
Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser

Computer Science Department

Bar-Ilan University

Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg

Computer Science Department

Bar-Ilan University

Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We present a simple and effective scheme

for dependency parsing which is based on

bidirectional-LSTMs (BiLSTMs). Each sen-

tence token is associated with a BiLSTM vec-

tor representing the token in its sentential con-

text, and feature vectors are constructed by

concatenating a few BiLSTM vectors. The

BiLSTM is trained jointly with the parser ob-

jective, resulting in very effective feature ex-

tractors for parsing. We demonstrate the ef-

fectiveness of the approach by applying it to

a greedy transition-based parser as well as to

a globally optimized graph-based parser. The

resulting parsers have very simple architec-

tures, and match or surpass the state-of-the-art

accuracies on English and Chinese.

1 Introduction

The focus of this paper is on feature represen-

tation for dependency parsing, using recent tech-

niques from the neural-networks (“deep learning”)

literature. Modern approaches to dependency pars-

ing can be broadly categorized into graph-based

and transition-based parsers (Kübler et al., 2009).

Graph-based parsers (McDonald, 2006) treat pars-

ing as a search-based structured prediction prob-

lem in which the goal is learning a scoring func-

tion over dependency trees such that the correct tree

is scored above all other trees. Transition-based

parsers (Nivre, 2004; Nivre, 2008) treat parsing as

a sequence of actions that produce a parse tree, and

a classifier is trained to score the possible actions at

each stage of the process and guide the parsing pro-

cess. Perhaps the simplest graph-based parsers are

arc-factored (first order) models (McDonald, 2006),

in which the scoring function for a tree decomposes

over the individual arcs of the tree. More elaborate

models look at larger (overlapping) parts, requiring

more sophisticated inference and training algorithms

(Martins et al., 2009; Koo and Collins, 2010). The

basic transition-based parsers work in a greedy man-

ner, performing a series of locally-optimal decisions,

and boast very fast parsing speeds. More advanced

transition-based parsers introduce some search into

the process using a beam (Zhang and Clark, 2008)

or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing frame-

work being used, a crucial step in parser design is

choosing the right feature function for the underly-

ing statistical model. Recent work (see Section 2.2

for an overview) attempt to alleviate parts of the fea-

ture function design problem by moving from lin-

ear to non-linear models, enabling the modeler to

focus on a small set of “core” features and leav-

ing it up to the machine-learning machinery to come

up with good feature combinations (Chen and Man-

ning, 2014; Pei et al., 2015; Lei et al., 2014; Taub-

Tabib et al., 2015). However, the need to carefully

define a set of core features remains. For exam-

ple, the work of Chen and Manning (2014) uses 18

different elements in its feature function, while the

work of Pei et al. (2015) uses 21 different elements.

Other works, notably Dyer et al. (2015) and Le and

Zuidema (2014), propose more sophisticated feature

representations, in which the feature engineering is

replaced with architecture engineering.

In this work, we suggest an approach which is

much simpler in terms of both feature engineering

313

Transactions of the Association for Computational Linguistics, vol. 4, pp. 313–327, 2016. Action Editor: Marco Kuhlmann.
Submission batch: 2/2016; Published 7/2016.

c©2016 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

and architecture engineering. Our proposal (Section

3) is centered around BiRNNs (Irsoy and Cardie,

2014; Schuster and Paliwal, 1997), and more specif-

ically BiLSTMs (Graves, 2008), which are strong

and trainable sequence models (see Section 2.3).

The BiLSTM excels at representing elements in a

sequence (i.e., words) together with their contexts,

capturing the element and an “infinite” window

around it. We represent each word by its BiLSTM

encoding, and use a concatenation of a minimal set

of such BiLSTM encodings as our feature function,

which is then passed to a non-linear scoring function

(multi-layer perceptron). Crucially, the BiLSTM is

trained with the rest of the parser in order to learn

a good feature representation for the parsing prob-

lem. If we set aside the inherent complexity of the

BiLSTM itself and treat it as a black box, our pro-

posal results in a pleasingly simple feature extractor.

We demonstrate the effectiveness of the approach

by using the BiLSTM feature extractor in two pars-

ing architectures, transition-based (Section 4) as

well as a graph-based (Section 5). In the graph-

based parser, we jointly train a structured-prediction

model on top of a BiLSTM, propagating errors from

the structured objective all the way back to the

BiLSTM feature-encoder. To the best of our knowl-

edge, we are the first to perform such end-to-end

training of a structured prediction model and a recur-

rent feature extractor for non-sequential outputs.1

Aside from the novelty of the BiLSTM feature

extractor and the end-to-end structured training, we

rely on existing models and techniques from the

parsing and structured prediction literature. We

stick to the simplest parsers in each category –

greedy inference for the transition-based architec-

ture, and a first-order, arc-factored model for the

graph-based architecture. Despite the simplicity

of the parsing architectures and the feature func-

tions, we achieve near state-of-the-art parsing ac-

curacies in both English (93.1 UAS) and Chinese

(86.6 UAS), using a first-order parser with two fea-

tures and while training solely on Treebank data,

without relying on semi-supervised signals such as

pre-trained word embeddings (Chen and Manning,

2014), word-clusters (Koo et al., 2008), or tech-

1Structured training of sequence tagging models over RNN-

based representations was explored by Chiu and Nichols (2016)

and Lample et al. (2016).

niques such as tri-training (Weiss et al., 2015).

When also including pre-trained word embeddings,

we obtain further improvements, with accuracies of

93.9 UAS (English) and 87.6 UAS (Chinese) for a

greedy transition-based parser with 11 features, and

93.6 UAS (En) / 87.4 (Ch) for a greedy transition-

based parser with 4 features.

