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Simple analytical method 
for determining electrical resistivity 
and sheet resistance using the van 
der pauw procedure
f. S. oliveira, R. B. cipriano, f. t. da Silva, e. c. Romão & c. A. M. dos Santos*

this work reports an analytical method for determining electrical resistivity (ρ) and sheet resistance 

(RS) of isotropic conductors. the method is compared with previous numerical solutions and available 

experimental data showing a universal behavior for isotropic conductors. An approximated solution 

is also reported allowing one to easily determine ρ and RS for samples either with regular or arbitrary 

shapes.

�e study of electrical transport properties is of great importance since is routinely used in many theoretical and 
experimental researches as well as in many applications. �ey are especially important for characterizing many 
materials such as isotropic and anisotropic polycrystalline samples, metal plates, single crystals in bulk and plate-
like  forms1–4, homogeneous and heterogeneous thin  �lms5–7, 2D electrical conductivity in exfoliated materials 
such as graphene and  MoS2

8–10, conventional and non-conventional  superconductors11–15, organic conductors 
and  superconductors5,11, Si-based compounds for electronic  applications16,17, new materials for energy storage 
such as modern batteries, fuel cells, and solar  panels18–20, and even for biological  specimens21,22. Furthermore, the 
study of phase  transitions23,24, structural  properties25,26, and anisotropic  properties1,27 have been important for 
materials science and engineering applications. With regard to the physical properties, measuring electrical con-
ductivity is of great relevance for understanding several physical phenomena such as  superconductivity14,15,28,29, 
topological  materials9,13,30,31, 1D and 2D  conductivity3,10,11,28, quantum Hall  e�ect10,32, electronic and quantum 
phase  transitions3,12,23,33, and many other physical e�ects. In many of these applications one of the broadest 
interests is dealing with samples of irregular shapes and small sizes.

In this particular work, we report a simple analytical procedure to determine electrical resistivity and sheet 
resistance of isotropic conductors either with regular or arbitrary shapes.

One of the procedures used to determine of electrical resistivity and sheet resistance of conducting materials 
with regular or arbitrary shape was proposed more than 60 years ago by van der Pauw (vdP)34,35. In this procedure 
four electrical contacts are placed on the sample, as shown in Fig. 1. Current and voltage contacts are cycled 
through switches 1 and 2.

Based upon the measured R1 and R2 values, electrical resistivity (ρ) and sheet resistance (RS = ρ/d) can be 
determined  by34,35

where d is the thickness of the sample and f(R2/R1) is a geometric factor that is, up to now, determined numeri-
cally or graphically. Since the vdP method was  introduced34 others have suggested various ways to determine f(R2/
R1). Ramadan et al.37 provided values of f(R2/R1) for 1 ≤ R2/R1 ≤ 200. de Vries and  Vieck38 reported some results 
for f(R2/R1) using polyethylene samples with parallelepiped shapes with aspect ratio (length/width) between 
approximately 0.6 and 2.6. At present, f(R2/R1) is the best determined using the method of  Chan39 who solved 
numerically the transcendental equation
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for 1 ≤ R2/R1 ≤ 104 with high precision.
In addition, some authors have discussed non-ideal conditions in the vdP measurements taking into account 

corrections due to contacts, sample thickness, and sample  inhomogeneity36,40–44. In this particular work, the sam-
ples are considered isotropic, homogeneous in composition and in thickness, with electrical contacts in�nitely 
small compared to size of the samples, placed at the border of the them.

Results and discussion
Montgomery45, using a similar procedure as illustrated in Fig. 1, but for parallelepiped samples, developed a 
graphical method to determine the electrical resistivity of both isotropic and anisotropic samples, which was 
supported by the calculation of the electrostatic potential for rectangular blocks reported by Logan et al.46 and the 
Wasscher transformation from isotropic to anisotropic  sample47. A modi�cation of the Montgomery  method45 
has allowed us to determine the electrical resistivity and sheet resistance of parallelepiped samples based upon 
simple  equations48.

