(t) in each millisecond. The

two graphs are essentially identical; the Qi(t) is a noisy ver-

sion of Q̄i(t). We shall next show that there is a straight-

forward relationship between Qi(t) and Q̄i(t); indeed, Q̄i(t)
has almost all of the signal power in Qi(t). In Section 3 we

present a method for reconstructing Q̄i(t) using the LASSO

algorithm.

Averaging: empirical evidence. Define the autocorrelation

function of Qi(t) as follows:

RQ(τ) = E [Qi(t + τ)Qi(t)] , for τ ≥ 0. (1)

The autocorrelation function captures the rate of decay of

correlations in Qi(t). The power spectral density (PSD) of

Qi(t) equals8

SQ( f )=
∞

∑
τ=−∞

RQ(τ)e
−i2πτ f , for | f τ|< 1/2, or | f |< 0.5 MHz.

(2)

The PSD shows the amount of power in Qi(t) at different

frequencies and is symmetric for positive and negative values

of f in the range over which it is defined (−0.5 MHz < f <
0.5 MHz in this case).

Plotting the PSD as a function of the frequency in Hz for

0 < f ≤ 0.5 MHz, we get the yellow curve in Figure 4a. By

computing the PSD similarly for Q̄i(t) and plotting it, we get

the blue curve in Figure 4a. The blue curve exactly coincides

with the yellow for −500 Hz < f < 500 Hz, which means

that the power at those frequencies in both Qi(t) and Q̄i(t)
are identical. Further, Q̄i(t) has zero power in frequencies

higher than 500 Hz; that is, averaging only removes the high

frequency “noise“ and preserves most of the power, 97.5%

to be precise, of the microsecond-level signal Qi(t).
Remark. It is worth noting that the percentage of preserved

signal power depends on the strength of the signal itself. The

97.5% number is obtained at 40% load with 1 MB switch

buffers. Figure 4b shows the PSD measured with different

network load and switch buffer size combinations. As can

be seen, although the amount of power preserved after aver-

aging (the low frequency signal power) varies, the power of

the removed high frequency component remains constant: at

(12KB)2 over all frequencies higher than 500 Hz.9

8Note that τ represents a 1 us interval; hence 1/τ is 1 MHz.
9At the moment we do not have an explanation about this empirical ob-
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(a) In a network with 1MB

buffer, 40% incast load

(b) In different networks

and with incast and long

flows workload

Figure 4: PSD of queue depths in 10Gbps networks

As empirical evidence from a real deployment, Figure 14

compares the PSD of the queue size process measured us-

ing NetFPGA in a 1 Gbps testbed with shallow-buffered

switches. As discussed below, the averaging interval is a

function of only the line rate and for a 1 Gbps line it is 10

ms. In Figure 14 we again see that at 40% load the PSD of

the averaged queue process coincides with the PSD of the

queue size process. Again the power of the portion that is

filtered out, the “noise”, is (12KB)2.

Averaging: signal processing explanation. Q̄i(t) is ob-

tained precisely by passing Qi(t) through a low-pass filter

with the pass band equal to [−500 Hz, 500 Hz] [41]. This

is easy to understand from Figure 5: Q̄i(t) is obtained by (i)

computing a running average of Qi(t) over a 1 ms window,

and then (ii) down sampling the running average to 1 sample

per ms. The frequency domain transfer functions (H( f ) and

X( f )) corresponding to (i) and (ii) are shown in the same fig-

ure. Essentially, (i) and (ii) precisely amount to removing the

frequency components in Qi(t) over 500 Hz and preserving

the rest.

Figure 5: The millisecond-averaging process in time and fre-

quency domains

Upshot. As a result of the above discussion, we shall recon-

struct the averaged queue process Q̄i(t) for each i rather than

the packet-time-sampled queue process Qi(t). It remains to

specify the “reconstruction interval”; we proceed to do this

next.

Determining the reconstruction interval. The proper re-

construction interval for a given DCN turns to depend only

on the highest line rate in the network, even when there are

servation that the removed noise power equals (12KB)2. In the rest of the

paper we use this (12KB)2 to define the acceptable signal power loss caused

by averaging and determine the averaging interval so as to achieve no more

than this loss.

(a) The fraction of queue

size power preserved

(b) The “noise” power or the

power “filtered-out”

Figure 6: Power of queue size and noise processes at differ-

ent reconstruction intervals

mixed link speeds. Intuitively, the faster the link speeds, the

quicker the queues vary (or the higher the noise frequency),

and the smaller is the reconstruction interval.

Figure 6a shows the percentage of power preserved by us-

ing different reconstruction intervals in networks with differ-

ent link speeds at 40% load. As shown, to preserve more than

97.5% of the power, the reconstruction interval is 10 ms for

1Gbps links, 1 ms for 10 Gbps links and 250 µs for 40Gbps

links. In other words, the reconstruction interval is inversely

proportional to the maximum link speed of the network. Fig-

ure 6b shows the square root of the power filtered-out at dif-

ferent reconstruction intervals. Remarkably, as seen in the

figure, this value is a constant at 12KB at all link speeds

when the reconstruction interval equals 10 ms, 1 ms and 0.25

ms for 1G, 10G and 40G links, respectively. In other words,

the “noise” power is (12KB)2.

In summary, we shall aim to reconstruct the average queu-

ing times for the all the queues in the switches for each re-

construction interval, which is determined by the maximum

link speed of the network. The reconstructed average queues

removes the high frequency noise and preserves most of the

relevant information in the original queue signal.

3 The reconstruction algorithm

We now describe SIMON; specifically, we describe

(1) a system that uses the individual records of probes to re-

construct the averaged queue or wait time processes using

LASSO, and

(2) uses the above and the individual records of data pack-

ets to determine link utilizations as well as queue and link

compositions.

