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Abstract—In this paper, a theoretical analysis of an axial 

magnetic coupling is presented, leading to new closed-form 

expressions for the magnetic axial-force and torque. These 

expressions are obtained by using a two-dimensional (2-D) 

approximation of the magnetic coupling geometry (mean radius 

model).  The analytical method is based on the solution of 

Laplace’s and Poisson’s equations by the separation of variables 

method. The influence of geometrical parameters such as number 

of pole pairs and air-gap length is studied. Magnetic field 

distribution, axial force and torque computed with the proposed 

2-D analytical model are compared with those obtained from 3-D 

finite elements simulations and experimental results. 

 
Index Terms— Torque transmission, axial magnetic coupling, 

analytical model, axial force. 

I. INTRODUCTION 

AGNETIC couplings are of great interest in many 

industrial applications. They can transmit a torque from 

a primary driver to a follower without mechanical contact. As 

the torque could be transmitted across a separation wall, axial 

field magnetic couplings are well suited for use in isolated 

systems such as vacuum or high pressure vessels. Moreover, 

they present a maximum transmissible torque (pull-out torque) 

giving an intrinsic overload protection. 

Axial magnetic couplings consist of two opposing discs 

equipped with rare earth permanent magnets as shown in Fig. 

1. The magnets are magnetized in the axial direction. They are 

arranged to obtain alternately north and south poles. The flux 

is closed by soft-iron yokes. The torque applied to one disc is 

transferred through an air-gap to the other disc. The angular 

shift between the two discs depends on the transmitted torque 

value. The main drawback of axial-type magnetic couplings is 

the significant value of the axial attractive force between the 

two discs.  

An accurate knowledge of the magnetic field distribution is 

necessary for predicting the torque and the axial force. The 

magnetic field can be evaluated by analytical methods [1-22] 

or by numerical techniques like finite elements [23-26]. 

 Finite elements simulations give accurate results considering 

three dimensional (3-D) effects and nonlinearity of magnetic 

materials. However, this method is computer time consuming 
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Fig. 1.  Geometry of the studied axial-type magnetic coupling (p = 6) 

 

and poorly flexible for the first step of design stage.  

Analytical methods are, in general, less computational time 

consuming than numerical ones and can provide closed-form 

solutions giving physical insight for designers. So, they are 

useful tools for first evaluations of magnetic couplings 

performances and for the first step of design optimization. 

Three-dimensional analytical models for ironless permanent 

magnet couplings have been proposed in the literature [1-16]. 

The proposed models are developed for axial magnetic 

couplings with parallelepiped magnets or cylindrical tile 

magnets. As the magnets are in free space (with no other 

magnetic materials present), analysis is based either on the 

amperian model with Biot-Savart law or on the coulombian 

method with equivalent surface charges. Although these 

methods give very accurate results, they are not suitable for the 

study of magnetic couplings with iron-core structures.  

An alternative analytical method to compute the torque for 

magnetic couplings with iron yokes is based on boundary 

value problems with Fourier analysis. This method consists in 

solving directly the Maxwell’s equations in the different 

regions (air-gap, magnets....) by the separation of variables 

method [17], [18]. The magnetic field distribution is obtained 

in each region by using boundary and interface conditions. The 

torque and the force are then computed by using the Maxwell 

stress tensor. In [19] and [20], two-dimensional (2-D) 

analytical models for radial-type magnetic couplings were 

developed and closed-form expressions for the torque was 

given and used for design optimization. In [21] and [22], quasi 

3-D analytical models are proposed to compute the 

performances of axial-flux permanent magnets machines. A 
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modulation function is defined to take into account the radial 

dependence of the magnetic field. 