2 Background and Notation

Notation We use x1:n to denote a sequence of n

vectors x1, · · · , xn. Fθ(·) is a function parameter-

ized with parameters θ. We write FL(·) as shorthand

for FθL – an instantiation of F with a specific set of

parameters θL. We use ◦ to denote a vector con-

catenation operation, and v[i] to denote an indexing

operation taking the ith element of a vector v.

2.1 Feature Functions in Dependency Parsing

Traditionally, state-of-the-art parsers rely on linear

models over hand-crafted feature functions. The fea-

ture functions look at core components (e.g. “word

on top of stack”, “leftmost child of the second-to-

top word on the stack”, “distance between the head

and the modifier words”), and are comprised of sev-

eral templates, where each template instantiates a bi-

nary indicator function over a conjunction of core

elements (resulting in features of the form “word on

top of stack is X and leftmost child is Y and . . . ”).

The design of the feature function – which compo-

nents to consider and which combinations of com-

ponents to include – is a major challenge in parser

design. Once a good feature function is proposed

in a paper it is usually adopted in later works, and

sometimes tweaked to improve performance. Ex-

amples of good feature functions are the feature-set

proposed by Zhang and Nivre (2011) for transition-

based parsing (including roughly 20 core compo-

nents and 72 feature templates), and the feature-

set proposed by McDonald et al. (2005) for graph-

based parsing, with the paper listing 18 templates

for a first-order parser, while the first order feature-

extractor in the actual implementation’s code (MST-

Parser2) includes roughly a hundred feature tem-

plates.

2http://www.seas.upenn.edu/~strctlrn/

MSTParser/MSTParser.html

314

http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

The core features in a transition-based parser usu-

ally look at information such as the word-identity

and part-of-speech (POS) tags of a fixed number of

words on top of the stack, a fixed number of words

on the top of the buffer, the modifiers (usually left-

most and right-most) of items on the stack and on the

buffer, the number of modifiers of these elements,

parents of words on the stack, and the length of the

spans spanned by the words on the stack. The core

features of a first-order graph-based parser usually

take into account the word and POS of the head

and modifier items, as well as POS-tags of the items

around the head and modifier, POS tags of items be-

tween the head and modifier, and the distance and

direction between the head and modifier.

2.2 Related Research Efforts

Coming up with a good feature-set for a parser is a

hard and time consuming task, and many researchers

attempt to reduce the required manual effort. The

work of Lei et al. (2014) suggests a low-rank ten-

sor representation to automatically find good feature

combinations. Taub-Tabib et al. (2015) suggest a

kernel-based approach to implicitly consider all pos-

sible feature combinations over sets of core-features.

The recent popularity of neural networks prompted

a move from templates of sparse, binary indicator

features to dense core feature encodings fed into

non-linear classifiers. Chen and Manning (2014) en-

code each core feature of a greedy transition-based

parser as a dense low-dimensional vector, and the

vectors are then concatenated and fed into a non-

linear classifier (multi-layer perceptron) which can

potentially capture arbitrary feature combinations.

Weiss et al. (2015) showed further gains using the

same approach coupled with a somewhat improved

set of core features, a more involved network archi-

tecture with skip-layers, beam search-decoding, and

careful hyper-parameter tuning. Pei et al. (2015)

apply a similar methodology to graph-based pars-

ing. While the move to neural-network classi-

fiers alleviates the need for hand-crafting feature-

combinations, the need to carefully define a set of

core features remain. For example, the feature rep-

resentation in Chen and Manning (2014) is a con-

catenation of 18 word vectors, 18 POS vectors and

12 dependency-label vectors.3

The above works tackle the effort in hand-crafting

effective feature combinations. A different line of

work attacks the feature-engineering problem by

suggesting novel neural-network architectures for

encoding the parser state, including intermediately-

built subtrees, as vectors which are then fed to non-

linear classifiers. Titov and Henderson encode the

parser state using incremental sigmoid-belief net-

works (2007). In the work of Dyer et al. (2015), the

entire stack and buffer of a transition-based parser

are encoded as a stack-LSTMs, where each stack el-

ement is itself based on a compositional represen-

tation of parse trees. Le and Zuidema (2014) en-

code each tree node as two compositional represen-

tations capturing the inside and outside structures

around the node, and feed the representations into

a reranker. A similar reranking approach, this time

based on convolutional neural networks, is taken by

Zhu et al. (2015). Finally, in Kiperwasser and Gold-

berg (2016) we present an Easy-First parser based

on a novel hierarchical-LSTM tree encoding.

In contrast to these, the approach we present in

this work results in much simpler feature functions,

without resorting to elaborate network architectures

or compositional tree representations.

Work by Vinyals et al. (2015) employs a

sequence-to-sequence with attention architecture for

constituency parsing. Each token in the input sen-

tence is encoded in a deep-BiLSTM representation,

and then the tokens are fed as input to a deep-

LSTM that predicts a sequence of bracketing ac-

tions based on the already predicted bracketing as

well as the encoded BiLSTM vectors. A trainable

attention mechanism is used to guide the parser to

relevant BiLSTM vectors at each stage. This ar-

chitecture shares with ours the use of BiLSTM en-

coding and end-to-end training. The sequence of

bracketing actions can be interpreted as a sequence

of Shift and Reduce operations of a transition-based

parser. However, while the parser of Vinyals et al.

3In all of these neural-network based approaches, the vec-

tor representations of words were initialized using pre-trained

word-embeddings derived from a large corpus external to the

training data. This puts the approaches in the semi-supervised

category, making it hard to tease apart the contribution of the au-

tomatic feature-combination component from that of the semi-

supervised component.