Using the Montgomery  method45,47 one can �nd electrical resistivity of isotropic parallelepiped samples by

where E is the e�ective thickness, which measures the penetration depth of the electrical current into the sample; 
it is equal to d in Fig. 1 for thin samples H1 and H2 are functions of L2/L1 given  by46,48

and

where L1 and L2 are the length and width of a particular parallelepiped  sample46,48 (see Fig. 2).
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Figure 1.  Schematic of a sample with thickness d and electrical contacts prepared using the van der Pauw 
procedure. Electrical resistances R1 = RBC,DA = VBC/IDA and R2 = RAB,CD = VAB/ICD are measured by switching the 
contacts from position 1 to 2, respectively. �ermoelectric voltages associated with the electrical contacts to the 
sample are eliminated by measuring each dc voltage for both polarities in the following way: R1 = RBC,DA = (V+

BC 
– V-

CB)/(I+
DA – I-

AD) and R2 = RAB,CD = (V+
AB – V-

BA)/(I+
CD – I-

DC). �is �gure was  adapted from Karls and  Hoch36. 
License: 00331-20020-00000-AA293, Paint/Windows 10, www.micro so�.com/pt-br/windo ws.

Figure 2.  Conformal transformation of a sample with arbitrary shape in the van der Pauw method into 
parallelepiped sample in the Montgomery method. �e equivalent parallelepiped sample, with same thickness 
d and electrical resistances R1 and R2 of the real sample, has sides L1 and L2. �e L2/L1 ratio is calculated based 
upon H1/H2 = R2/R1, where R1 and R2 are determined experimentally, and H1 and H2 are given by Eqs. (4) and 
(5). License: 00331-20020-00000-AA293, Paint/Windows 10, www.micro so�.com/pt-br/windo ws.

http://www.microsoft.com/pt-br/windows
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Despite the shape of the samples, Eqs. (1) and (3) that must be equal for a given conducting material. �is 
implies

for thin samples (E = d). Furthermore, using Eq. (3) again to eliminate R2/R1, one can obtain

which a�er combining with Eq. (2) and making some algebraic manipulations (see Supplementary material) 
leads to

�is result recovers the fundamental equation of van der Pauw  method34,35

which shows that f(H1,H2) given by Eq. (7) is exact solution of the transcendental Eq. (2). A con�rmation can be 
observed in the lower inset of Fig. 3, which shows that adding the two terms on the le� side of the Eq. (8) yields 
unity, no matter the R2/R1 ratio.

Additionaly, from Eq. (8), one can write H2 as a function of H1, as

which can be used to eliminate H2 in Eq. (7), yielding the geometric factor

since H1 is only a function of L2/L1, given by Eq. (4). Eliminating H2 in Eq. (7) is of special interest because the 
convergence of 1/H1 series is much faster than 1/H2 (see Supplementary material).

�us, electrical resistivity and sheet resistance can be exactly determined by
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Figure 3.  Geometric factor f (R2/R1) and f (L2/L1) in the van der Pauw method versus R2/R1. Red line represents 
the behavior predicted by Eq. (11) with H1 calculated using Eq. (4) with the procedure described in section II of 
the Supplementary material. �e red curve overlaps to the numerical solution by  Chan39, displayed by the blue 
dashed line. Symbols represent data from this work and published  values38,48. Geometric factor is shown only for 
R2/R1 ≥ 1 because it is symmetric with regard to R2/R1 ≤ 1. Uncertainties shown in f(R2/R1) for two points near 
f = 1 were calculated using Eq. (1) by propagating the uncertainties due to RS determined by standard four probe 
method (see the calculation for the circle and star symbols in Tables 2 and 3). Same proportional uncertainties 
apply to the yellow and pink symbols. Lower inset demonstrates that H1 and H2 provide an exact solution 
for the transcendental equations by vdP. Upper inset displays RS (= ρ/d) for �ve di�erent experimental set of 
measurements calculated with Eq. (12). �e constant values of RS show how precise the procedure reported here 
is over the typical R2/R1 range of measurements, 1 ≤ R2/R1 ≤ 103. License: GF3S5-3078-7903112, Origin 2018 
(9.5), www.origi nlab.com.
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An important aspect associated with above results is the fact that the equations in the Montgomery method 
are related to parallelepiped samples, but solve the transcendental equations in the vdP method, which work 
not only for parallelepiped samples but also for any regular and arbitrary shapes. �is is valid because there is a 
conformal transformation, in a similar way as described by  others34,38,49 of the isotropic sample, with arbitrary 
shape and measurements R1 and R2 in the vdP method, into an equivalent parallelepiped sample with the same 
electrical resistances and correspondent sides L1 and L2 in the Montgomery method. �is idea is displayed in 
Fig. 2. Once the equivalent parallelepiped sample is de�ned, equations of the Montgomery method can be used 
to solve Eqs. (1) and (2) by vdP. Such as H1 and H2 are functions of the L2/L1 (see Eqs. (4) and (5) again), f(H2,H1) 
and f(L2/L1) given by Eq. (7) or (11) shows that this parameter is indeed a geometric factor, in agreement with 
previous  reports34,45,46.