In this paper, we propose new formulas for the torque and 

the axial force of an axial-type magnetic coupling with iron 

yokes (fig. 1). The analytical study is based on the solution of 

2-D Laplace’s and Poisson’s equations in air-gap and 

permanent magnets regions by using the separation of 

variables method. The torque expression is used to study the 

influence of geometrical parameters (number of pole pairs and 

air-gap length). In order to study the accuracy of the proposed 

formulas, the results are compared with those obtained from 3-

D finite elements simulations and experimental results. 
 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

As shown in Fig. 1, the geometrical parameters of the 

studied magnetic coupling are the inner and outer radii of the 

magnets R1 and R2, the air gap length e, and the magnets 

thickness h. The pole-arc to pole-pitch ratio of the permanent 

magnets is α. The number of pole-pairs is p. 

Analytical study of axial magnetic couplings is complicated 

because of the three-dimensional nature of the magnetic field 

distribution. However, in order to simplify the analysis and to 

carry out closed-form expressions for the axial force and 

torque, the 3-D problem is reduced to a 2-D one by 

introducing a cylindrical cutting surface at the mean radius of 

the magnets Re =(R1+R2)/2 at which the magnetic field will be 

computed [21], [22]. 

Fig. 2 shows the resulting 2-D model by considering the 

unrolled cylindrical cutting surface. With this approach, we 

neglect the radial component of the magnetic field and we 

consider that the axial and tangential components do not 

depend on the r-coordinate. Moreover, for simplicity, we 

adopt the following assumptions: 

 

1) The iron yokes have infinite magnetic permeability, 

2) The magnets are axially magnetized with relative recoil 

permeability 1=rµ . 

 

As shown in Fig.2, the whole domain is divided into three 

regions: the PMs regions (regions I and III) and the air-gap 

region (region II). The magnets of region III are shifted by an 

angle δ (torque angle) from the magnets of region I. Due to the 

periodicity of the magnetic field distribution, the studied 

domain is limited by 0 ≤ θ ≤ 2π/p. 

A magnetic vector potential formulation is used in 2D 

cylindrical coordinates to describe the problem. According to 

the adopted assumptions, the magnetic vector potential in each 

region has only one component along the r-direction and only 

depends on the θ and z-coordinates. The electromagnetic 

equations in each region expressed in term of the magnetic 

vector potential are 

2
0

2

    in Regions I and III (PMs)

0                  in Region II (air-gap)

µ∇ = − ∇×

∇ =

A M

A
  (1) 

 
 

Fig. 2.  2-D model of the axial magnetic coupling at the mean radius of the 

magnets Re =(R1+R2)/2. 

 

with  

0

r
z

B
M

µ
= = ±z zM e e           (2) 

where M is the magnetization vector, Br the remanence of the 

magnets, ez the unit vector along the axial direction and ± 

indicates the magnetization direction. 

III. 2-D ANALYTICAL MODEL 

By using the separation of variables method, we now 

consider the solution of Poisson’s equations for PMs regions 

and Laplace’s equation for the air-gap region.  

A. Solution of Poisson’s Equation in the PMs  Regions 

(Regions I and III) 

Poisson’s equation in the magnets region (region III) can be 

written in a cylindrical coordinates system as 

 
2 2

0

2 2 2

1 III III z

ee

A A M

RR z

µ
θθ

∂ ∂ ∂
+ = −

∂∂ ∂
   for   

2

0 2 /

h e z h e

pθ π
+ ≤ ≤ +

 ≤ ≤
(3) 

 

where µ0 is the permeability of the vacuum and Mz is the axial 

magnetization of the magnets. 

Knowing that the tangential component of magnetic field at 

2z h e= +  is null (soft-iron yoke with infinite permeability) 

and considering the continuity of the axial component of the 

flux density at z h e= + , we obtain the following boundary 

conditions 

2

0III

z h e

A

z = +

∂
=

∂
        (4) 

( , ) ( , )III IIA h e A h eθ θ+ = +      (5) 

 

where ( , )IIA zθ  is the magnetic vector potential in the air-gap 

region. 