Preliminaries. Given a DCN, the first steps are to set up a

probe mesh and to choose a reconstruction interval, I. Con-

sider all the probes sent by all the servers in the reconstruc-

tion interval I (recall that we assume the clocks are all ac-

curately synchronized). Let t
p
i , i = 1, ...,N p be the ordered

sequence of transmit timestamps of all the probes (regardless

of source) sent in interval I, where N p is the total number of

probes transmitted in I. Let r
p
i be the receive timestamp of

the probe transmitted at t
p
i . Note that some r

p
i may fall out-
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side I; this is fine.10 Set D
p
i = r

p
i −t

p
i to be the one way delay

of probe i. Let td
j ,r

d
j ,D

d
j and Nd be the corresponding quan-

tities for data packets transmitted in interval I. Denote by Dp

and Dd the N p × 1 and Nd × 1 the vectors of one way de-

lays of all the probe and data packets transmitted in interval

I, respectively.

By the output-queue assumption, preceding each link in

the network we imagine there is a queue in each direction of

the link. Recall that there are a total of Nq queues (counting

both directions at each link). Let qk(I) denote the average

queue size process at queue numbered i in interval I. Since

we’ve fixed I, we abbreviate qk(I) to qk. Similarly let wk be

the waiting time of a packet in queue k in interval I (recall

wk = qk/L, where L is the line rate in Bytes/sec). Let Q and

W denote the Nq×1 vectors of queue sizes and wait times in

interval I, respectively.

Recall that we have assumed that the path taken by a probe

or a data packet is knowable from its header information,

hence each probe or data packet visits a particular sequence

of queues as it traverses the DCN. This gives rise to the fol-

lowing linear equations:
[

Dd

Dp

]

=

[

Ad

Ap

]

W +

[

Zd

Zp

]

(3)

where Ad and Ap are, respectively, the Nd × Nq and the

N p ×Nq 0-1-valued incidence matrices, identifying the set

of queues visited by each probe and data packet; and Zd and

Zp model noise due to various factors such as (i) faulty NIC

timestamps, (ii) differences in propagation times on cables

of different lengths, (iii) variations in the switching times at

different switches, etc. The queuing times are typically at

least a few microseconds and typically they are 10s or 100s

of microseconds. By comparison, the noise is in the order of

10–100 nanoseconds.

Setting

D =

[

Dd

Dp

]

, A =

[

Ad

Ap

]

, and Z =

[

Zd

Zp

]

,

equation (3) becomes

D = AW +Z. (4)

The Reconstruction. Given the vector (Dd ,Dq), we are in-

terested in getting an estimate, Ŵ , of W . A natural criterion

for the goodness of the estimate would be to minimize the

mean squared error, E
[

(W −Ŵ )2
]

, where the expectation is

over the noise. Typically, in a fat-tree network the number of

queues with a positive delay is quite small even under high

load; that is, W is typically a sparse vector (see [9]; we have

also observed this in all our real-world experiments).

10Of course, probes may be dropped. We choose to ignore such probes

and find that we obtain very good reconstruction results with the remaining

probes, since these latter probes accurately capture large queue sizes and

wait times are accurately captured from the other probes. Moreover, since

probes are only 64 Bytes, they’re much less likely to be dropped than data

packets which are typically in the 500–1500 Bytes range. However, dropped

probes convey valuable information about congestion and it is worthwhile

to treat them specially. Due to a lack of space, we don’t explore this aspect

further in this paper.

It is not hard to show that any DCN with a multi-stage

Clos topology interconnecting the servers has an adjacency

matrix whose rank is less than the number of links, hence

queues. This follows as a generalization of the following

lemma, whose proof is simple and is omitted.

Lemma 1. Consider all equations in the m + n variables

A1, ...,Am and B1, ...,Bn of the type Ai +B j. This system of

equations has a maximum rank equal to m+n−1.

The previous discussion shows that the rank of the matrix

A is less than Nq, hence equation (4) is underdetermined.

The statistical procedure LASSO [53] is naturally suited for

our problem. Thus, we seek

Ŵ = argmin
W

‖D−AW‖2
2 +α‖W‖1, (5)

where α > 0 is a scalar multiplying the regularization term

‖ · ‖p is the standard Lp norm. We motivate the eventual

solution by proceeding through the following simpler and

instructive cases.

Case 1: Consider only the data packet timestamps. Dis-

regard the probe packets and consider the equation Dd =
AdW + Zd . We generate the data using the NS setup de-

scribed in Section 2.1.

We solve

Ŵ = argmin
W

‖Dd −AdW‖2
2 +α‖W‖1

and compare the solution with the actual value of W (ground

truth). The comparison is shown in Figures 7 and 8 below.

The solid blue line is the ground truth and the red filling is

the LASSO solution. Figure 7 shows a fairly accurate re-

construction at one queue. However, Figure 8 shows the

LASSO algorithm has misattributed the queue sizes amongst

the 3 queues shown in the figure. Essentially, what is going

on is that the equations provided by the data packets yield

an underdetermined linear system (not enough equations for

the variables). Therefore, not all queues are correctly recon-

structed.

Figure 7: Reconstruction with data packets: good case

Figure 8: Reconstruction with data packets: bad case

Case 2: Consider only the probe packet timestamps. This

time disregard data packets and consider the noisy linear sys-
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tem

Dp = ApW +Zp. (6)

We need to solve the inverse problem:

Ŵ = argmin
W

‖Dp −ApW‖2
2 +α‖W‖1.

The crucial difference between this case and Case 1 is that in

Case 1 we cannot choose Ad but we can certainly choose Ap.

We will say more about how to choose Ap in Section 3.1.