Two cases of this conformal transformation are of particular interest: (i) a sample with parallelepiped shape 
is its own equivalent sample, and (ii) a non-parallelepiped sample with R1 = R2 (f(1) = 1) is represented by an 
equivalent square sample. Furthermore, a sample with square shape (L1 = L2) has also special interest, since R1 
and R2 must have same values, no matter the size of the sample (see, for instance, results for Al foils in Table II of 
the  reference48). Since R1 = R2 for any square sample, R1 + R2 must be constant regardless the length of the squares, 
which is expected because sheet resistance must be the same for a given conducting material with homogeneous 
thickness (see Eq. (1) again).

In order to understand this transformation better, we compare the f(L2/L1) from the exact solution given 
by Eq. (11) with f(R2/R1) from di�erent numerical  calculations34,35,37–39. Figure 3 displays the high precision 
numerical solution reported by  Chan39 and the expected behavior for Eq. (11) (see also Supplementary mate-
rial). Available experimental data reported  previously38,48 and measured in this work are also shown in Fig. 3.

In Fig. 3, one can see a clear the overlap between the expected behavior by Eq. (11), indicated by red line, 
and the numerical calculation by  Chan39 shown by the blue dashed line. Overlap (not shown) with other results 
reported previously were also  observed34,35,37,38. Additionally, symbols shown in Fig. 3 are related to some experi-
mental data available in literature for polyethylene (PE) samples (green triangles)38, Cu metal sheet plates (blue 
squares), and Al foil (red diamonds)48. Yellow circles and pink stars are due to measurements with samples 
made out of Al foil with a circular and arbitrary shape, respectively, as displayed in Fig. 4. In order to test the 
transformation proposed in this work, we measured a sample with arbitrary shape, as used by van der Pauw 
(see Fig. 3 in Ref.34).

�e electrical resistivity used to determine f(R2/R1) for the experimental data plotted in Fig. 3 was measured 
using standard four-probe method, measuring square samples with Montgomery  method45, or searching for 
R1 = R2 during the application of the vdP method, in which f(1) = 1 (equivalent square sample). As shown in Fig. 3, 
all the data for the several isotropic samples collapse into a universal behavior, despite the shapes and materials.

�e upper inset of the Fig. 3 displays the results of the sheet resistance calculated by Eq. (12) for the �ve 
experimental sets of data. �e results show that RS is almost constant for each material over the measured range: 
1 ≤ R2/R1 ≤ 103, as expected.

Regarding practical purposes, as reported  previously48 H1 and H2 can be truncated in the �rst term of each 
series, as H1 ≈

π
8
sinh(πG) and H2 ≈

π
8
sinh(π/G) , providing an approximated solution for the geometric fac-

tor from Eq. (7) as

where G ≈ L2/L1 is a dimensionless geometric parameter for the equivalent parallelepiped sample which can be 
easily estimated by
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Figure 4.  Shape of the samples measured in this work. �ey were made out from Al foil with (a) circular shape 
(r = 5 cm) and (b) arbitrary shape, as used by  vdP34. Positions indicated by letters represent the positions of the 
electrical contacts for the measurement data shown in Tables 2 and 3. License: 00331-20020-00000-AA293, 
Paint/Windows 10, https ://www.micro so�.com/pt-br/windo ws.
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that is a good approximation to �nd L2/L1 from 1 up to 4, corresponding to R2/R1 from 1 up to ~ 105.
Figure 5 displays the behavior of f(G) given by Eq. (13) and compares with the exact solution of f(L2/L1) 

predicted by Eq. (11).
�e behavior of the black line in Fig. 5 demonstrates that the Eq. (13) for f(G), along with (14), is a good 

approximation to determine f(L2/L1), which is very close to the red line. �e error of f(R2/R1) shown in inset of 
the Fig. 4 is less than 3.3% over the  10–5 ≤ R2/R1 ≤ 105 range. For the practical range of R1 and R2 measurements 
(typically R2/R1 ≤ 103) the error is less than 1%. �us, the bene�ts of using the approximated solution can be 
considered excellent since the uncertainties due to the size of the electrical contacts during samples preparation 
are typically much higher. A numerical comparison between f(L2/L1) and f(G), for selected values in the R2/R1 
range shown in Fig. 5 is displayed in Table 1.