The distribution of the axial magnetization Mz is plotted in 

Fig.3, δ is the relative angular position between the magnets of 

region I and region III. The axial magnetization can be 

expressed in Fourier’s series and replaced in (3) 
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Fig. 3.  Magnetization distribution along θ-direction (region III). 

 

( )( )
1

( ) sinz k
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( )
0
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Taking into account the boundary conditions (4) and (5), the 

general solution of the magnetic vector potential in Region III 

can be written as 
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  (8) 

with 

0 2

e
k k

R
K M

kp
µ=          (9) 

The integration constants III
ka  and III

kc  are determined 

using a Fourier series expansion of ( , )IIA h eθ +  over the 

interval [0, 2π/p] 

 

2 /

0

2
cos( ) ( , ) cos( )

2

p

III
k k II

p
a K kp A h e kp d

π

δ θ θ θ
π

+ = +∫  (10) 

2 /

0

2
sin( ) ( , )sin( )

2

p

III
k k II

p
c K kp A h e kp d

π

δ θ θ θ
π

+ = +∫   (11) 

 

The expressions of the coefficients III
ka  and III

kc  are given 

in the appendix. 

One can apply the same procedure for region I by 

considering a zero value for δ. This leads to the following 

expression for the magnetic vector potential  

( )

( )

1

1

( , ) ( )cos
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eI
I k k

k

e

eI
k

k

e

kp
ch z

R
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 +
 
 
 

∑

∑

   (12) 

The integration constants I
ka  and I

kc  in (12) are determined 

using a Fourier series expansion of ( , )IIA hθ  over the interval 

[0, 2π/p]  

2 /

0

2
( , )cos( )

2

p

I
k k II

p
a K A h kp d

π

θ θ θ
π

+ = ∫    (13) 

2 /

0

2
( , )sin( )

2

p

I
k II

p
c A h kp d

π

θ θ θ
π

= ∫    (14) 

The expressions of the coefficients I
ka  and I

kc  are given in 

the appendix. 

B. Solution of Laplace’s Equation in the Air-Gap Region 

(Region II) 

Laplace’s equation in the air-gap region can be written in a 

cylindrical coordinates system as 

 
2 2

2 2 2

1
0II II

e

A A

R zθ
∂ ∂

+ =
∂ ∂

   for   
0 2 /

h z h e

pθ π
≤ ≤ +

 ≤ ≤
  (15) 

The continuity of the tangential component of the magnetic 

field at z h=   and at z h e= +  leads to the following 

boundary conditions  

 

II I

z h z h

A A
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=

∂ ∂
   and    II III

z h e z h e

A A
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∂ ∂
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By taking into account the boundary conditions (16), the 

general solution of the magnetic vector potential in the air-gap 

can be written as 

( ) ( )
( )

( ) ( )
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e eII IIe e
k k

k

e e

e eII IIe e
k k

k

e e

A z

kp kp
ch z h e ch z h

R RR R
a b kp

kp kpkp kp
sh e sh e

R R

kp kp
ch z h e ch z h

R RR R
c d kp

kp kpkp kp
sh e sh e

R R

θ

θ

θ

∞

=

∞

=

=

   
− − −   

   − +
   
   
   

   
− − −   

   + − +
   
   
   

∑

∑

 

                      (17) 
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The integration constants II
ka , II

kb , II
kc  and II

kd  are 

determined using Fourier series expansions of I h
A z∂ ∂  and 

III h e
A z +∂ ∂  over the air-gap interval [0, 2π/p]  

 
2 /
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2
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2
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The expressions of these coefficients are developed in the 

appendix.  