For now, suppose each server probes to 10 (K = 10) other

servers; thus, in every reconstruction interval, an average of

2×2560=5120 probes are sent.

As seen in Figure 9, the algorithm reconstructs all the

queues very precisely with probe packet data. Because the

probe mesh covers all the links fairly uniformly, the system

of linear equations along with the sparsity constraint (cap-

tured in the L1 regularizing term, ‖W‖1) determine the cor-

rect solution. Statistically, when compared with the ground

truth, the algorithm achieves a root-mean-square error across

all the queues of 5.2KB; that is, RMS(Q̂−Q) = 5.2KB.11

Figure 9: Network reconstruction with probe packets

3.1 Specifying the parameters of the probe

mesh

As the previous reconstruction scenario has revealed, using

a random graph for the probe mesh with K = 10 produces

good reconstructions. A natural question is what is the right

value of K to get a good reconstruction quality and does this

depend on the DCN topology. We proceed by refining our

definition of the probe mesh introduced earlier.

Definition: Probe graph. Let G = (V,E) denote a graph

with V equal to the servers in a given DCN, and (i → j) ∈ E

if i probes j. G is called the probe graph.

Remark. Note that the above definition does not include the

topology of the underlying DCN.

Definition: DCN probe mesh. Given the probe graph G =
(V,E) and a DCN, the DCN probe mesh, GD, is the graph

obtained by assigning DCN paths to probing edges (i, j)∈E.

Note that the adjacency or incidence matrix of GD is exactly

equal to Ap defined by equation (3).

Observation 1. In order to reconstruct the waiting time or

queue size of any queue in the DCN, a necessary condition is

that queue is present on some path of GD or, equally, that the

column in Ap corresponding to that queue is not identically

11Note that we use the standard definition of RMS; i.e., RMS(Q) = ‖Q‖2.

We choose to show the reconstruction plots and report the errors for the

queue size vector Q rather than for the delay vector W since we have found

that the queue sizes are usually in the order of a few 100 KBs regardless of

the line rate whereas the waiting times vary with the line rate.

zero. While this condition is necessary, it is not sufficient

since it doesn’t guarantee solvability of equation (6).

Observation 2. The maximal condition for the solvability of

equation (6) is that the rank of Ap is at its maximum. Then

the LASSO algorithm along with the sparsity constraint en-

forced by the L1 regularizing term will produce a unique so-

lution.

In order to understand conditions on K which give us an

Ap with full rank, we simulate a variety of different DCNs

and vary K to see how that affects the RMS error of queue

size vector, Q. Figure 10 shows that the reconstruction accu-

racy greatly improves with K initially and then it tapers off.

More importantly, the figure suggests that this relationship

holds for several different network topologies and types of

queue (the layer in the DCN the queue is at).

Clearly, even though higher values of K give better re-

construction quality, there is a penalty for setting K large:

servers need to issue more probes, there is the overhead of

timestamping, data collection and storage, and there is the ef-

fort of reconstruction. Quantitatively, a value of K ∈ [10,20]
seems to achieve the best reconstruction quality while repre-

senting a small enough effort.

Figure 10: Reconstruction quality vs K

We provide an intuitive explanation of why a constant

value of K ∈ [10,20] is sufficient to reconstruct the queues

regardless of the size of the network, and give a probabilis-

tic argument on the queue coverage probability in the ap-

pendix. As the size of network grows, the number of servers

grows, hence the total number of probes will grow (for a

fixed K), resulting in a constant sampling rate of each queue.

To quantify the foregoing under a “full bisection bandwidth

assumption” on the DCN, suppose we have N servers in the

DCN. If we cut the network into two sets of servers, S1

and S2, respectively with N1 and N2 servers (WLOG we as-

sume N1 ≤ N2), then the total number of links crossing the

boundary of the two sections is N1 (because of full bisec-

tion bandwidth). Since each server probes K servers chosen

at random, the expected number of probes and echoes pass-

ing these N1 links from S1 to S2 and from S2 to S1 each

equal
2N1N2K

N
. Thus, every queue on the boundary is sam-

pled on average by
2N2K

N
≥ K probes. Therefore, as long as

K ≥ 10, we can guarantee each queue is sampled by at least

10 probes.
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A final observation about Figure 10: the RMSE appears

to drop like 1√
K

. Under the assumption that each probe only

visits one congested queue (recall that DCN congestion is

sparse), this can be explained as follows. If K probes pass

through a queue with a reconstruction-interval-average size

of Q and make independent noisy observations with vari-

ance σ2 (where σ2 ≈ (12KB)2), then the RMSE roughly

equals σ/
√

K, which for σ = 12KB and K = 10 approxi-

mately equals 4KB, as seen in Figure 10.

3.2 Link utilization and queue/link composi-

tions

We’re now interested in solving for all the performance mea-

sures, not just queue sizes or wait times. In particular, probes

can only detect positive wait times; however, zero wait times

don’t imply absence of traffic! The link utilization may be

too small to cause queueing delays. In order to determine

link utilizations and the composition of queues and links

(i.e., breaking down queue and link occupancies in a recon-

struction interval according to flow ids), we have to use both

the probes and data packets. We explain how to do this algo-

rithmically, following the steps below.

Step 1. Solve Case 2 and obtain the (reconstruction in-

terval average) queuing sizes and wait times, (Q,W ) =
(qk,wk),1 ≤ k ≤ Nq.

Step 2. Use W to determine the position of a probe or data

packet at each instant from transmission to reception. As

an example, consider probe i, transmitted at time t
p
i and re-

ceived at time r
p
i . Suppose this probe visited queues with

delays wk1
,wk2

, ...,wkL
. Note that r

p
i − t

p
i ≈ wk1

+wk2
+ ...+

wkL
+P, where P represents the total time probe i spent on all

the links on the path. At time t ∈ (t p
i +wk1

, t p
i +wk1

+wk2
) we

assert that probe i is either in the second queue on its path or

on the link connecting the first and second queues depending

on how much larger than t
p
i +wk1

is t. We can also similarly

determine the position of each data packet. Note that extra

care must be taken to account for the time spent by a data

packet in a queue or on a link since its length can be much

larger than that of the probe packets.

