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Simple analytical approximations for the gain and refractive index spectra

in quantum-well lasers

Salvador Balle
Departament de Fı́sica Interdisciplinar, Instituto Mediterráneo de Estudios Avanzados,

IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain

~Received 21 May 1997!

An analytical expression for the low-temperature optical susceptibility of quantum-well semiconductor

lasers is presented based on a simple parabolic band model. The optical susceptibility obtained keeps the

nonlinear dependence on the carrier density, providing both a broad gain spectrum and a dispersion curve, so

it can be used to analyze the dynamics of multimode devices or devices with large carrier density variations.

The resulting peak gain, differential peak gain, and linewidth enhancement factor are discussed. cw operation

of a single-mode laser is studied as a function of the frequency of the cavity resonance. An analytical approxi-

mation to the finite-temperature gain spectrum is also presented, although the refractive index spectrum must

be determined numerically. @S1050-2947~98!07501-5#

PACS number~s!: 42.55.Px, 78.66.2w

I. INTRODUCTION

The analysis of the static and dynamical properties of

semiconductor lasers requires a knowledge of the coupling

between the active semiconductor material and the optical

field within the active region. In a semiclassical approach

@1#, which constitutes the foundation for simpler descriptions

as the rate equation ~RE! approximation @2#, the optical field

is described by means of Maxwell’s equations, and its cou-

pling to the material is described by the electrical suscepti-

bility of the active medium. The imaginary part of the elec-

trical susceptibility describes the energy exchange ~absortion

or stimulated emission! between the field and the medium,

while its real part describes the dispersive effect ~refractive

index change! accompanying such a process @3#.
This approach has been successfully undertaken for gas

and solid-state lasers. In these systems, the active medium

can be described in an effective way as an ensemble of atoms

~or molecules! with only two levels among which stimulated

emission takes place @4,5#. In this approximation, the rel-

evant variables for describing the active medium are the

population inversion between these two levels, and the cor-

responding nonlinear polarization. The optical Bloch equa-

tions for the evolution of these variables, together with Max-
well’s equations for the evolution of the optical field,
constitute the so-called two-level-model ~TLM!. The TLM
can be reduced to a RE description when the nonlinear po-
larization can be adiabatically eliminated, but in general it
explicitly considers the coherent coupling between the opti-
cal field and the active medium, hence allowing for large
signal dynamics, multimode operation, four-wave-mixing
processes, etc., which makes the TLM a very valuable tool.

Semiconductor media are conceptually similar to an en-
semble of two-level atoms, though with different transition
energies as defined by the electronic band structure, and
more important, with different occupation of the electronic
states @6–8#. These two differences make the TLM inappro-
priate for semiconductor media. While the gain spectrum in
the TLM has a symmetric, Lorentzian shape, it is strongly

asymmetric in semiconductors @6–9#. Moreover, semicon-
ductor lasers usually exhibit a large degree of amplitude-
phase coupling at any operation wavelength ~often described
by Henry’s linewidth enhancement factor a @10#!, while the
maximum gain in the TLM always occurs at the wavelength
where the carrier-induced refraction index change vanishes
~zero detuning!; hence the large amplitude-phase coupling
observed in semiconductor lasers cannot be described in the
TLM unless lasing very far away from the gain peak is arti-
ficially enforced.

Models for calculating the gain and refraction index spec-
tra from the electronic structure of the semiconductor mate-
rial have been developed, some neglecting many-body ef-
fects @6–8,11,12# and some taking them into account @13–
15#. These microscopic theories describe individual
transitions by the occupation of the initial and final electronic
states, and the material polarization by superposing the con-
tributions from each transition. A dynamical description of
the lasing process then requires dealing with plenty of two-
level-like systems, coupled among them by scattering pro-
cesses and by the optical field. The complexity of such a
description is so high that it requires intensive numerical
computation.