The axial and tangential components of the magnetic flux 

density in the air-gap can be deduced from the magnetic vector 

potential by 

 

1 II
IIz

e

A
B

R θ
∂

= −
∂

   II
II

A
B

z
θ

∂
=

∂
      (22) 

 

IV. AXIAL-FORCE AND TORQUE EXPRESSIONS 

A. Electromagnetic torque 

The electromagnetic torque is obtained using the Maxwell 

stress tensor. A line at [ ],z h h eζ= ∈ +  in the air-gap region 

is taken as the integration path so the electromagnetic torque is 

expressed as follows 

 
23 3

2 1

0 0

( , ) ( , )
3

e II IIz

R R
T B B d

π

θ θ ζ θ ζ θ
µ
−

= ∫    (23) 

 

Incorporating (22) into (23), the analytical expression for 

the electromagnetic torque becomes 

 

( )3 3
2 1

0 1

( )
3

e k k k k

k

R R
T W X Y Z

π

µ

∞

=

−
= +∑      (24) 

 

where the coefficients Wk, Xk, Yk and Zk are given in the 

appendix.   

The torque can be computed with a good precision by 

considering only the fundamental components of the the flux 

density distribution in the air-gap (k = 1). This is especially 

true for large number of PM pole-pairs and/or large air-gap. 

Considering the first harmonic approximation, we can derive a 

closed-form expression for the electromagnetic torque which 

depends directly on the geometrical parameters. 

  

( )( ) ( )
3

2 2
3 21
2

0 2

16
1 sin

3 2 2 1

r
e

B R sh a
T R sin p

sh aR

πα δ
π µ ν

     = −      +   

  

(25) 

with  

e

h
a p

R
=    and   

2

e

h
ν =        (26) 

 

As expected, the torque presents a sinusoidal characteristic 

with the relative angular position δ. Its maximum value (pull-

out torque) is obtained at the angle δ=π/2p. 

 

B. Axial-Force 

Axial magnetic force is an important parameter for the 

design of an axial magnetic coupling. This attractive force 

must be known because it affects directly the rotor structure 

and bearings. Indeed, the bearing lifetime depends on the 

bearing load. By using the Maxwell stress tensor, the axial 

force expression is 

 

( )
22 2

2 22 1

0 0

( , ) ( , )
4

IIz II

R R
F B B d

π

θθ ζ θ ζ θ
µ
−

= −∫   (27) 

 

Substituting (22) into (27), the analytical expression for the 

axial force becomes 

 

( )
( ) ( )( )

2 2
2 1 2 2

0 1
4

k k k k

k

R R
F Z X W Y

π

µ

∞

=

−
= + − +∑   (28) 

 

Considering only the fundamental component of the 

magnetic field in the air-gap (k = 1), we can derive a closed-

form expression for the axial force 

  

  

( )
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( ) ( )( )

2 22
2 21
2 2

0 2

8
1 sin  

2 2(1 )

cos 2(1 ) 1

r
sh aB R

F R
R sh a
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π µ ν

δ ν
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× + +

 (29) 

 

From (25) and (29), we can see that the torque and the axial 

force dependence on the design parameters are explicit. For 

engineering purpose, it is important to have simple relations to 

study rapidly the effects of the geometrical parameters on the 

coupling performances. This is developed in the following 

subsection. 
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V. RESULTS OBTAINED WITH 2-D ANALYTICAL MODEL 

In this section, we use the proposed 2-D analytical model to 

compute the magnetic field distribution in the air-gap for 

different angular position between the two discs. For each 

position, the torque and the axial force are calculated by 

respectively using (25) and (29). Then, the influence of some 

geometrical parameters on the coupling performances is 

investigated (particularly the air-gap length and the pole-pairs 

number). The geometrical parameters of the studied device are 

given in Table I. These parameters correspond to the one 

which give a pull-out torque of around 90 Nm (obtained using 

(25)) when we consider an air-gap length of 3 mm and a 6 

pole-pairs. 

