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Preface 

In the late 1990s research was being performed at the Kennedy Space Center to develop in situ 

resource utilization technology for Mars. One study topic was the generation and storage of 

liquid oxygen (LOX) obtained from the atmosphere or regolith, but the transfer of this 

commodity was of concern. Mechanical LOX pumps were deemed potentially too heavy and 

unreliable for an autonomous mission to Mars, and alternatives were sought. One option was to 

use the paramagnetic property of LOX, which is significant enough that small quantities of LOX 

can be suspended against earth gravity with a rare earth magnet. With this application in mind, a 

small, internally funded project was initiated at the Kennedy Space Center in 2000 to study the 

use of pulsed magnetic fields to pump LOX. 

Proof-of-concept testing verified the LOX pumping predictions and resulted in a journal 

publication [1]. Numerous small coils were fabricated on cryogenic flow lines and used to 

produce intense, short-duration magnetic fields resulting in dramatic motion of the LOX. In 

addition, effort was expended on modeling the paramagnetic forces in the LOX, which required 

modeling the magnetic field generated by the coils and the coil inductance, allowing the current 

versus time to be predicted and compared to experiment. 

While we were modeling the coil magnetic field, using Mathematica ™, we came upon a set of 

simple analytical expressions for the magnetic field and its spatial derivatives in Cartesian, 

cylindrical, and spherical coordinates generated by a simple, infinitesimally thin current loop. 

We wrote a short manuscript documenting these expressions, but did not proceed with 

publication. Instead, this manuscript entered the public domain through two different routes. It 

appeared first on the NASA Technical Reports Server (NTRS) at the following link: 

http:/lntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010038494 2001057024.pdf 

and then later on the Open Channel Foundation, an organization that publishes software from 

academic and research institutions. The link for this second site is given below. 

http://www .openchannelfoundation.org/proj ect/view docs.php? group id=288 

Through this link, our manuscript was downloaded multiple times and cited seven times as of the 

writing of this NASA Technical Memorandum, but only by title and author list and sometimes 

by web site URL. We, the authors, have decided that there should be a clear, long-term citation 

for this work, yet we consider it too late to seek formal publication. So we have decided to issue 

a NASA Technical Memorandum, with the same title and authors as the original manuscript, 

allowing it to be located by the search engines, and providing a reliable, long-term source and 

citation for this work. The original manuscript, reformatted, but not in any other way altered, 

appears on the subsequent pages of this memorandum. 

We, the authors, would like to express our gratitude to J .M. Griffith, who found a typo in 

Equation (10) of the original manuscript. This memorandum contains the corrected equation. 

[1] Youngquist, Robert C., lmmer, Christopher D. , Lane, John E. , and Simpson, James C. , "Dynamics of a Finite 

Liquid Oxygen Column in a Pulsed Magnetic Field," IEEE Transactions on Magnetics, 39(4), July 4, 2003, 

pp. 2068-2073. 
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1 INTRODUCTION 

Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar 

circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are 

also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic 

expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates 

for a filamentary current loop. These results were obtained with extensive use of Mathematica ™ 
and are exact throughout all space outside of the conductor. The field expressions reduce to the 

well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. 

These results are general and applicable to any model using filamentary circular current loops. 

Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction 

as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their 

utility to magnetohydrodynamics where the derivatives are required. 

The equations can be coded into any high-level programming language. It is necessary to 

numerically evaluate complete elliptic integrals of the first and second kind, but this capability is 

now available with most programming packages. 

2 SPHERICAL COORDINATES 

We start with spherical coordinates because this is the system usually used in the standard texts. 

The Cartesian and cylindrical results in Sections 3 and 4 were derived from the spherical 

coordinate results. 

The current loop has radius a, is located in the x-y plane, is centered at the origin, and carries a 

current I which is positive as shown (Figure 1. ). It is assumed that the cross section of the 

conductor is negligible. 

z 

Po 
I 

Figure 1. Circular current loop geometry. 
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The vector potential, A, of the loop is given by [3]: 

1 2 I d I 

A (r,B) = #o.Ia J rr COS(/J (/J 

'~' 4n ° ~ a 2 +r 2 -2arsinBcoS(/J 1 

=Po 4Ia [(2-e )K(k:)-2E(k
2 J], 

4n .Ja2 + r2 + 2arsin e k 

(1) 

where r, 8, and qJ are the usual spherical coordinates, and the argument of the elliptic integrals is 

k 2 = 4arsin8 

a2 + r2 + 2arsin8 

Note that we use It- for the argument of the elliptic integrals. This choice is consistent with the 

convention of Abramowitz and Stegun [4] where m =!C. 

For a static field with constant current, the B components in spherical coordinates are [3]: 

B,. =_;_e 
0
°
8

(sin8 A"' ) 
rsm 

1 a 
B = - --(r A ) 

H r Or rp 

Analytic expression for the field components and their derivatives in spherical coordinates are 

given below. For simplicity we use the following substitutions: a
2 = a2 + r2

- 2ar sin 8, 

[I = a2 + / + 2ar sine, It- = 1- a
2Jf, and c = # O 1/n. We note that if desired, further 

simplifications are possible using various substitutions and groupings. 

Field Components: 

B = Ca
2 

cosO £lk2 ) 

,. a2 fJ I' 

Spatial Derivatives of the Field Components: 
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3 CARTESIAN COORDINATES 

(11) 

The field components and their derivatives in Cartesian coordinates are given below. These are 

easier to use when rotations or translations are needed and obviate the need to transform the basis 

vectors. The following substitutions are used for simplicity: p
2 = x2 

+ l, r2 = x2 
+ l+ i, 

a
2 = a2 

+ r
2

- 2ap, p2 = a2 
+ r

2 
+ 2ap, k = 1- a

2/p2, y = x2 -l, and C = p.o li1C. Note that p and 

r are non-negative. 

Field Components: 

(12) 

(13) 
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Spatial Derivatives of the Field Components: 
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4 CYLINDRICAL COORDINATES 

The following substitutions are used for simplicity: a
2 = a2 
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5 LIMITING CASES 

Several special limiting cases are given for completeness. We have confirmed that our results 

given above do indeed converge to these formulas. We also give additional expressions for Bx 

and By near the axis that may prove useful. 

Along the axis of the loop: 

Near the axis of the loop (x,y<<a): 

Far from the loop (r>>a): 

6 CONCLUSIONS 

B _ Jlo /] 2 ) cos() 
- - ~,1ta --

, 27C r3 

B _ Jlo /] 2 ) sin() 
fl- - ~,1ta --

47C r 3 

(30) 

(31) 

(32) 

(33) 

(34) 

We have presented simple, closed-form algebraic formulas for the magnetic induction and its 

spatial derivatives of a filamentary current loop that are exact everywhere in space outside the 

conductor. Although these formulas are exact, they do require the numerical evaluation of 

elliptic integrals. 

Solenoids with circular cross sections of arbitrary size and configuration can be modeled by 

simply summing the contributions of each individual loop. 

There are, of course, other ways to obtain B for the basic circular current loop. For example, 

series expansions are available [3] or numerical integration via a finite element approach can be 

performed. However, these suffer from limitations such as truncating the series expansions after 

some tolerance is reached or accepting some graininess when using a discrete grid. Our approach 

has neither of these limitations and yields results are that exact up to the limitations of the 

numerical arithmetic and the elliptic integral routines. 

The inclusion of the spatial derivatives allows convective derivatives to be found exactly and . . 
may prove useful for magnetohydrodynamics applications. 
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