The complexity and high computational cost of micro-
scopic theories has stimulated the search for simpler, analyti-
cal approximations for both the optical gain ~see @16# and
references therein! and the electrical susceptibility @17,18# of
semiconductor media. The models developed in @17,18# al-
low one to incorporate some of the results from microscopic
theories in an effective, direct way, while preserving the sim-
plicity of the RE or TLM descriptions. The models for the
electrical susceptibility introduce additional parameters in
order to obtain a dynamical evolution equation for the non-
linear polarization, thus limiting the range of validity of the
model. For instance, in @19# we used the model in @18# to
study the dynamics of mode hopping and multimode opera-
tion of a Fabry-Pérot semiconductor laser; however, the
model introduces an additional parameter a0, which limits
the range of validity and introduces some artificial excess
gain that has to be corrected for @19#.
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A crucial assumption in all of these approximate theories

is that the carriers have relaxed to a quasiequilibrium distri-

bution, hence the occupation probability of the electronic

states is given by a Fermi-Dirac distribution with a quasi-

equilibrium Fermi level. Since, following a perturbation, the

carrier distribution in the band only approaches a quasiequi-

librium Fermi-Dirac distribution after some characteristic

time T , the approximate theories can be used for studying

dynamics only on time scales longer than T @14#. Carrier-
carrier scattering and carrier-phonon scattering are two of the
most important mechanisms driving the approach to quasi-
equilibrium in semiconductors. For the high carrier densities
typical of semiconductor lasers, carrier-carrier scattering is
the fastest relaxation mechanism, with characteristic T below
1 ps @20#. Carrier-phonon scattering, which leads to the
equilibration of the plasma and lattice temperatures, is a
somewhat slower process with characteristic T that are quite
sensitive to the carrier density: for low carrier densities,
carrier-phonon scattering has relaxation times T of the order
of 1 ps or longer, but for the high carrier densities character-
istic of QW lasers, it can be reduced to 1 ps or lower accord-
ing to theoretical estimates @21#. Therefore, one can use these
approximate theories when studying dynamics on time scales
of several ps or longer, i.e., devices with photon lifetimes
and round-trip times of several ps or longer, otherwise one
would not properly take into account intracavity and propa-
gation effects because of the breaking of the quasiequilib-
rium approximation for the carrier density; for shorter scale
dynamics, one must resort to microscopic dynamical theo-
ries.

Nevertheless, even in the quasiequilibrium approxima-
tion, nonzero temperatures do not allow one to find approxi-
mate analytical expressions for the full optical susceptibility,
but only for the material gain @16# since it just involves the
imaginary part of the electrical susceptibility; the reason is
that the Lorentzian shape of each transition is quite narrow as
compared to the thermal energy, hence it can be approxi-
mated by a Dirac delta function. The real part of the suscep-
tibility, which is also relevant to the lasing process since it
affects the lasing frequencies through mode pulling or push-
ing @4#, and even the mode profiles for gain-guided devices,
requires a numerical evaluation for finite temperature.

In this paper I present an analytical expression for the
electrical susceptibility of a quantum-well ~QW! laser at low
temperature. As compared to my previous work @18#, all the
parameters in the model are determined from the band struc-
ture, except for band-gap renormalization. The analysis is
based on a simple parabolic-band approach, since the pri-
mary aim is to develop an approximation for the susceptibil-
ity that retains the key features of semiconductor media ~i.e.,
the right dependencies of the gain and refractive index spec-
tra on carrier density! thus allowing one to study the dynam-
ics of multimode devices and devices with an inhomoge-
neous carrier density, and thereby accelerating computer
simulations. The gain spectrum is highly asymmetric, and
the gain peak increases sublinearly with increasing carrier
density, while its position with respect to the normalized
band gap experiences a blueshift due to band-filling effects.
The linewdith enhancement factor is dependent on both the
operation frequency and the carrier density, being different
from zero at the gain peak. These characteristics make the

model suitable for describing strongly multimode systems or
systems where the carrier density has relatively large varia-
tions from one point to the other. A first assessment of the
potentiality of the model is achieved by analyzing the cw
operation of a single-mode laser as a function of the fre-
quency detuning between the cavity resonance and the nomi-
nal band gap.