A. Flux density distribution and torque calculation for e = 

3mm and p=6 

Figs. 4a and 4b show respectively the flux lines (for two 

pole pitches) and the axial component of the flux density in the 

middle of the air-gap under no-load condition (δ = 0°). The 

magnetic flux density distribution along the air-gap is 

computed by using (17) and (22). We can observe that the flux 

lines are almost axial along the air-gap (the tangential 

component of the flux density is null in the middle of the air-

gap). For this position, the torque is then equal to zero and the 

axial force is attractive and reaches its maximum value. By 

using (29), we obtain F ≈ 2500N as shown in Fig. 8.  

 

              
(a) 

 
(b)  

Fig. 4. No load condition (δ = 0°): (a) magnetic flux lines, (b) axial 

component of the flux density in the middle of the air-gap. 

 Fig. 5 corresponds to the full load condition (δ = 15°). We 

can observe clearly on Fig. 5a the distortion of the flux lines 

due to the angular displacement of the upper magnets. Fig. 5b 

and Fig. 5c show respectively the axial and the tangential 

components of the flux density in the middle of the air-gap.  

For this angular position, the torque reaches its maximum 

value Te = 94 Nm (pull-out torque) as indicated in fig. 7 and 

the axial force is still attractive (F = 423N) as shown in fig. 8.  

As it can be observed in fig.8, the axial force reaches a null 

value for an angle slightly higher to half the pole pitch (around 

17°).  

 

               
(a) 

 
(b) 

             
(c) 

 

Fig. 5. Full load condition (δ = 15°): (a) magnetic flux lines, (b) axial 

component of the flux density, (c) tangential component of the flux density. 
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Fig. 6 corresponds to an angular displacement δ = 30° 

(unstable position). In this position, the magnets of the two 

discs are in opposed direction and the flux lines repel each 

other. The flux density presents only a tangential component in 

the middle of the air-gap. The torque is then equal to zero and 

the axial force is now repulsive as shown in fig. 8. The axial 

force value computed with (29) gives F = -1628 N. 

Fig. 7 and Fig. 8 summarize the variation of torque and 

axial force as a function of the angular displacement δ. As 

shown previously, the maximum torque occurs at an angular 

shifting of half pole pitch angle. We can observe that the first 

harmonic approximation gives accurate results (the error is 

less than 5%) compared to the ones obtained by taking into 

account 10 harmonic terms in (24) and (28). 

 

 
(a) 

       
(b) 

 

Fig. 6. Magnets in opposed direction (δ = 30°): (a) magnetic flux lines, (b) 

tangential component of the flux density in the middle of the air-gap. 

 
TABLE I 

PARAMETERS OF THE STUDIED AXIAL COUPLING 

Symbol Quantity value 

R1 Inner radius of the magnets 30 mm 

R2 Outer radius of the magnets 60 mm 

h Magnets thickness 7 mm 

e Air-gap length variable 

α PMs pole-arc to pole-pitch ratio 0.9 

p Pole-pairs number variable 

Br Remanence of the permanent magnets 1.25 T 

 
 

Fig. 7. Torque versus the angular displacement δ for e = 3mm and p = 6. 

 

 
 

Fig. 8. Axial force versus the angular displacement δ for e = 3 mm and p = 6. 

B. Influence of the air-gap length 

The length of the air-gap has a significant influence on the 

characteristics of the axial magnetic coupling. Fig. 9 and Fig. 

10 show respectively the pull-out torque and the maximal axial 

force as a function of the air-gap length. The results have been 

computed by using (25) and (29). The geometrical parameters 

are the ones given in table I and we have considered a number 

of pole pairs p = 6.  As shown in fig. 9, the pull-out torque of 

the magnetic coupling decreases quickly as the distance 

between the magnets increases. The maximum torque is almost 

divided by two when the air-gap is increased from 2mm to 

7mm. In the same way, the maximal axial force is reduced 

when the air-gap length increases (fig. 10).   

C. Influence of the number of pole pairs 

The variation of pull-out torque and maximal axial force 

versus the number of pole pairs are respectively shown in fig. 