In this manner we can decompose the contents of a queue

into traffic segments of interest and specified by headers. We

can similarly also obtain the link utilizations and link com-

positions.

To see how well the above procedure works, we again look

at the NS simulation setup from Section 2.1. Figure 11 shows

some examples of queue and link utilization compositions,

comparing them to the ground truth taken from ns-3. There

are three sets of plots, left, middle and right. Each set has two

plots: a queue size plot on top and a link utilization plot on

the bottom. The figure on the left shows the utilization of the

link connecting L2-switch 8 to L3-switch 0 on the bottom

and the size of the queue attached to this link on top. We

see the reconstructed queue occupancies of the blue, yellow

Figure 11: Reconstructing queue size and link utilization

compositions

and green packets shown by the filling and the corresponding

ground truth shown by the black lines. Here the blue, yellow

and green packets are destined for servers in racks 0-7, 16-23

and 24-31, respectively. It is worth noting that when the link

utilization nears 100%, the size of the corresponding queue

shoots up; otherwise, when the link utilization is well below

100%, there is no queue buildup. The other two sets of plots

show other links.

As can be seen, the SIMON algorithm does an excellent job

of determining the queue size and link utilization composi-

tions. Statistically, the reconstruction precisions (RMSE) of

the queue size and link utilization composition for each class

of traffic are 4.14KB and 1.01% (i.e. 0.101 Gbps in 10Gbps

net), respectively.

Method RMSE of composition Storage Run

Queue Link util space time12

Per packet 4.14KB 1.01% 2.84MB 4.00ms

100us count 4.12KB 0.98% 172.3KB 0.277ms

250us count 4.08KB 0.94% 98.4KB 0.173ms

500us count 4.19KB 1.01% 69.4KB 0.142ms

1ms count 4.71KB 1.81% 49.5KB 0.107ms

Table 1: Use byte counts to decompose queue and link uti-

lization. Space and time are for 1 reconstruction interval.

The effort—space and computation time—needed for the

link utilization and queue/link compositions can be vastly

simplified if we count the number of Bytes sent by each 5-

tuple in Step 2 of the algorithm rather than take the transmit

timestamps for each data packet. We increase the interval

over which the byte counts are taken from 100 us to 1 ms

while tracking the reconstruction quality. The results are

shown in Table 1. As can be seen in the table, using byte

counts over a 500us interval, the space consumption is re-

duced by 41x and the run time is reduced by 28x with almost

no change to the reconstruction quality.

12C++ single-thread program on an Intel Core i7 processor
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4 Speeding up the implementation of SIMON

The LASSO algorithm optimizes a convex cost function over

a large number of variables using gradient descent. Because

it is iterative, for large problem instances, LASSO can take

time. Even though reconstruction can be done offline and

still be quite valuable, it is interesting to ask if reconstruction

can be done in near-real time and, if so, how this would be

possible. This would enable rapidly detecting bottlenecks

and anomalies, raising alerts, as well as enabling sensitive

A/B tests in near-real time.

We explore two ideas to accelerate SIMON in large networks.

Section 4.1 decomposes the reconstruction problem to a hi-

erarchy of subnets that can be solved individually and in par-

allel. Section 4.2 uses neural networks to function approx-

imate LASSO and obtain significant speed improvements.

These two methods allow us to scale SIMON to large data

centers with tens of thousands of servers.

4.1 Hierarchical reconstruction

The fat-tree has become the de facto data center network-

ing topology [5, 47]. The hierarchical nature of the fat-

tree topology allows us to propose an algorithm that groups

queues in layers and perform reconstruction from lower lay-

ers to upper layers. The reconstruction for each layer may

contain a number of sub-reconstructions that can run in

parrallel. After queues at lower network layers are recon-

structed, their sizes will be used to reconstruct higher-level

queues.

As an example, we illustrate the hierarchical reconstruction

algorithm using the topology in Figure 2. For notational sim-

plicity, we use Li blocks to denote the forest after truncating

the tree at layer i; that is, the connected components of the

subgraph containing only switches of layer i or lower, and

the servers. In Figure 2, there are 16 L1 blocks, 4 L2 blocks

and 1 L3 block. We also define Li probes to be the probes

whose source and destination are within the same Li block.

The procedure is as follows:

1. We extract the equations given by the L1 probes. Each L1

block (rack) provides a system of linear equations, so there

will be in total 16 of them. By solving the 16 linear systems,

we reconstruct all queues in the L1 blocks (downlink of ToR

switches).

2. We then reconstruct queues in the L2 block—the ToR

uplink queues and the L2 switch downlink queues—using

L2 probes. Each L2 probe passes through 3 queues: one ToR

uplink, one L2 downlink and one ToR downlink. Since the

ToR downlinks have been solved in the previous step, each

L2 probe now provides an linear equation of the other two

remaining queues. There are four linear systems for every

L2 block. The tier 2 queues can then be reconstructed by

solving the 4 linear systems.

3. Lastly, we reconstruct the L3 queues with L3 probes,

where we repeat the previous step. After solving L3 queues,

all queues in the network would have been reconstructed.
#servers #network LASSO Hierarchical LASSO

layers RMSE Run Time RMSE Run Time

256 3 5.22KB 37.34ms 9.47KB 0.59ms

2048 4 5.76KB 532.60ms 10.3KB 1.25ms

4096 4 5.53KB 1147.22ms 10.69KB 1.75ms

Table 2: RMSE and Run Time Comparison

Performance. Table 2 show that LASSO can be sped up by

several orders of magnitude, especially as the network size

increases with a modest sacrifice of accuracy.