II. OPTICAL RESPONSE OF SEMICONDUCTOR

MEDIUM

The optical response of a semiconductor medium is deter-
mined by the complex electrical susceptibility, which in the
rotating-wave approximation with perfect k conservation
reads @13#

xE~v !52

i

«0

2

V (
l ,m

(
k

uM lm~k !u2

3

f l~k !2 f m~k !

i@E lm~k !2\v#1\g~k !
, ~1!

where V is the crystal volume, l and m label the bands in the
crystal, E lm(k)5E l(k)2Em(k) denotes the energy differ-
ence between the electronic states, M lm(k) is the electric
dipole element between the electronic states, f l(k) and f m(k)
are the occupation probabilities of the electronic states, and
the summation runs over all k vectors in the first Brillouin
zone and all bands. g(k) denotes the width of each optical
transition, whose shape is assumed to be Lorentzian for the
sake of simplicity. It is known that a Lorentzian line shape
leads to residual absortion for photon energies below the
gap, which has induced to use other line-shape functions ~for
a thorough discussion on the effects of using a Lorentzian
line shape, see @12#!. Unfortunately, line shapes other than
the Lorentzian do not allow for analytical integration of the
full electrical susceptibility.

For finite temperature and realistic band structures, the
evaluation of xE(v) requires a numerical calculation; how-
ever, some insight can be gained by considering a simple
parabollic band structure. For the sake of simplicity, I con-
sider a single QW of width W with only one electron and one
~heavy-! hole band, although the procedure can be easily
generalized to multiple electron and hole bands. The situa-
tion considered here is approximately the one occurring in a
strained, narrow QW, where only one electron and one
heavy-hole band are active until large carrier densities are
injected into the QW. In the approximation of parabolic
bands, Ec5E t1(\2k2/2mc) and E

v
52(\2k2/2m

v
), where

mc (m
v
) is the conduction-band ~valence-band! effective

mass and E t is the energy difference between the conduction
and valence band at k50. Rewriting xE(v) in terms of the
electron and hole distribution functions, f e5 f c and f h51
2 f

v
, with Eh52E

v
, and assuming that M cv

(k)5M and
g(k)5g are independent of k , one finds

x~v !5

uM u2

«0

2

V (
k

f e~k !1 f h~k !21

\v2Ecv
~k !1i\g

[xe~v !1xh~v !2xb~v !, ~2!

where
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xe~h !~v !5

uM u2

«0

2

V (
k

f e~h !~k !

\v2Ecv
~k !1i\g

, ~3!

and analogously for the last term, xb(v), except for the dis-
tribution function in the numerator. xb(v) can be analyti-
cally calculated, yielding

xb~v !52

muM u2

Wp«0\2lnS 12

\km
2

2mz
D , ~4!

with z5v2E t /\1ig , m5(mc
21

1m
v

21)21 being the re-

duced mass of the electron-hole pair, and km the maximum
wave vector contained in the first Brillouin zone.

In general, xe(v) and xh(v) cannot be evaluated analyti-
cally, since they involve the carrier distribution in the bands.
In the presence of an optical field, the carrier distribution in
the band is usually not known until scattering processes have
driven the system to the quasiequilibrium state. As com-
mented above, the high carrier densities typical of QW lasers
imply that carrier-carrier scattering ~with T;1 ps! are domi-
nant, although the slower carrier-phonon scattering mecha-
nism is responsible for the slower thermal effects observed in
many lasers. In this limit, the electron and hole densities are
described by their corresponding quasiequilibrium Fermi
levels, Fe and Fh , respectively. Nevertheless, even in the
quasiequilibrium approximation the electrical susceptibility
cannot be calculated analytically unless one considers very
low temperature, where the Fermi-Dirac distributions closely
resemble step functions. In this case, one obtains

xe~h !~v !52

muM u2

Wp«0\2 lnS 12

pW\Ne~h !

mz
D , ~5!

with Ne5(mc /Wp\2)(Fe2E t)Q(Fe2E t) and Nh

5(mc /Wp\2)FhQ(Fh) being the electron and hole densi-
ties, respectively, and Q(x) the step function. Assuming
charge neutrality within the QW, Ne5Nh5N , the electrical
susceptibility can then be written as

x~v ,N !52x0F2lnS 12

D

u1i
D2lnS 12

b

u1i
D G , ~6!

where I have defined

x05

muM u2

Wp«0\2 , D5

pW\

mg
N[

N

N t

,

u5

Re~z !

g
5

~v2E t /\ !

g
, b5

\km
2

2mg
.