315

relies on a trainable attention mechanism for fo-

cusing on specific BiLSTM vectors, parsers in the

transition-based family we use in Section 4 use a hu-

man designed stack and buffer mechanism to manu-

ally direct the parser’s attention. While the effec-

tiveness of the trainable attention approach is im-

pressive, the stack-and-buffer guidance of transition-

based parsers results in more robust learning. In-

deed, work by Cross and Huang (2016), published

while working on the camera-ready version of this

paper, show that the same methodology as ours

is highly effective also for greedy, transition-based

constituency parsing, surpassing the beam-based ar-

chitecture of Vinyals et al. (88.3F vs. 89.8F points)

when trained on the Penn Treebank dataset and with-

out using orthogonal methods such as ensembling

and up-training.

2.3 Bidirectional Recurrent Neural Networks

Recurrent neural networks (RNNs) are statistical

learners for modeling sequential data. An RNN al-

lows one to model the ith element in the sequence

based on the past – the elements x1:i up to and in-

cluding it. The RNN model provides a framework

for conditioning on the entire history x1:i without

resorting to the Markov assumption which is tradi-

tionally used for modeling sequences. RNNs were

shown to be capable of learning to count, as well as

to model line lengths and complex phenomena such

as bracketing and code indentation (Karpathy et al.,

2015). Our proposed feature extractors are based on

a bidirectional recurrent neural network (BiRNN),

an extension of RNNs that take into account both the

past x1:i and the future xi:n. We use a specific flavor

of RNN called a long short-term memory network

(LSTM). For brevity, we treat RNN as an abstrac-

tion, without getting into the mathematical details of

the implementation of the RNNs and LSTMs. For

further details on RNNs and LSTMs, the reader is

referred to Goldberg (2015) and Cho (2015).

The recurrent neural network (RNN) abstraction

is a parameterized function RNNθ(x1:n) mapping a

sequence of n input vectors x1:n, xi ∈ R
din to a se-

quence of n output vectors h1:n, hi ∈ R
dout . Each

output vector hi is conditioned on all the input vec-

tors x1:i, and can be thought of as a summary of the

prefix x1:i of x1:n. In our notation, we ignore the

intermediate vectors h1:n−1 and take the output of

RNNθ(x1:n) to be the vector hn.

A bidirectional RNN is composed of two RNNs,

RNNF and RNNR, one reading the sequence in its

regular order, and the other reading it in reverse.

Concretely, given a sequence of vectors x1:n and a

desired index i, the function BIRNNθ(x1:n, i) is de-

fined as:

BIRNNθ(x1:n, i) = RNNF (x1:i) ◦ RNNR(xn:i)

The vector vi = BIRNN(x1:n, i) is then a represen-

tation of the ith item in x1:n, taking into account

both the entire history x1:i and the entire future xi:n
by concatenating the matching RNNs. We can view

the BiRNN encoding of an item i as representing the

item i together with a context of an infinite window

around it.

Computational Complexity Computing the

BiRNN vectors encoding of the ith element of a

sequence x1:n requires O(n) time for computing

the two RNNs and concatenating their outputs.

A naive approach of computing the bidirectional

representation of all n elements result in O(n2)
computation. However, it is trivial to compute

the BiRNN encoding of all sequence items in

linear time by pre-computing RNNF (x1:n) and

RNNR(xn:1), keeping the intermediate representa-

tions, and concatenating the required elements as

needed.

BiRNN Training Initially, the BiRNN encodings

vi do not capture any particular information. During

training, the encoded vectors vi are fed into further

network layers, until at some point a prediction is

made, and a loss is incurred. The back-propagation

algorithm is used to compute the gradients of all the

parameters in the network (including the BiRNN pa-

rameters) with respect to the loss, and an optimizer

is used to update the parameters according to the

gradients. The training procedure causes the BiRNN

function to extract from the input sequence x1:n the

relevant information for the task task at hand.

Going deeper We use a variant of deep

bidirectional RNN (or k-layer BiRNN)

which is composed of k BiRNN functions

BIRNN1, · · · , BIRNNk that feed into each other: the

output BIRNNℓ(x1:n, 1), . . . , BIRNNℓ(x1:n, n) of

BIRNNℓ becomes the input of BIRNNℓ+1. Stacking

316

BiRNNs in this way has been empirically shown to

be effective (Irsoy and Cardie, 2014). In this work,

we use BiRNNs and deep-BiRNNs interchangeably,

specifying the number of layers when needed.

Historical Notes RNNs were introduced by El-

man (1990), and extended to BiRNNs by Schus-

ter and Paliwal (1997). The LSTM variant of

RNNs is due to Hochreiter and Schmidhuber (1997).

BiLSTMs were recently popularized by Graves

(2008), and deep BiRNNs were introduced to NLP

by Irsoy and Cardie (2014), who used them for se-

quence tagging. In the context of parsing, Lewis et

al. (2016) and Vaswani et al. (2016) use a BiLSTM

sequence tagging model to assign a CCG supertag

for each token in the sentence. Lewis et al. (2016)

feeds the resulting supertags sequence into an A*

CCG parser. Vaswani et al. (2016) adds an addi-

tional layer of LSTM which receives the BiLSTM

representation together with the k-best supertags

for each word and outputs the most likely supertag

given previous tags, and then feeds the predicted su-

pertags to a discriminitively trained parser. In both

works, the BiLSTM is trained to produce accurate

CCG supertags, and is not aware of the global pars-

ing objective.

3 Our Approach

We propose to replace the hand-crafted feature func-

tions in favor of minimally-defined feature functions

which make use of automatically learned Bidirec-

tional LSTM representations.

Given n-words input sentence s with words

w1, . . . , wn together with the corresponding POS

tags t1, . . . , tn,4 we associate each word wi and POS

ti with embedding vectors e(wi) and e(ti), and cre-

ate a sequence of input vectors x1:n in which each

xi is a concatenation of the corresponding word and

POS vectors:

xi = e(wi) ◦ e(pi)

The embeddings are trained together with the model.