11 and fig. 12. The results have been computed by using (25) 

and (29). For the study, we have considered several air-gap 

lengths. The other geometrical parameters are those given in 

Table I. Fig. 11 shows that all the curves present a maximum 

which depends on the air-gap length. The optimum value of 

the number of pole pairs is shifted to the right when the air-gap 

is reduced. This result is well known for magnetic couplings. 

For the studied coupling (Table I), the optimal number of pole 

pairs is p = 6 if we consider an air-gap length e = 5mm. We 

can observe in Fig. 12 that the maximum axial force decreases 

when the number of pole pairs increases.  
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We have shown here that the torque formula (25) can 

predict the effects of the geometrical parameters on the 

coupling performances and from fig. 11, we can choose 

rapidly the optimum value of the number of pole pairs when 

the other geometrical parameters are given.  

 In the next subsection, we investigate the precision of the 2-

D approximation (25), by comparing the previous analytical 

results with 3-D FEM simulations and experimental results.  

 

 
 

Fig. 9. Pull-out torque versus air-gap length for p = 6. 

 

 
 

Fig. 10. Maximum axial-force versus air-gap length for p = 6. 

 

 
 

Fig. 11. Pull-out torque versus the number of pole pairs for several air-gap 

values. 

 
 

Fig. 12. Maximum axial force versus the number of pole pairs for several air-

gap values. 

VI. 3-D FEM SIMULATIONS AND EXPERIMENTAL RESULTS 

In order to show the limits of the formulas (25) and (29), the 

analytical results have been compared to 3-D FEM simulations 

in one hand and to experimental results in another hand. For 

the 3-D finite element simulations, we have used COMSOL 

multiphysics software.  

For the experimental validation, we have manufactured an 

axial magnetic coupling prototype using sector type NdFeB 

magnets glued on iron yokes. The geometrical parameters of 

the prototype are those of Table I. We choose a number of 

pole pairs p = 6 that corresponds practically to the optimum 

value for an air-gap value e = 5mm.  

Fig. 13 shows the axial magnetic coupling placed on the test 

bench. The axial coupling is inserted between two electrical 

machines. In fig. 13, the air-gap value is e = 9.5mm. 

A. 3-D FEM results 

Fig. 14 and Fig. 15 show respectively the pull-out torque 

and the maximal axial force as a function of the air-gap length 

obtained with 3-D finite elements analysis and with the 2-D 

analytical model. The number of harmonic terms used in (24) 

and (28) is N = 10. The geometrical parameters are those 

given in Table I. For this study, the pole pair number is fixed 

to p = 6. As expected for this type of device, the 2-D analytical 

prediction gives higher values for both pull-out torque and 

maximal axial force as compared to 3-D FE analysis. 

This is mainly due to the 3-D effects which are not taken 

into account in the proposed model (the radial dependence of 

the magnetic field is not considered). The error on the pull-out 

torque prediction ranges from 22% for e=2mm to 37% for 

e=12mm. The error on the maximal axial force prediction is 

less important and ranges from 8% for e=2mm to 34% for 

e=12mm. 

Figs. 16 show the pull-out torque versus the number of pole 

pairs computed with 3 methods ((24), (25) and3-D FEM). The 

results are given for three values of the air-gap lengths. As it 

can be observed in Figs. 16, although the analytical formula 

(25) predicts higher torque values, the number of pole pairs 

which corresponds to the maximal value of the torque is 

almost the same for the 3 methods in use. 
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Fig. 13. Axial magnetic coupling prototype placed on the test bench (e = 

9.5mm). 

 
Fig. 14. Pull-out torque versus the air-gap length for p = 6: 3-D FEM and 2-D 

analytical results.  

 

 
Fig. 15. Maximum axial-force versus the air-gap length for p = 6, 3-D FEM 

and 2-D analytical results. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Pull-out torque versus the number of pole pairs obtained with 3-D 

FEM and 2-D analytical model: (a) e = 2mm; (b) e = 6mm; (c) e = 10mm. 