In these expressions, band-gap renormalization effects
due to the screened Coulomb interaction between electrons
and holes have not been taken into account. However, they
can be effectively implemented in a rigid band approxima-
tion by considering that the transition energy E t corresponds
to the renormalized transition energy. The functional form of
the band gap shrinkage with carrier density is still an open
question, and linear @22#, square-root @23#, and cubic-root
@24# dependencies have been proposed. This last form seems
to be closest to experimental results @24#, henceforth I will

consider that E t5E t
0
2sN1/3, where E t

0 is the transition en-

ergy when no carriers are injected into the QW and s de-
scribes the band-gap shrinkage as a function of carrier den-
sity, which depends on both the material forming the active
layer and the operating conditions. Thus, I accordingly rede-
fine

u5

v2E t
0/\

g
1sD1/3[

v2v0

g
1sD1/3,

with v05E t
0/\ being the normalized nominal transition fre-

quency, and s5sN t
1/3/(\g) describing the band-gap shrink-

age.
The above expression ~6! for the electrical susceptibility

is remarkably simple, allowing one to obtain several exact
results, which are next discussed.

A. Material gain spectrum

The material gain spectrum is determined from the imagi-
nary part of the electrical susceptibility as

g~v ,N !52

v

c n̄
Im@x~v ,N !# . ~7!

The imaginary part of the electrical susceptibility can be
written as

Im@x~v ,N !#52x0@2arg~u2D1i !2arg~u1i !

2arg~u2b1i !#

'2x0Farctan~u !22arctan~u2D !2

p

2
G ,

~8!

where arg(z) is the polar angle of the complex number z .
The approximation comes from the fact that b@1 and b

@u , since the frequencies of interest are not too far away
from v0.

Figure 1 shows Im@x(v ,N)# as a function of v for dif-
ferent values of N and two different values of the band-gap
renormalization parameter, s50.2 ~solid lines! and s52
~dashed lines!. It can be seen that the gain value is indepen-
dent of s , but not the location of the gain peak. As already
mentioned, some residual absorption below the band gap is
observed due to the slowly decaying tails of the Lorentzian
line shape that I have considered for the electronic transi-
tions. For high frequency 2Im@x(v ,N)# saturates at the
value 2px0, because only one transition has been consid-
ered. As the carrier density increases, 2Im@x(v ,N)# devel-
ops a peak whose height and full width at half maximum
increase; also, the position of the maximum experiences a
blueshift for increasing carrier density. The peak value be-
comes positive for N.N t , hence N t5mg/(pW\) is the
transparency carrier density; the transparency frequency is
v5v02sg , which is the frequency corresponding to the
renormalized transition. The high-frequency wing of the
peak decays quite fast, the reason being that, in the low-
temperature limit considered, the carrier distribution within
the band vanishes above the quasi-Fermi level; as discussed
later in this section, for higher temperatures, the states above
the quasi-Fermi level have nonvanishing occupation prob-
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ability, thus reducing the absorption and leading to a
smoother decay for high frequencies.

From Eq. ~8! it is simple to show that positive gain can
only be achieved for u<D , which is the Bernard-Duraffourg
condition at zero temperature. Actually, the frequency do-
main where one has positive gain ~for a fixed carrier density!
is given by

2AD2
21<u<AD2

21. ~9!

Obviously, there is positive gain only for D.1, the trans-
parency frequency being u50, in agreement with the nu-
merical results.

The frequency where the peak occurs is given by

up52D1A2D2
21⇒

vp2v0

g
52D1A2D2

212sD1/3.

~10!

The first two contributions represent the blueshift of the peak
position due to carrier band filling, partially compensated by
the third term, which describes the redshift of the peak fre-
quency due to the band-gap shrinkage. It is worth noticing
that the gain peak develops only for carrier densities larger

than N t /A2; below this point, the Lorentzian broadening
smears out the contribution of the carrier density in the step-
like absorption spectrum.