4.2 Accelerating reconstruction with neural

networks

In this section we explore using the function approximation

[29] capability of multi-layered neural networks to speed up

LASSO and rapidly estimate the vector of queue sizes, Q̂,

from the vector of end-to-end probe delays, D. The goal is to

function-approximate LASSO and learn the underlying func-

tion mapping D to Q̂ from the training examples.13 Since the

neural network only involves simple arithmetic operations

which can be implemented at high speed on modern hard-

wares such as Graphics Processing Units (GPUs) and Tensor

Processing Units (TPUs), we can potentially get tremendous

speedups.

We take 60 seconds of data at 1 ms intervals from the NS

scenario. The data are 60,000 (D,Q) pairs where each D is a

5120-dimensional vector and each Q is a 1280-dimensional

vector (to be more specific, we consider Dp and not Dd ; for

ease of notation, we shall denote Dp as D). We also use

LASSO’s inferred queue sizes, Q̂, following the reconstruc-

tion procedure in Section 3 and use 60,000 (D, Q̂) pairs to

train the neural network. This allows us to compare two

training methods: one with the ground truth from ns-3 and

the other is the output of LASSO.

Figure 12: Neural network for network reconstruction

We use these two sets of data to train two instances of a

ReLU (Rectified Linear Unit [39]) neural network with just 1

hidden layer, as shown in Figure 12. At the end of the train-

ing period, each neural network has “learned” the matrices

13Note that LASSO is a general statistical procedure; the fact that it may

be function-approximable in this context is not an indication that it would

work in other cases. Our estimation problem is special: we’re solving a

system of noisy linear equations where the noise is additive. It may be

harder to function approximate LASSO in nonlinear systems and/or with

multiplicative noise.
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L and M and the bias vectors b and l from their respective

input-output pairs. We then test each neural network with

new values of D to see how well the corresponding output

agrees with the ground truth Q. The results are shown in Ta-

ble 3. As can be seen, both neural networks perform very

well when compared to LASSO; indeed, the neural network

trained with the ground truth does better than LASSO.

RMSE (Bytes) LASSO

Neural Net

(trained w. GT)

Neural Net

(trained w. LASSO)

256 server 5.22KB 4.15KB 5.34KB

2048 server, 4 stage 5.76KB 4.03KB 7.53KB

4096 server, 4 stage 5.53KB 3.95KB 7.08KB

Table 3: RMSE Comparison

Table 4 compares the speed of the neural networks with that

of LASSO. The profiling of LASSO was run with Python

Scikit-learn sparse LASSO package, on a server with 6-core

Intel I7 processor, and the neural network profiling are done

on an Nvidia GTX1080 GPU using Tensorflow14. The neu-

ral network is three magnitudes faster than LASSO during

inference time due to the algebraic-simplicity of its forward

pass and speed-up with hardware accelerators.

Run Time

LASSO

(single core)

LASSO

(6-core) Neural Net

256 server 37.34ms 6.22ms 2.75us

2048 server, 4 stage 532.60ms 96.14ms 76.24us

4096 server, 4 stage 1147.22ms 208.25ms 235.97us

Table 4: Speed Comparison

There are two major points to make about using neural net-

works for data center measurement.

The first is to note that whereas LASSO requires the adja-

cency matrix Aq, the neural networks don’t require it. This

point and the abundance of operational data in modern data

centers strongly suggest that neural networks can play a ma-

jor role as a lightweight, very high speed system for detecting

anomalies and even accurately estimating key performance

measures.

For the second, consider the scenario where the network

topology changes or the ECMP hash functions change (e.g.,

due to link failures) in the network. In modern DCNs that

support software-defined networking (SDN), such changes

can be known when the SDN controller receives correspond-

ing events. In these cases, the D, Q relationship would

change, which could make the already trained neural net-

work obsolete. Thus, it may be required to re-train the neural

network. However, naively employing neural networks for

large data centers implies very long re-training time. Tak-

ing the 4096-server case as an example, even though train-

ing the neural network only requires 288 seconds worth of

timestamp data, it takes 8 hours for the weights in the neural

network to converge.

14We used the best off-the-shelf implementation we can find for both

LASSO and NN. Our effort to speed up LASSO with GPUs using the SHOT-

GUN algorithm did not result in much gain. LASSO iteratively optimizes

a convex cost function using gradient descent, a task better-suited for CPUs

than for GPUs.

In practice, we would use neural networks in combination

with hierarchical reconstruction. This would not only speed

up retraining (because subnets can be retrained in parallel),

but it would also make the whole process more robust to fail-

ures (since only subnets affected by failure need to be re-

trained). For example, retraining a 256-server subnet only

requires ten seconds worth of (D, Q̂) pairs and converges in

2.5 minutes on a Nvidia GTX1080 GPU.

5 Implementation

We implement the LASSO version15 of SIMON for Linux.

This implementation has three components: the prober, the

sensor and the reconstruction engine. The prober is imple-

mented as a user space program. There is one prober sitting

on each of the servers in the network. Each of the probers

repeatedly probes K other random probers and echoes re-

ceived probes. The sensor is implemented in the NIC driver

and is in charge of collecting hardware transmit and receive

timestamps for both data packets and probes. Then, upon re-

construction requests, the sensors will batch the time stamp

data for the requested time range and ship the data to the

reconstruction engine.

The reconstruction engine is a Spark Streaming [48] cluster.