This encodes each word in isolation, disregarding its

context. We introduce context by representing each

4 In this work the tag sequence is assumed to be given, and

in practice is predicted by an external model. Future work will

address relaxing this assumption.

input element as its (deep) BiLSTM vector, vi:

vi = BILSTM(x1:n, i)

Our feature function φ is then a concatenation of a

small number of BiLSTM vectors. The exact fea-

ture function is parser dependent and will be dis-

cussed when discussing the corresponding parsers.

The resulting feature vectors are then scored using a

non-linear function, namely a multi-layer perceptron

with one hidden layer (MLP):

MLPθ(x) = W 2 · tanh(W 1 · x+ b1) + b2

where θ = {W 1,W 2, b1, b2} are the model parame-

ters.

Beside using the BiLSTM-based feature func-

tions, we make use of standard parsing techniques.

Crucially, the BiLSTM is trained jointly with the rest

of the parsing objective. This allows it to learn rep-

resentations which are suitable for the parsing task.

Consider a concatenation of two BiLSTM vectors

(vi ◦ vj) scored using an MLP. The scoring function

has access to the words and POS-tags of vi and vj , as

well as the words and POS-tags of the words in an

infinite window surrounding them. As LSTMs are

known to capture length and sequence position in-

formation, it is very plausible that the scoring func-

tion can be sensitive also to the distance between i

and j, their ordering, and the sequential material be-

tween them.

Parsing-time Complexity Once the BiLSTM is

trained, parsing is performed by first computing the

BiLSTM encoding vi for each word in the sentence

(a linear time operation).5 Then, parsing proceeds as

usual, where the feature extraction involves a con-

catenation of a small number of the pre-computed vi
vectors.

4 Transition-based Parser

We begin by integrating the feature extractor in a

transition-based parser (Nivre, 2008). We follow

the notation in Goldberg and Nivre (2013). The

5 While the BiLSTM computation is quite efficient as it is,

as demonstrated by Lewis et al. (2016), if using a GPU imple-

mentation the BiLSTM encoding can be efficiently performed

over many of sentences in parallel, making its computation cost

almost negligible.

317

the

s2

jumped

s1

over

s0

the

b0

lazy

b1

dog

b2

ROOT

b3

fox

brown

Configuration:

Scoring:

LSTMf

xthe

concat

LSTMf

xbrown

concat

LSTMf

xfox

concat

LSTMf

xjumped

concat

LSTMf

xover

concat

LSTMf

xthe

concat

LSTMf

xlazy

concat

LSTMf

xdog

concat

LSTMf

xROOT

concat

LSTM b
s0

LSTM b
s1

LSTM b
s2

LSTM b
s3

LSTM b
s4

LSTM b
s5

LSTM b
s6

LSTM b
s7

LSTM b
s8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog VROOT

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

Figure 1: Illustration of the neural model scheme of the transition-based parser when calculating the scores of the

possible transitions in a given configuration. The configuration (stack and buffer) is depicted on the top. Each transition

is scored using an MLP that is fed the BiLSTM encodings of the first word in the buffer and the three words at the top

of the stack (the colors of the words correspond to colors of the MLP inputs above), and a transition is picked greedily.

Each xi is a concatenation of a word and a POS vector, and possibly an additional external embedding vector for the

word. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence, we

iteratively compute scores for all possible transitions and apply the best scoring action until the final configuration is

reached.

transition-based parsing framework assumes a tran-

sition system, an abstract machine that processes

sentences and produces parse trees. The transition

system has a set of configurations and a set of tran-

sitions which are applied to configurations. When

parsing a sentence, the system is initialized to an ini-

tial configuration based on the input sentence, and

transitions are repeatedly applied to this configura-

tion. After a finite number of transitions, the system

arrives at a terminal configuration, and a parse tree

is read off the terminal configuration. In a greedy

parser, a classifier is used to choose the transition

to take in each configuration, based on features ex-

tracted from the configuration itself. The parsing al-

gorithm is presented in Algorithm 1 below.

Given a sentence s, the parser is initialized with

the configuration c (line 2). Then, a feature func-

tion φ(c) represents the configuration c as a vector,

which is fed to a scoring function SCORE assign-

ing scores to (configuration,transition) pairs. SCORE

Algorithm 1 Greedy transition-based parsing

1: Input: sentence s = w1, . . . , xw, t1, . . . , tn,

parameterized function SCOREθ(·) with param-

eters θ.

2: c← INITIAL(s)
3: while not TERMINAL(c) do

4: t̂← argmaxt∈LEGAL(c) SCOREθ

(

φ(c), t
)

5: c← t̂(c)

6: return tree(c)

scores the possible transitions t, and the highest

scoring transition t̂ is chosen (line 4). The transition

t̂ is applied to the configuration, resulting in a new

parser configuration. The process ends when reach-

ing a final configuration, from which the resulting

parse tree is read and returned (line 6).

Transition systems differ by the way they define

configurations, and by the particular set of transi-

tions available to them. A parser is determined by

318

the choice of a transition system, a feature function

φ and a scoring function SCORE. Our choices are

detailed below.

The Arc-Hybrid System Many transition systems

exist in the literature. In this work, we use the arc-

hybrid transition system (Kuhlmann et al., 2011),

which is similar to the more popular arc-standard

system (Nivre, 2004), but for which an efficient dy-

namic oracle is available (Goldberg and Nivre, 2012;

Goldberg and Nivre, 2013). In the arc-hybrid sys-

tem, a configuration c = (σ, β, T) consists of a

stack σ, a buffer β, and a set T of dependency arcs.