Since in most cases the region of positive gain is re-
stricted to a narrow interval in the vicinity of the nominal
transition frequency, we can approximate

g~v ,N !5g0Farctan~u !22arctan~u2D !2

p

2
G , ~11!

with g05x0E t
0/\c n̄ being the material gain coefficient. By

using Eq. ~10!, we can determine the peak gain, which reads

gp5g0Farctan~2D1A2D2
21 !22 arctan~22D

1A2D2
21 !2

p

2
G , ~12!

and the differential peak gain,

dgp

dN
5

g0

N t

1

D~3D22A2D2
21 !

. ~13!

The peak gain and differential peak gain are shown in Fig.
2, and—as expected—they do not depend on s . It is clear
that the gain peak grows sublinearly with carrier density,
with a saturation value gp5pg0 that corresponds to com-
plete inversion ~again, this is a consequence of having taken
into account only one electron and one hole band!. It can be
seen ~left panel! that the gain peak does not correspond to
maximum gain ~in fact, minimum absorption! for carrier
densities below transparency. In this case, the almost con-
stant gain peak value corresponds to the residual absorption
that occurs below the transition energy. This is a conse-
quence of the already commented on smearing out of the
gain due to Lorentzian broadening. The differential peak
gain rapidly decreases from its maximum value g0 /N t at
transparency (D51) to only 20% at D55.

The shape of both curves is very similar to those obtained
experimentally @25–27# or calculated from realistic band
structures @8#, although these results correspond to ambient
temperature and real band structures. However, the high-
temperature values for N t are quite higher and those for g0

quite lower than those obtained from Eq. ~6!. Nevertheless, if
one lets N t and g0 be adjustable parameters, the results in @8#
can be nicely fitted to the above functional forms with better
agreement for systems with a narrow, strained QW, which
only possess one electron and one hole band active until
large carrier densities are injected.

FIG. 1. Normalized imaginary part of the susceptibility as a

function of the normalized frequency deviation from the nominal

band-gap frequency, (v2v0)/g , for increasing carrier densities

N/N t51.2 ~star!, 1.5 ~diamond!, 1.8 ~triangle!, 2.1 ~square!, and 2.4

~no symbol!. Solid lines correspond to s50.2, while dashed lines

correspond to s52.

FIG. 2. Normalized peak gain ~left panel! and differential peak

gain ~right panel! as a function of the normalized carrier density

N/N t , for s50.2 ~stars! and s52 ~diamonds!. The symbols are

obtained numerically from the susceptibility as given by Eq. ~6!,

while the solid lines are found from Eqs. ~12! ~left! and ~13! ~right!.
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An analytical approximation for the gain at ambient tem-
peratures can be developed @16# by considering that the in-
dividual transitions possess a linewidth much narrower than
the steplike decrease in the Fermi-Dirac distribution func-
tions ~typically, the width of individual transitions is \g
;6 meV, while at ambient temperature, b21

5kBT;25
meV!. From Eq. ~2! we have

2Im@x~v ,N !#'
uM u2

«0

2

V (
k

@ f e~k !1 f h~k !21#

3

\g

@\v2Ecv
~k !#2

1~\g !2
, ~14!

and assuming that the Fermi-Dirac distributions remain ap-
proximately constant within \g and that the frequency is in
the vicinity of the nominal transition frequency, we find

g~v ,N !'g0Fp2 1arctan~u !G
3S eacD

21

eacD
211eacu

1

ea
v

D
21

ea
v

D
211ea

v
u

21 D ,

~15!

where ac(v)[b\gm/mc(v) , and p/21arctan(u) is the
~broadened! reduced density of states in the QW under the
assumption of a single electron and hole band. Since Eq. ~15!
can be rewritten as a combination of hyperbolic tangents,
which have exactly the same first two terms in a Taylor
expansion as an arctangent, Eqs. ~11! and ~15! can be made
almost identical in some frequency interval ~around the gain
peak, say! by proper choice of the scaling parameters, and
the peak gain and the differential gain at the peak can be
made virtually identical for the two approximations. The
main differences among the two are noticeable on the high-
frequency wing, where the slowly decaying Fermi-Dirac dis-
tribution reduces the absorption.