 

Fig. 17 presents the synthesis of Fig. 16 and gives the 

optimal value of the pole-pair number versus air-gap lengths. 

This is an important result since we can observe in fig. 17 that 

the analytical formula (25) is suitable in the determination of 

the optimum value of the pole-pair number with the air-gap 

value when the other geometrical parameters are fixed. 

B. Experimental results 

Fig. 18 compares the measured values of the axial flux 

density and the ones obtained with the proposed 2D analytical 

model for no load condition (δ=0). The measurements are 

made along the θ coordinate at the mean radius of the magnets 

Re = 45 mm. For this test, the air-gap is fixed at e = 9.5mm. A 

Hall probe placed on a XY table is used to measure the 

magnetic field distribution. As the magnetic flux density is 

measured at the mean radius Re, we can observe very good 

agreement between experimental results and the ones obtained 

with the 2-D analytical model.  

To show the limits of the 2-D analytical model, we have 

measured the radial dependence of the axial flux density at a 

center line of a pole for no-load condition (δ=0). The air-gap is 

fixed at e = 9.5mm. The results are shown in fig. 19. As it can 

be observed, the axial flux density shows large variations 

along the radial expanse of the magnet. This is due to the large 

value of the air-gap. This result can not be predicted by the 2-

D analytical model which neglects the radial dependence of 

the magnetic field. We can note a good agreement between 3-

D FEM simulations and experimental results. 
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Fig. 17. Optimal value of the pole-pair number versus air-gap dimension 

computed with 3-D FEM and 2-D analytical model (25). 

 
Fig. 18. Measured and computed (2D analytical model) axial flux density in 

the middle of the air-gap at the mean radius Re =(R1+R2)/2 for e = 9.5 mm. 

 

 
Fig. 19. Measured and computed axial flux density along a radial lines in the 

middle of the air-gap at a center line of a pole for e = 9.5 mm. 

 

Figs. 20 show the comparison between the measured values 

of the static torque and the calculated ones by using the 2-D 

analytical model (25) and 3-D FEM. The static torque was 

measured by suspending weights from a wire attached to a rod 

(a rotor is locked and the other one can rotate). The relative 

angular position δ was measured using an encoder with a 

resolution of 4096 steps per revolution (0.088 degree).  Two 

values of the air-gap dimension were considered (e = 4mm and 

e = 9.5mm). It can be noticed that the experimental 

measurements are in good agreement with the results obtained 

with 3-D FE simulations. As shown previously, analytical 

formula (25) gives higher values of around 30% for the pull-

out torque. 

 
(a) 

 
(b) 

Fig. 20. Measured and computed static torque versus the angular 

displacement δ for p = 6: (a) e = 4mm; (b) e = 9.5mm 

VII. CONCLUSION 

In this paper, we have proposed new simple analytical 

expressions for computing axial force and torque of an axial 

magnetic coupling. These expressions are determined by the 

solution of 2-D Laplace’s and Poisson’s equations (mean 

radius model) in the different regions (air-gap and magnets). 

 Although the proposed 2D analytical model shows some 

lack of accuracy compared to 3D finite-element simulations 

and experimental results (error of around 30% on the pull-out 

torque prediction), we have shown that it can be used to 

determine rapidly the optimal value of the pole-pair number 

when the other geometrical parameters are given. 

Moreover, the proposed analytical formulas can be useful 

tools for the first step of design optimization since continuous 

derivatives issued from the analytical expressions are of great 

importance in most optimization methods. 

APPENDIX 

•  The development of (10) and (11) gives 
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The development of (13) and (14) gives 
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•  Expressions of the coefficients II
ka , II

kb , II
kc  and II

kd  for the 

air-gap region 

The development of (18) to (21) gives 
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•  Expression of the coefficients Wk, Xk, Yk and Zk given in (24) 

and (28)  
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