Both the stack and the buffer hold integer indices

pointing to sentence elements. Given a sentence

s = w1, . . . , wn, t1, . . . , tn, the system is initial-

ized with an empty stack, an empty arc set, and

β = 1, . . . , n, ROOT , where ROOT is the special root

index. Any configuration c with an empty stack and

a buffer containing only ROOT is terminal, and the

parse tree is given by the arc set Tc of c. The arc-

hybrid system allows 3 possible transitions, SHIFT,

LEFTℓ and RIGHTℓ, defined as:

SHIFT[(σ, b0|β, T)] = (σ|b0, β, T)
LEFTℓ[(σ|s1|s0, b0|β, T)] = (σ|s1, b0|β, T ∪ {(b0, s0, ℓ)})
RIGHTℓ[(σ|s1|s0, β, T)] = (σ|s1, β, T ∪ {(s1, s0, ℓ)})

The SHIFT transition moves the first item of the

buffer (b0) to the stack. The LEFTℓ transition re-

moves the first item on top of the stack (s0) and

attaches it as a modifier to b0 with label ℓ, adding

the arc (b0, s0, ℓ). The RIGHTℓ transition removes

s0 from the stack and attaches it as a modifier to the

next item on the stack (s1), adding the arc (s1, s0, ℓ).

Scoring Function Traditionally, the scoring func-

tion SCOREθ(x, t) is a discriminative linear model

of the form SCOREW (x, t) = (W · x)[t]. The lin-

earity of SCORE required the feature function φ(·)
to encode non-linearities in the form of combination

features. We follow Chen and Manning (2014) and

replace the linear scoring model with an MLP.

SCOREθ(x, t) = MLPθ(x)[t]

Simple Feature Function The feature function

φ(c) is typically complex (see Section 2.1). Our

feature function is the concatenated BiLSTM vec-

tors of the top 3 items on the stack and the first

item on the buffer. I.e., for a configuration c =

(. . . |s2|s1|s0, b0| . . . , T) the feature extractor

is defined as:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0

vi = BILSTM(x1:n, i)

This feature function is rather minimal: it takes

into account the BiLSTM representations of s1, s0
and b0, which are the items affected by the possible

transitions being scored, as well as one extra stack

context s2.6 Figure 1 depicts transition scoring with

our architecture and this feature function. Note that,

unlike previous work, this feature function does not

take into account T , the already built structure. The

high parsing accuracies in the experimental sections

suggest that the BiLSTM encoding is capable of es-

timating a lot of the missing information based on

the provided stack and buffer elements and the se-

quential content between them.

While not explored in this work, relying on

only four word indices for scoring an action re-

sults in very compact state signatures, making

our proposed feature representation very appeal-

ing for use in transition-based parsers that employ

dynamic-programming search (Huang and Sagae,

2010; Kuhlmann et al., 2011).

Extended Feature Function One of the benefits

of the greedy transition-based parsing framework is

precisely its ability to look at arbitrary features from

the already built tree. If we allow somewhat less

minimal feature function, we could add the BiLSTM

vectors corresponding to the right-most and left-

most modifiers of s0, s1 and s2, as well as the left-

most modifier of b0, reaching a total of 11 BiLSTM

vectors. We refer to this as the extended feature set.

As we’ll see in Section 6, using the extended set

does indeed improve parsing accuracies when using

pre-trained word embeddings, but has a minimal ef-

fect in the fully-supervised case.7

6An additional buffer context is not needed, as b1 is by def-

inition adjacent to b0, a fact that we expect the BiLSTM en-

coding of b0 to capture. In contrast, b0, s0, s1 and s2 are not

necessarily adjacent to each other in the original sentence.
7We did not experiment with other feature configurations. It

is well possible that not all of the additional 7 child encodings

are needed for the observed accuracy gains, and that a smaller

feature set will yield similar or even better improvements.

319

4.1 Details of the Training Algorithm

The training objective is to set the score of correct

transitions above the scores of incorrect transitions.

We use a margin-based objective, aiming to maxi-

mize the margin between the highest scoring correct

action and the highest scoring incorrect action. The

hinge loss at each parsing configuration c is defined

as:

max
(

0, 1−max
to∈G

MLP
(

φ(c)
)

[to]

+ max
tp∈A\G

MLP
(

φ(c)
)

[tp]
)

where A is the set of possible transitions and G

is the set of correct (gold) transitions at the cur-

rent stage. At each stage of the training process

the parser scores the possible transitions A, incurs

a loss, selects a transition to follow, and moves to

the next configuration based on it. The local losses

are summed throughout the parsing process of a sen-

tence, and the parameters are updated with respect

to the sum of the losses at sentence boundaries.8

The gradients of the entire network (including the

MLP and the BiLSTM) with respect to the sum of

the losses are calculated using the backpropagation

algorithm. As usual, we perform several training it-

erations over the training corpus, shuffling the order

of sentences in each iteration.

Error-Exploration and Dynamic Oracle Training

We follow Goldberg and Nivre (2013);Goldberg and

Nivre (2012) in using error exploration training with

a dynamic-oracle, which we briefly describe below.

At each stage in the training process, the parser

assigns scores to all the possible transitions t ∈ A. It

then selects a transition, applies it, and moves to the

next step. Which transition should be followed? A

common approach follows the highest scoring tran-

sition that can lead to the gold tree. However, when

training in this way the parser sees only configura-

tions that result from following correct actions, and

as a result tends to suffer from error propagation at

8To increase gradient stability and training speed, we simu-

late mini-batch updates by only updating the parameters when

the sum of local losses contains at least 50 non-zero elements.