It takes timestamp data over a given time range as input and

outputs the reconstructed queue lengths, link utilizations and

their per-flow break downs for each reconstruction interval in

that time range. The reconstruction engine exploits the fact

that the data processing for different reconstruction intervals

are independent. Upon the arrival of the timestamp data at

the reconstruction engine, the data is originally sharded by

server IDs since individual servers collected the data. Then

the engine will re-shard the data into reconstruction intervals,

and assign each interval to one of the servers in the cluster.

Finally, after the reconstruction for each interval is done, the

results are stitched together and returned to the user.

6 Deployment and Validation

This section uses three very different testbeds to verify that

SIMON works with a wide variety of network configurations

and under real-world complexities. The testbeds have link

speeds ranging from 1 Gbps to 40 Gbps, contain 2 to 5 stages

of switching fabric, and employ switches from different ven-

dors and models. Furthermore, we discuss some pragmatic

experience gained from these deployments, namely, how to

still output meaningful reconstruction results with only par-

tial probing coverage of the network. We use NetFPGAs to

verify the accuracy of SIMON in the 1 Gbps testbed. Finally,

we use cross-validation to verify and evaluate the correct-

ness of the reconstruction results in the absence of ground

15Hierarchical reconstruction and neural networks are planned to be im-

plemented for production environments in the future.
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truth data.

We first specify the configuration of the three testbeds.

Testbed T-40G-3L. This is a 3-stage Clos network, all links

are 40Gbps. It has 20 racks with roughly 12 servers per rack.

There are 32 switches at both spine layers.

Testbed T-10G-40G-5L. This is a 5-stage Clos network con-

taining ∼500 racks, each of which has ∼24 servers. Each

server is connected to a ToR switch with two 10G aggre-

gated links. The rest of the links are all 40G. We had access

to 12 out of the 500 racks.

Testbed T-1G-2L. This is a 2-stage Clos network with all 1

Gbps links. It consists of 8 racks, each rack has 16 servers.

There are 8 spine switches. The switches in the testbed are

Cisco 2960s and Cisco 3560s.

6.1 Deployment experience

SIMON makes minimal assumptions about the network and

only relies on data sensed at the NICs, hence its deployment

has generally been smooth. SIMON needs two things: (i)

hardware timestamping-capable NICs and (ii) the ability to

know the paths taken by the packets. For (i), almost all cur-

rent generation 10G or above NICs can timestamp all ingress

and egress packets. In T-1G-2L, even the on-board 1G NICs

support it. For (ii), since per-flow ECMP is the standard

load-balancing scheme used by the industry, knowing the

paths taken by the packets is not difficult. In T-40G-3L and

T-10G-40G-5L, we ran traceroute [36] periodically to learn

the paths taken by any targeted flows. In T-1G-2L, since we

use 5-tuple-based source routing, we automatically know the

paths taken by any packets basing on their 5-tuples.

Despite the overall smoothness of the deployments, one case

that did require some extra care was when two or more

queues cannot be further disambiguated by the probes. For

example, in our deployment in T-10G-40G-5L, since we only

had access to a small portion of the racks in a big network,

our probes can only reach a subset of all the queues in the

network. Within these reachable queues, some of them are

always bundled together as seen by the probes. That is, a

probe either traverses all of these queues or none of them. In

this case, we treat the sum of these queues as a single vir-

tual queue, and treat this virtual queue as a single variable in

Equation 3.

6.2 Validating accuracy with NetFPGAs

We use NetFPGAs to validate the precision of SIMON in T-

1G-2L. Figure 13 shows the setup. We configure the four

ports in a NetFPGA, P0, P1, P2, P3, as two pass-through

timestampers: P0 and P1 are connected back-to-back via the

FPGA, and packets passing through these two ports will be

timestamped according to a local counter in the FPGA; P2

and P3 are similar except the timestamp is inserted into the

packet at a different offset. We connect the two timestam-

Figure 13: Setup of reconstruction validation in T-1G-2L. F0

and F1 are two NetFPGAs.

(a) PSD (b) Filtered-out power

Figure 14: PSD of queues with NetFPGA ground truth at

40% load

pers to two different ports of the same switch, S0 and S1.

For all packets between S0 and S1, we will know their over-

all switching and queueing delays in the switch from the

NetFPGA timestamps. After subtracting the switching de-

lay which can be measured when the network is idle, the

remaining packet queueing delays can serve as ground truth

for queueing delays of the output queues behind S0 and S1.

An incast load (same as in Section 3) is applied with loads

between ToR switches and spine switches ranging from 10%

to 80%. Each server probes 20 other servers (K = 20). The

10 ms average queue depths are reconstructed using probe

timestamps with LASSO. Separately, we send extra probes

through the queues enclosed by NetFPGAs to collect the

ground truth waiting time. The reconstruction results are

compared to the ground truth.

Figure 14 shows the PSDs of the observed queueing pro-

cesses. It shows that the power of the filtered-out high fre-

quency component is (12KB)2, which matches the results in

Section 3! Figure 15 shows the reconstruction results of SI-

MON verified against ground truth. We can see that SIMON

accurately reconstructs the queue depths for different levels

of switches at various network loads.

6.3 Cross-validation

It was not possible to get accurate ground truth in the testbeds

T-40G-3L and T-10G-40G-5L. Most switches only support

reading counter samples a few tens of times per second, and

these samples are not taken frequently enough and cannot be

otherwise used to get statistical quantities like millisecond-

average queue sizes. We also did not have physical access to

these data centers, hence NetFPGA-based evaluations were

not possible.
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(a) Recon at 40% load (b) Errors at different loads

Figure 15: Reconstruction compared with NetFPGA ground

truth

We proceed by using cross-validation to verify the accuracy

of reconstruction. Consider two sets of probes, blue probes

and red probes. No blue probing pair of servers is common to

a red probing pair, nor is any end-to-end DCN path common

to the blue and red probes: the two sets of probes are com-

pletely non-overlapping. Let the delay vectors and the inci-

dence matrices for the blue and red probes be Dblue, Dred ,

Ablue and Ared , respectively. If, using the blue probes, we

can get a reconstruction of the queueing delays Ŵblue, and

use this to accurately “predict“ the delays of the red probes

as D̂red = AredŴblue, then we can get a validation of the ac-

curacy of our reconstruction.