B. Carrier-induced dispersion and linewidth enhancement

factor

Another important characteristic of semiconductor lasers
is the strong dispersive effect accompanying material gain,
which leads to a high degree of AM-FM coupling, usually
described by means of Henry’s linewidth enhancement fac-
tor, a @10#. The linewidth enhancement factor describes the
changes in the refractive index of the system that occur as-
sociated to changes in the gain or absorption as the carrier
density varies. It is rather often taken to be constant, despite
the existing evidence of its dependence on both frequency
and carrier density @14,16,25,27,28#.

Refractive index changes influence lasing action in semi-
conductor lasers in two different ways: on one hand, they
induce mode pulling or pushing through the phase change
over one cavity round trip @4#; on the other, the waveguide
structure of the semiconductor laser may be substantially
modified, especially for weakly index-guided and gain-
guided devices, thus changing the optical confinement factor
and the modal gain spectrum @29#. The refractive index
change is associated with the real part of the electrical sus-

ceptibility ~see Fig. 3!, which can be written as

Re@x~v ,N !#5x0lnFAu2
11A~u2b !2

11

~u2D !2
11

G
'x0lnFbA u2

11

~u2D !2
11

G , ~16!

where the approximation comes from the fact that lasing oc-
curs for frequencies close to the nominal one, so we always
have b@uuu. As a consequence, the main role of b is simply
to set the background value of the refraction index.

From Fig. 3 we can see that as the carrier density in-
creases, the refractive index decreases for low frequencies
while for high frequencies it increases. The bump in all
curves corresponds to the frequency region just above that of
positive gain, and it experiences a blueshift as band filling
occurs. It is worth noticing that the shape of the real part of
the susceptibility is almost independent on the degree of
band-gap shrinkage, but not the value of the refractive index
change for fixed frequency. For large band-gap renormaliza-
tion, the curves for different carrier densities cluster tightly
together, since the band-filling contribution is more strongly
compensated by band-gap renormalization, thus leading to
smaller index variations ~for fixed wavelength! as compared
to the case with small band-gap renormalization. As a con-
sequence, one might expect a reduction in the value of a for
increasing band-gap shrinkage, in agreement with @14#.

The linewidth enhancement factor a can be determined as

a5

Re~]x/]N !

Im~]x/]N !
, ~17!

which is now a function of both frequency and carrier den-
sity ~see Fig. 4!. For high carrier densities, a develops a
bump that has been observed in some cases @28#. As already
commented, it turns out that a is extremely sensitive to
band-gap renormalization, in agreement with previous work
@14#. However, it must be noted that a is rather sensitive not

FIG. 3. Normalized real part of the susceptibility as a function

of the normalized frequency deviation from the nominal band-gap

frequency, (v2v0)/g for the same carrier densities and s values

as in Fig. 1.
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only to the amount of band-gap renormalization, but also to
its functional dependence on the carrier density. The reason
is that, when band-gap shrinkage is taken into account, one
has that

]

]N
5

1

N t
S ]

]D
1

]u

]D

]

]u
D ,

so that the variation of band-gap shrinkage with increasing
carrier density comes into play.

The linewidth enhancement factor at the frequency of the
gain peak is given by

ap52D2A2D2
212

s

3
D1/3. ~18!

This is the value of the linewidth enhancement factor com-
monly measured in Fabry-Pérot-type edge emitters, which
tend to operate in the vicinity of the gain peak due to its
intrinsic multilongitudinal mode character. We observe ~see
Fig. 5! a monotonic increase of ap with carrier density, and
also that the larger the band-gap renormalization, the smaller
the value of ap . Accordingly, in Fabry-Pérot-type edge
emitters, the a factor increases for increasing threshold
gains, since in this case, larger carrier densities are required
for the threshold being reached. In connection with the dis-
cussion on the differential gain, it turns out that operating the
system close to transparency is doubly beneficial, since one
then achieves a larger differential gain ~which allows for
higher modulation bandwidths! and a reduced a factor.

For finite temperatures, I could not work out an analytical
approximation for the refractive index change. The reason is
that the Lorentzian line shape implies that the real part of
each transition has slowly decaying tails that have to be con-
volved with the Fermi-Dirac function in order to calculate
the spectrum of the refractive index change. However, the
refractive index spectrum can be numerically determined ei-

ther by direct integration of Eq. ~2! or by the Kramers-
Kronig transformation of Eq. ~15!.