Sums of fewer elements are carried across sentences. This as-

sures us a sufficient number of gradient samples for every up-

date thus minimizing the effect of gradient instability.

test time. Instead, in error-exploration training the

parser follows the highest scoring action in A dur-

ing training even if this action is incorrect, exposing

it to configurations that result from erroneous deci-

sions. This strategy requires defining the set G such

that the correct actions to take are well-defined also

for states that cannot lead to the gold tree. Such

a set G is called a dynamic oracle. We perform

error-exploration training using the dynamic-oracle

defined by Goldberg and Nivre (2013).

Aggressive Exploration We found that even when

using error-exploration, after one iteration the model

remembers the training set quite well, and does not

make enough errors to make error-exploration effec-

tive. In order to expose the parser to more errors,

we follow an aggressive-exploration scheme: we

sometimes follow incorrect transitions also if they

score below correct transitions. Specifically, when

the score of the correct transition is greater than that

of the wrong transition but the difference is smaller

than a margin constant, we chose to follow the incor-

rect action with probability pagg (we use pagg = 0.1
in our experiments).

Summary The greedy transition-based parser

follows standard techniques from the literature

(margin-based objective, dynamic oracle training,

error exploration, MLP-based non-linear scoring

function). We depart from the literature by re-

placing the hand-crafted feature function over care-

fully selected components of the configuration with

a concatenation of BiLSTM representations of a few

prominent items on the stack and the buffer, and

training the BiLSTM encoder jointly with the rest

of the network.

5 Graph-based Parser

Graph-based parsing follows the common structured

prediction paradigm (Taskar et al., 2005; McDonald

et al., 2005):

predict(s) = argmax
y∈Y(s)

scoreglobal(s, y)

scoreglobal(s, y) =
∑

part∈y

scorelocal(s, part)

Given an input sentence s (and the corresponding

sequence of vectors x1:n) we look for the highest-

320

LSTMf

xthe

concat

LSTMf

xbrown

concat

LSTMf

xfox

concat

LSTMf

xjumped

concat

LSTMf

x∗

concat

LSTM b
s0

LSTM b
s1

LSTM b
s2

LSTM b
s3

LSTM b
s4

Vthe Vbrown Vfox Vjumped V∗

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse

tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that

is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the

MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same

parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,

we compute scores for all possible n2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-

pendency trees over s. In order to make the search

tractable, the scoring function is decomposed to the

sum of local scores for each part independently.

In this work, we focus on arc-factored graph

based approach presented in McDonald et al. (2005).

Arc-factored parsing decomposes the score of a tree

to the sum of the score of its head-modifier arcs

(h,m):

parse(s) = argmax
y∈Y(s)

∑

(h,m)∈y

score
(

φ(s, h,m)
)

Given the scores of the arcs the highest scoring pro-

jective tree can be efficiently found using Eisner’s

decoding algorithm (1996). McDonald et al. and

most subsequent work estimate the local score of an

arc by a linear model parameterized by a weight vec-

tor w, and a feature function φ(s, h,m) assigning a

sparse feature vector for an arc linking modifier m

to head h. We follow Pei et al. (2015) and replace

the linear scoring function with an MLP.

The feature extractor φ(s, h,m) is usually com-

plex, involving many elements (see Section 2.1).

In contrast, our feature extractor uses merely the

BiLSTM encoding of the head word and the mod-

ifier word:

φ(s, h,m) = BIRNN(x1:n, h) ◦ BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y∈Y(s)

scoreglobal(s, y)

= argmax
y∈Y(s)

∑

(h,m)∈y

score
(

φ(s, h,m)
)

= argmax
y∈Y(s)

∑

(h,m)∈y

MLP (vh ◦ vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score

function such that correct tree y is scored above in-

correct ones. We use a margin-based objective (Mc-

Donald et al., 2005; LeCun et al., 2006), aiming to

maximize the margin between the score of the gold

tree y and the highest scoring incorrect tree y′. We

define a hinge loss with respect to a gold tree y as:

321

max
(

0, 1−max
y′ 6=y

∑

(h,m)∈y′

MLP (vh ◦ vm)

+
∑

(h,m)∈y

MLP (vh ◦ vm)
)

Each of the tree scores is then calculated by acti-

vating the MLP on the arc representations. The en-

tire loss can viewed as the sum of multiple neural

networks, which is sub-differentiable. We calculate

the gradients of the entire network (including to the

BiLSTM encoder and word embeddings).

Labeled Parsing Up to now, we described unla-

beled parsing. A possible approach for adding la-

bels is to score the combination of an unlabeled arc

(h,m) and its label ℓ by considering the label as part

of the arc (h,m, ℓ). This results in |Labels|×|Arcs|
parts that need to be scored, leading to slow parsing

speeds and arguably a harder learning problem.

Instead, we chose to first predict the unlabeled

structure using the model given above, and then pre-

dict the label of each resulting arc. Using this ap-

proach, the number of parts stays small, enabling

fast parsing.

The labeling of an arc (h,m) is performed using

the same feature representation φ(s, h,m) fed into a

different MLP predictor:

label(h,m) = argmax
ℓ∈labels

MLPLBL(vh ◦ vm)[ℓ]

As before we use a margin based hinge loss. The la-

beler is trained on the gold trees.9 The BiLSTM en-

coder responsible for producing vh and vm is shared

with the arc-factored parser: the same BiLSTM en-

coder is used in the parer and the labeler. This

sharing of parameters can be seen as an instance of

multi-task learning (Caruana, 1997). As we show

in Section 6, the sharing is effective: training the

BiLSTM feature encoder to be good at predicting

arc-labels significantly improves the parser’s unla-

beled accuracy.