Figure 16: Blue red validation in simulations

Here we present a variant of the above method: instead

of testing the agreement between D̂red and Dred , we test

the agreement between Q̂blue and the reconstruction from

red probes, Q̂red . We use this method because it is bet-

ter for presentation (we get to plot the queue depths) and

it helps bound the quality of the reconstruction: Denote the

reconstruction error of the blue and red probes as Nblue =
Q̂blue −Q and Nred = Q̂red −Q respectively. Assuming Nblue

and Nred have zero mean and are independent, we have

E
[

(Q̂blue − Q̂red)
2
]

= E
[

N2
blue

]

+E
[

N2
red

]

, which means the

difference between the two reconstructions is bigger than the

error of either reconstruction. Figure 16 illustrates this em-

pirically with ns-3 simulations. As can be seen, at different

queue sampling rates (probing rates), the error between the

reconstructions obtained from the blue and red probes upper

bonds their respective reconstruction errors (with respect to

the ground truth).

This verification was performed on all three testbeds; we

consider T-40G-3L. Each server in T-40G-3L blue probes to

10 random destination servers, and sends red probes to 10

Figure 17: Blue-red validation examples in T-40G-3L

other random destination servers. Since the links are all 40G,

the reconstruction interval is 250µs. Figure 17 shows the re-

construction results at two different queues during a 100ms

interval. Each sub-figure shows the blue-red comparison at

one queue, with the upper half showing the blue reconstruc-

tion and the lower half showing the red probe one. There

is excellent agreement between the blue and red reconstruc-

tions.

6.4 Example use cases of SIMON.

SIMON gives network administrators and application devel-

opers detailed visibility into the state and the dynamic evo-

lution of the network. Thus, SIMON has many use cases in

network regression testing, A/B testing, anomaly detection

and bottleneck localization. We share a few of our experi-

ences.

For the scenario in Figure 17, the normal maximum delay

in a single queue is around 500µs in T-40G-3L. However,

during an experiment, SIMON showed that the queueing de-

lays in T-40G-3L suddenly increased to 5 to 10 milliseconds

(shown in Figure 18), which is improbable in a 40G network

as this implies very large buffers. This puzzling behavior

was quickly resolved by observing the delays rose vertically

in Figure 18 and that no packets were dropped. The only

explanation is that the switches were configured to strict pri-

ority scheduling and our traffic was blocked by some higher

priority traffic. This turned out to be the case. Thus, SIMON

not only surfaced and explained the anomaly in the network,

but also helped understand the precise way strict priority af-

fects low-priority traffic.

Figure 18: Reconstruction under strict priority packet

scheduling in T-40G-3L

Another case: In T-1G-2L, SIMON discovered that one of

the 256 1 Gbps ports in the testbed was mistakenly config-

ured to 100 Mbps—a fact that is hard to determine without a
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detailed link utilization plot! Moreover, in the same testbed,

SIMON found that one application’s traffic was frequently

causing other applications’ TCP flows to timeout. Many of

these uses cases are beyond the reach of traditional network

monitoring tools. We believe the visibility provided by SI-

MON can greatly increase the ability to understand and effi-

ciently utilize the network.

7 Literature Survey

Switch-based methods. There are three main threads: (a)

Obtain summaries and sketches of large, high-rate flows

(called “heavy hitters”) as these are easy to identify and

account for most of the bandwidth consumption and queue

backlogs [23, 43, 35, 15]. (b) Capture detailed counts of all

packets and all flows; for example, [46, 45] uses a hybrid

SRAM-DRAM memory architecture and [34] uses Counter-

Braids to “compress while counting”. These methods are

harder to implement compared to those in (a) and entail

offline processing to obtain the exact counts. (c) In-band

network telemetry (INT) [58, 30, 32] uses switches to ap-

pend telemetry data to packet headers as they pass through.

The “postcards” approach [28] gathers telemetry data for all

packets and sends it together with packet headers to servers.

This approach takes advantage of the flexibility in P4 pro-

grammable switches and the storage and computation re-

sources in servers, and is the focus of much current research.

Edge-based methods. Trumpet [38] uses flow event triggers

to detect flow-level traffic spikes and congestion; for every

packet dropped, 007 [8] attempts to identify the link respon-

sible for the drop knowing the path taken by the packet (from

traceroute); Pingmesh [27] uses RTT measurements of TCP

probes to infer end-to-end latency distributions between any

pair of hosts, including “packet black holes”; PathDump [51]

uses switches to tag packets belonging to flows that satisfy a

certain criterion and processes and stores the data at the edge;

and SwitchPointer [52] goes further: it uses switches to store

pointers to telemetry data relevant to that switch but held

in end-hosts. PathDump and SwitchPointer follow the work

of Everflow [59] which makes significant use of switches to

“match” specific packets and “mirror” them to servers which

can then trace the packets across the whole path. This en-

ables Everflow to detect various faults such as silent packet

drops, routing loops and load imbalance.

Tomography. As mentioned in the Introduction, reconstruc-

tion of network state variables in the wide area is not possible

due to the long propagation times, unknown topology, and

path information. Hence, researchers have obtained distribu-

tions of delays and backlogs of [42, 21, 19, 56, 55, 57, 27],

topological relationships [17], or packet loss patterns at

switch buffers [12, 11, 22, 54, 18, 26, 27].