III. STEADY-STATE OPERATION

OF A SINGLE-MODE LASER

A first assessment of the capabilities of the model devel-
oped in the previous section for the gain and refraction index
can be achieved by analyzing its predictions for a single-
mode laser, i.e., a single transverse-mode distributed feed-
back laser ~DFB! or a single-transverse mode vertical-cavity
surface-emitting laser ~VCSEL!. In the slowly varying am-
plitude approximation, the condition for cw operation reads

2idvE5H c

2ng
F2a tot1iG

v0

cn
x~v01dv ,N !G

2i~vc2v0!J E , ~19!

05C2AN2BN2
1uEu2

c

ng

v0

cn
Im@x~v01dv ,N !# ,

~20!

where E is the modal amplitude of the field normalized such
that uEu2 corresponds to photon density, N is the carrier den-
sity in the active region, and x(v ,N) is the electrical suscep-
tibility of the active region. C5I/eV is the carrier density
injected per unit time into the active region whose volume is
V ~I neglect leakage current!, A is the nonradiative recombi-
nation rate, B is the bimolecular recombination coefficient
due to spontaneous emission, and I have neglected Auger
recombination due to the low-temperature approximation
made. vc is the optical frequency corresponding to the cavity
resonance, and dv is the frequency deviation of the optical
field from v0, which I take as the carrier frequency. n(ng) is
the effective refractive ~group! index at v0, and G is the field
confinement factor to the active region. The total losses in
Eq. ~19! are given by

FIG. 4. Linewidth enhancement factor a as a function of the

normalized frequency deviation from the nominal band-gap fre-

quency, (v2v0)/g , for carrier densities N/N t51.17 ~star!, 2.37

~diamond!, 3.57 ~triangle!, 4.77 ~square!, and 5.97 ~no symbol!.

Solid lines correspond to s50.2, while dashed lines correspond to

s52.

FIG. 5. Linewidth enhancement factor at the gain peak, ap , as

a function of the normalized carrier density N/N t . The symbols are

obtained numerically from the electrical susceptibility, while the

solid line corresponds to Eq. ~ 18!.
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a tot5a int2
1

L
ln~r1r2!,

thus including both the internal losses (a int) and the cavity
losses aend5L21ln(r1r2) due to the facet reflectivities, r1 and
r2, distributed over the effective length of the optical cavity,
L ~for DFB lasers, r1 and r2 are the effective reflectivities for
the left- and right-going waves!. It is worth noting that in
most single-mode devices at least one of the reflectivities is
frequency dependent due to the presence of a grating either
inside ~DFB! or at the edges ~the distributed Bragg reflectors
of a VCSEL! of the cavity; however, I shall consider that in
a relatively broad frequency range around the cavity reso-
nance the facet reflectivities can be taken as constant ~i.e.,
the lasing mode does not approach the edges of the stop
band!.

In order to reduce the number of parameters, I rescale
Eqs. ~19!–~20! to

dV52

«

2
Re@a f ~dV ,D !#1D , ~21!

0511a Im@ f ~dV ,D !# , ~22!

P5J2rD2D2, ~23!

where D5N/N t , dV5dv/g , D5(vc2v0)/g , a

5Gx0v0 /(cna tot), «5ca tot /(ngg), r5A/BN t and

P5uEu2
c

ng

v0

cn

x0

BN t
2 .

Finally,

f ~u ,D !52lnS 12

D

u1sD1/3
1i

D 2lnS 12

b

u1sD1/3
1i

D ,

where b has been defined just following Eq. ~6!. The first and
second equations determine the lasing frequency dV and the
threshold carrier density for this frequency, which then de-
termines the output power P for a given current injection J .
It is worth noticing that the only role of r is to redefine the
threshold current ~and hence the output power!, but it does
not affect the threshold carrier density. In high-quality lasers
that are free from structural defects in the active region, bi-
molecular recombination dominates over nonradiative re-
combination. Hence for the sake of simplicity I will simply
consider r50, because it will merely shift down the output
power for a given current density.

By using Eq. ~6! for the electrical susceptibility of the
single quantum well, we can numerically solve the above set
of equations by taking as a control parameter the normalized
detuning between the cavity resonance and the nominal
band-gap frequency.