Loss augmented inference In initial experiments,

the network learned quickly and overfit the data. In

9When training the labeled parser, we calculate the structure

loss and the labeling loss for each training sentence, and sum

the losses prior to computing the gradients.

order to remedy this, we found it useful to use loss

augmented inference (Taskar et al., 2005). The in-

tuition behind loss augmented inference is to update

against trees which have high model scores and are

also very wrong. This is done by augmenting the

score of each part not belonging to the gold tree by

adding a constant to its score. Formally, the loss

transforms as follows:

max(0, 1 + score(x, y)−

max
y′ 6=y

∑

part∈y′

(scorelocal(x, part) + ✶part 6∈y))

Speed improvements The arc-factored model re-

quires the scoring of n2 arcs. Scoring is performed

using an MLP with one hidden layer, resulting in n2

matrix-vector multiplications from the input to the

hidden layer, and n2 multiplications from the hid-

den to the output layer. The first n2 multiplications

involve larger dimensional input and output vectors,

and are the most time consuming. Fortunately, these

can be reduced to 2n multiplications and n2 vec-

tor additions, by observing that the multiplication

W · (vh ◦ vm) can be written as W 1 · vh +W 2 · vm
where W 1 and W 1 are are the first and second half

of the matrix W and reusing the products across dif-

ferent pairs.

Summary The graph-based parser is straight-

forward first-order parser, trained with a margin-

based hinge-loss and loss-augmented inference. We

depart from the literature by replacing the hand-

crafted feature function with a concatenation of

BiLSTM representations of the head and modifier

words, and training the BiLSTM encoder jointly

with the structured objective. We also introduce a

novel multi-task learning approach for labeled pars-

ing by training a second-stage arc-labeler sharing the

same BiLSTM encoder with the unlabeled parser.

6 Experiments and Results

We evaluated our parsing model on English and Chi-

nese data. For comparison purposes we follow the

setup of Dyer et al. (2015).

Data For English, we used the Stanford Depen-

dency (SD) (de Marneffe and Manning, 2008) con-

version of the Penn Treebank (Marcus et al., 1993),

using the standard train/dev/test splits with the

322

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.1 91.0 86.6 85.1

This work transition (greedy, dyn-oracle) 4 BiLSTM vectors – – 93.1 91.0 86.2 85.0

This work transition (greedy, dyn-oracle) 11 BiLSTM vectors – – 93.2 91.2 86.5 84.9

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

Ballesteros16 transition (greedy, dyn-oracle) Stack-LSTM + composition – – 92.7 90.6 86.1 84.5

This work graph, 1st order 2 BiLSTM vectors YES – 93.0 90.9 86.5 84.9

This work transition (greedy, dyn-oracle) 4 BiLSTM vectors YES – 93.6 91.5 87.4 85.9

This work transition (greedy, dyn-oracle) 11 BiLSTM vectors YES – 93.9 91.9 87.6 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

Ballesteros16 transition (greedy, dyn-oracle) Stack-LSTM + composition YES – 93.6 91.4 87.6 86.2

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Table 1: Test-set parsing results of various state-of-the-art parsing systems on the English (PTB) and Chinese (CTB) datasets. The

systems that use embeddings may use different pre-trained embeddings. English results use predicted POS tags (different systems

use different taggers), while Chinese results use gold POS tags. PTB-YM: English PTB, Yamada and Matsumoto head rules.

PTB-SD: English PTB, Stanford Dependencies (different systems may use different versions of the Stanford converter). CTB:

Chinese Treebank. reranking /blend in Method column indicates a reranking system where the reranker score is interpolated with

the base-parser’s score. The different systems and the numbers reported from them are taken from: ZhangNivre11: (Zhang and

Nivre, 2011); Martins13: (Martins et al., 2013); Weiss15 (Weiss et al., 2015); Pei15: (Pei et al., 2015); Dyer15 (Dyer et al., 2015);

Ballesteros16 (Ballesteros et al., 2016); LeZuidema14 (Le and Zuidema, 2014); Zhu15: (Zhu et al., 2015).

same predicted POS-tags as used in Dyer et al.

(2015);Chen and Manning (2014). This dataset con-

tains a few non-projective trees. Punctuation sym-

bols are excluded from the evaluation.

For Chinese, we use the Penn Chinese Treebank

5.1 (CTB5), using the train/test/dev splits of (Zhang

and Clark, 2008; Dyer et al., 2015) with gold part-

of-speech tags, also following (Dyer et al., 2015;

Chen and Manning, 2014).

When using external word embeddings, we also

use the same data as Dyer et al. (2015).10

Implementation Details The parsers are imple-

mented in python, using the PyCNN toolkit11 for

neural network training. The code is available at

the github repository https://github.com/

elikip/bist-parser. We use the LSTM vari-

ant implemented in PyCNN, and optimize using the

Adam optimizer (Kingma and Ba, 2015). Unless

otherwise noted, we use the default values provided

by PyCNN (e.g. for random initialization, learning

rates etc).

10We thank Dyer et al. for sharing their data with us.
11https://github.com/clab/cnn/tree/

master/pycnn

The word and POS embeddings e(wi) and e(pi)
are initialized to random values and trained together

with the rest of the parsers’ networks. In some ex-

periments, we introduce also pre-trained word em-

beddings. In those cases, the vector representa-

tion of a word is a concatenation of its randomly-

initialized vector embedding with its pre-trained

word vector. Both are tuned during training. We

use the same word vectors as in Dyer et al. (2015)

During training, we employ a variant of word

dropout (Iyyer et al., 2015), and replace a word with

the unknown-word symbol with probability that is

inversely proportional to the frequency of the word.

A word w appearing #(w) times in the training cor-

pus is replaced with the unknown symbol with prob-

ability punk(w) = α
#(w)+α

. If a word was dropped

the external embedding of the word is also dropped

with probability 0.5.