In summary, switch-based methods are not easy to scale and

can’t easily relate network bottlenecks to application perfor-

mance since they lack application context. Current edge-

based methods obtain only a partial view of the network state

and some may require non-trivial assistance from switches.

Tomography results in the wide-area do not obtain near-exact

reconstruction of network variables. To our knowledge, this

is the first application of Network Tomography to data cen-

ters and for obtaining a near-exact reconstruction.

8 Conclusion

We introduced SIMON, a network tomography-based sens-

ing, inference and measurement system for data centers. SI-

MON reconstructs network state variables, such as queueing

times, link utilizations, and queue and link compositions, us-

ing timestamps of data packets and probes taken at NICs. By

doing so, SIMON is able to connect bottlenecks at switches

and network links to individual flows of the applications.

SIMON employed several techniques to simultaneously

achieve precise reconstruction and scalability. First, a sig-

nal processing analysis suggested that reconstruction inter-

vals that vary inversely as link speeds—10 ms for 1 Gbps

links, 1 ms for 10 Gbps links, 250 µs for 40 Gbps links, are

appropriate for reconstructing queue sizes and wait times to

an accuracy of over 97% of the power of the queue size or

wait time process. Secondly, we used a mesh of probes to

obtain extra information about network queue sizes and wait

times, and described guidelines for picking the parameters

of the probe mesh. We then showed that a LASSO-based

reconstruction procedure accurately reconstructed the queue

size, wait time, link utilization and queue/link composition

processes. Two methods of simplifying the implementation

of LASSO were presented: one method exploited the hier-

archical structure of modern data center topologies to get a

1000x speedup of SIMON, and the other method used multi-

layered neural networks and GPUs to accelerate LASSO by

5,000x–10,000x. These methods enable SIMON to run in

near real-time.

We implemented SIMON on three testbeds with link speeds

ranging from 1–40 Gbps and with up to 288 servers. The

accuracy of the reconstruction is validated with NetFPGAs

in the 1 Gbps testbed and by a cross validation technique

in the other two testbeds. These implementations not only

demonstrate the accuracy of SIMON’s reconstruction but also

demonstrated its practicability. Since SIMON is agnostic of

the switches in the network and only requires the timestamp-

ing capability readily available in most current generation

NICs, it can be deployed in production data centers today.
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9 Appendix

9.1 Queue Coverage Probability

Consider a network with l layers and N servers. Each server

randomly probes K other servers. We show that without

under-subscription, i.e., the number of links at the spine lay-

ers is no greater than the number of servers, the probability

that every queue in the network is covered by at least one

probe packet is greater than 1− (2l − 1)Ne−2K , where l is

the number of layers, N is the number of servers and K is the

number of random probes per server.

Proof:

A lower bound on the probability can be derived using a

union bound. We consider queues at different levels, and

bound the probability of covering all queues at every level.

First, consider the lowest level queues, the queues on the

ToR downlinks to the servers. There are exactly N1 =N such

queues. Because the destinations of the probes are random,

for a specific queue q and a specific probe p, the probability

that p passes through q is
1

N
Since there are 2NK probes in total, the probability that q is

not hit by any of the probes is

(1− 1

N
)2NK

So the probability that there exists a level-1 queue, such that

it is not hit by any probes can be bounded by

P(∃ q not hit by any probe)≤
N

∑
i=1

P(qi not hit by any probe)

= N(1− 1

N
)2NK ≈ Ne−2K

For level-2 queues, namely the ToR uplink and L2 downlink

queues, each has number N2. Conditioning on a probe reach-

ing level 2, which queues it hits is uniformly random. So for

a level-2 queue q and a probe p, we have

P(q hit by p|p traverse to level 2) =
1

N2
Probe p goes to level 2 and above only if it is probing a server

outside its own rack; this event has chance N−R
N

where R is

the rack size. Combining with the previous equation we have

P(q not hit by p)

=P(q not hit by p|p traverse to level 2)P(p traverse to level 2)

+P(q not hit by p|p not traverse to level 2)P(p not traverse to level 2)

=(1− 1

N2
)(1− R

N
)+1 · R

N

=1− 1

N2
(1− R

N
)
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So

P(∃ q not hit by any probe)≤
N2

∑
i=1

P(qi not hit by any probe)

= N2

(

1− 1

N2
(1− R

N
)

)2NK

= N2e
−2 N−R

N2
K

This argument can be repeated for any level j. Assume the

size of a level- j block is R j, and the queues at level- j is N j.

P(q not hit by any probe)≤
N j

∑
i=1

P(qi not hit by any probe)

= N j

(

1− 1

N j

(1− R j

N
)

)2NK

= N je
−2

N−R j
N j

K

Remarks:

• All the parameters Ni, Ri are properties of the network

topology. In other words, the probability bounds are

customized for the specific topology.

• The bounds are linear with respect to Ni, the number

of queues, but exponential in K, the number of random

probes per server. As an example, with the topology

fixed, if Knew = K+2.3, then the probability of not cov-

ered will decrease by 10 folds.

• Suppose there is no under-subscription (so Ni ≤ N for

all i) and Ri is negligible compared with N. Then for

any level, the probability of some queue not covered in

that level is bounded by Ne−2K . For a typical network

with 10k servers with K = 10, this probability is roughly

2× 10−5. When there are l network layers, we have

2l −1 levels of queues. Applying a union bound across

all levels give the desired upper bound on the coverage

probability 1− (2l −1)Ne−2K .

• Over-subscription is good from a coverage-point of

view, as there are fewer higher level paths to choose

from. We note in reality, most networks are over-

subscribed. At the same time, link speed sometimes

are higher for upper layer switching. Both contribute to

the fact that there are usually fewer links in the uppers

layers.
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