Figure 6 shows the dependence of the threshold current
on the lasing frequency for different values of the modal gain
a . All curves are asymmetric around the minimum threshold,
with smoother tails towards the blue side of the minimum
threshold frequency than towards its red side, in agreement
with the experimental results for VCSELs with different cav-
ity resonances @30# or in tunable external-cavity lasers @31#.

However, the asymmetry decreases for increasing band-gap
renormalization, since it contributes additional gain on the
red side of the minimum threshold. The asymmetry of these
curves will be barely the same for rÞ0, although all the
curves will be shifted upwards due to the increase in thresh-
old current density associated with the increased carrier re-
combination rate.

The asymmetry of the threshold curve around its mini-
mum is clearly noticeable in Fig. 7, which shows the cw
output power of the laser versus lasing frequency ~stars! and
the a factor at the operation point ~diamonds! for two differ-
ent values of the modal gain. The injection currents have
been chosen to yield the same maximum output power. It can
be observed that the asymmetry in the output power is more
noticeable for small s @cases ~a! and ~c!# since, as already

FIG. 6. Normalized threshold current density J th as a function

of the lasing frequency for s50.2 ~solid lines! and s52 ~dashed

lines! and different values of the modal gain a51 ~triangle!, 2/3

~diamond!, and 1/2 ~star!.

FIG. 7. Normalized output power P ~stars! and a factor ~dia-

monds! for cw operation of the laser as a function of the lasing

frequency: ~a! s50.2 and a51, ~b! s52 and a51, ~c! s50.2 and

a51/2, and ~d! s52 and a51/2. The pump current in cases ~a!

and ~b! is J510, while in cases ~c! and ~d! it is J528.55, chosen

such that the normalized output power is the same in all cases.
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commented, larger band-gap renormalizations contribute ad-
ditional gain to low frequencies. In addition, we can also see
that the asymmetry is stronger for high modal gain @case ~a!#
due to the reduced band-gap shrinkage that occurs in this
case.

One can also see the dramatic influence that the lasing
frequency and modal gain have on the a factor at the opera-
tion point: reduced threshold gains @cases ~c! and ~d!# yield
larger a factors at the operation point, while increased band-
gap renormalization coefficients @cases ~b! and ~d!# lead to
much reduced a factors at the operation point. In addition, it
can also be seen that, for low band-gap renormalization pa-
rameter, a noticeable reduction in the a factor can be
achieved by operating the laser on the blue side of the mini-
mum threshold @cases ~a! and ~c!#, in agreement with the
experimental results in @27,28#. However, this effect van-
ishes or may be even reversed when the system has large
band-gap renormalization coefficient @see cases ~b! and ~d!#.

Finally, in Fig. 8 I have plotted the operation frequency as
a function of detuning for a51. It can be seen that the op-
eration frequency is always a little bit higher than the cavity

mode, the reason being the positive slope of the real part of
the susceptibility in the region of positive material gain.

It is worth noting, in connection with Figs. 7 and 8, that
the above results have been obtained by varying only the
cavity detuning, the other parameters remaining constant.
The inclusion of gain and dispersion spectra through the
electrical susceptibility of the QW allows one to reproduce
the variation of both the output power and the a factor as a
function of cavity detuning.

IV. SUMMARY

In summary, I have presented an analytical expression for
the optical susceptibility of a QW at low temperatures from
which several properties of the gain, differential gain, refrac-
tion index, and a factor of the active medium can be found.
The results are in qualitative agreement with those obtained
from more fundamental, microscopic theories, and also with
several experimental observations. For fixed threshold gain,
the threshold carrier density varies with detuning following
the spectral gain curve, and so do the output power and line-
width enhancement factor at the operation point. Therefore,
the model described improves the standard RE description
by incorporating the gain and dispersion spectra of the QW
laser. The model can be useful for analyzing the lasing prop-
erties of multimode and inhomogeneous devices without re-
quiring one to use a fully microscopic theory, hence speed-
ing up computer simulations. An analytical approximation
for the gain at finite temperature has also been presented,
although the refractive index spectrum requires a numerical
evaluation. Generalization of this work to study the dynam-
ics of such devices is in progress.
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