Based upon above discussion, one can rewrite Eq. (1) as

which is a simple approximated function that allows the determination of RS or ρ for thin samples (E = d) directly 
from the R1 and R2 measurements. If R1 and R2 are measured with high precision, the error of ρ in Eq. (15) is the 
same as the f(G), which is displayed in upper inset of the Fig. 5 and Table 1.

Finally, the conformal transformation described above is veri�ed analyzing the measurements of the samples 
displayed in Fig. 4, with the method reported here. Table 2 and 3 provided the results for both samples, whose 
di�erent electrical contacts were used to measure R1 and R2, as indicated in the corresponding tables.

(14)G ≈
1

2







1

π

ln

�

R2

R1

�

+

�

�

1

π

ln

�

R2

R1

��2

+ 4







,

(15)ρ(G) =
πd

8
(R1 + R2)

1

[csch(πG) + csch(π/G)]
,

Figure 5.  Comparison between exact solution f(L2/L1) and approximated solution f(G) given by Eqs. (11) 
and (13), respectively. In lower inset is displayed a zooming from  104 to  105. Upper inset shows the percentage 
di�erence between f(R2/R1) and f(L2/L1). Error is less than 3.3% over the  10–5 ≤ R2/R1 ≤ 105 range. License: 
GF3S5-3078-7903112, Origin 2018 (9.5), https ://www.origi nlab.com.

Table 1.  Some selected values for the parameters discussed in this work. L2/L1, H1, H2, and f(L2/L1) are 
numerically calculated using Eqs. (4), (10), and (11) with n = 0. G and f(R2/R1) are calculated using the 
approximations given by Eqs. (13) and (14). Error of f(G) was obtained a�er comparison with f(L2/L1) values. 
For details of the calculations refer to Section II of the Supplementary material.

R2/R1 = H1/H2 1 10 102 103 104 105

L2/L1 0.99980 1.42802 1.95900 2.55341 3.18450 3.83791

H1 4.53236 17.4311 92.4347 598.193 4,343.92 33,836.5

H2 4.53236 1.74311 0.92435 0.59819 0.43439 0.33837

f(L2/L1) 1.00000 0.69926 0.40385 0.26370 0.19167 0.14931

G 1.00000 1.43150 1.97277 2.58557 3.24035 3.91979

f(G) 1.00062 0.69906 0.40443 0.26608 0.19557 0.15424

Error f(G) (%) − 0.062 − 0.029 0.144 0.902 2.035 3.302

https://www.originlab.com
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Results in Table 2 and 3 show that the Eqs. (13) to (15) allow one to determine easily the sheet resistance 
of the aluminum foil in both samples. All values of the sheet resistances are close to each other and the aver-
ages, < RS >  = 3.25(3) and < RS(G) >  = 3.26(3) mΩ for the circular sample, and < RS(G) >  = 3.34(3) mΩ for the 
sample with arbitrary shape, agree very well, within of uncertainty, with regard to the value determined from 
standard four-probe method, RS (4P) = 3.2(3) mΩ. Especially interesting is the result in the �rst line of the Table 3, 
related to the shape and the electrical contacts of the sample that is similar to the one reported by  vdP34 (yellow 
contacts in Fig. 4b). In such a case,  R1 and R2 measurements are similar and yield f(R2/R1) ~ 1, suggesting that the 
electrical contacts in the historical sample by  vdP34 has to do with an equivalent square sample.

conclusion
In summary, a simple method for determining electrical resistivity and sheet resistance of isotropic samples 
has been obtained by comparing electrical resistivity equations given by vdP and Montgomery methods. �e 
transcendental equation reported in the vdP method has been solved both exactly and approximately by Eqs. 
(12) and (15), respectively. �e geometric factor, regardless of the shape of the sample, can be determined based 
upon H1 and H2 series, which depend on L2/L1, the ratio between the length and width of the equivalent paral-
lelepiped sample. A comparison of the geometric factor with previous numerical calculations and experimental 
data shows a universal behavior for any isotropic conducting materials. �e method reported can be used for 
measuring electrical properties of many materials, as noted in the introduction. Compared with the best numeri-
cal calculation reported by  Chan39, the method described here is much simpler to use. As far as we know, this is 
the �rst time since the report for the vdP  method34 more than 60 years ago, that an analytical solution for this 
method has been reported.
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