We train the parsers for up to 30 iterations, and

choose the best model according to the UAS accu-

racy on the development set.

Hyperparameter Tuning We performed a very

minimal hyper-parameter search with the graph-

323

https://github.com/elikip/bist-parser
https://github.com/elikip/bist-parser
https://github.com/clab/cnn/tree/master/pycnn
https://github.com/clab/cnn/tree/master/pycnn

based parser, and use the same hyper-parameters for

both parsers. The hyper-parameters of the final net-

works used for all the reported experiments are de-

tailed in Table 2.

Word embedding dimension 100

POS tag embedding dimension 25

Hidden units in MLP 100

Hidden units in MLPLBL 100

BI-LSTM Layers 2

BI-LSTM Dimensions (hidden/output) 125 / 125

α (for word dropout) 0.25

pagg (for exploration training) 0.1

Table 2: Hyper-parameter values used in experiments

Main Results Table 1 lists the test-set accuracies of

our best parsing models, compared to other state-of-

the-art parsers from the literature.12

It is clear that our parsers are very competitive,

despite using very simple parsing architectures and

minimal feature extractors. When not using external

embeddings, the first-order graph-based parser with

2 features outperforms all other systems that are not

using external resources, including the third-order

TurboParser. The greedy transition based parser

with 4 features also matches or outperforms most

other parsers, including the beam-based transition

parser with heavily engineered features of Zhang

and Nivre (2011) and the Stack-LSTM parser of

Dyer et al. (2015), as well as the same parser when

trained using a dynamic oracle (Ballesteros et al.,

2016). Moving from the simple (4 features) to the

extended (11 features) feature set leads to some

gains in accuracy for both English and Chinese.

Interestingly, when adding external word embed-

dings the accuracy of the graph-based parser de-

grades. We are not sure why this happens, and leave

the exploration of effective semi-supervised parsing

with the graph-based model for future work. The

greedy parser does manage to benefit from the ex-

ternal embeddings, and using them we also see gains

from moving from the simple to the extended feature

set. Both feature sets result in very competitive re-

12Unfortunately, many papers still report English parsing

results on the deficient Yamada and Matsumoto head rules

(PTB-YM) rather than the more modern Stanford-dependencies

(PTB-SD). We note that the PTB-YM and PTB-SD results are

not strictly comparable, and in our experience the PTB-YM re-

sults are usually about half a UAS point higher.

sults, with the extended feature set yielding the best

reported results for Chinese, and ranked second for

English, after the heavily-tuned beam-based parser

of Weiss et al. (2015).

Additional Results We perform some ablation ex-

periments in order to quantify the effect of the dif-

ferent components on our best models (Table 3).

PTB CTB

UAS LAS UAS LAS

Graph (no ext. emb) 93.3 91.0 87.0 85.4

–POS 92.9 89.8 80.6 76.8

–ArcLabeler 92.7 – 86.2 –

–Loss Aug. 81.3 79.4 52.6 51.7

Greedy (ext. emb) 93.8 91.5 87.8 86.0

–POS 93.4 91.2 83.4 81.6

–DynOracle 93.5 91.4 87.5 85.9

Table 3: Ablation experiments results (dev set) for the graph-

based parser without external embeddings and the greedy parser

with external embeddings and extended feature set.

Loss augmented inference is crucial for the success

of the graph-based parser, and the multi-task learn-

ing scheme for the arc-labeler contributes nicely

to the unlabeled scores. Dynamic oracle training

yields nice gains for both English and Chinese.

7 Conclusion

We presented a pleasingly effective approach for

feature extraction for dependency parsing based on

a BiLSTM encoder that is trained jointly with the

parser, and demonstrated its effectiveness by inte-

grating it into two simple parsing models: a greedy

transition-based parser and a globally optimized

first-order graph-based parser, yielding very com-

petitive parsing accuracies in both cases.

Acknowledgements This research is supported by

the Intel Collaborative Research Institute for Com-

putational Intelligence (ICRI-CI) and the Israeli Sci-

ence Foundation (grant number 1555/15). We thank

Lillian Lee for her important feedback and efforts

invested in editing this paper. We also thank the re-

viewers for their valuable comments.

References

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and

Noah A. Smith. 2016. Training with explo-

324

ration improves a greedy stack-LSTM parser. CoRR,

abs/1603.03793.

Rich Caruana. 1997. Multitask learning. Machine

Learning, 28:41–75, July.

Danqi Chen and Christopher Manning. 2014. A fast and

accurate dependency parser using neural networks.

In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP),

pages 740–750, Doha, Qatar, October. Association for

Computational Linguistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity

recognition with bidirectional LSTM-CNNs. Transac-

tions of the Association for Computational Linguistics,

4. To appear.

Kyunghyun Cho. 2015. Natural language under-

standing with distributed representation. CoRR,

abs/1511.07916.

James Cross and Liang Huang. 2016. Incremental pars-

ing with minimal features using bi-directional LSTM.

In Proceedings of the 54th Annual Meeting of the As-

sociation for Computational Linguistics, Berlin, Ger-

many, August. Association for Computational Lin-

guistics.

Marie-Catherine de Marneffe and Christopher D. Man-

ning. 2008. Stanford dependencies manual. Techni-

cal report, Stanford University.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin

Matthews, and Noah A. Smith. 2015. Transition-

based dependency parsing with stack long short-term

memory. In Proceedings of the 53rd Annual Meet-

ing of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages

334–343, Beijing, China, July. Association for Com-

putational Linguistics.

Jason Eisner. 1996. Three new probabilistic models for

dependency parsing: An exploration. In 16th Interna-

tional Conference on Computational Linguistics, Pro-

ceedings of the Conference, COLING 1996, Center for

Sprogteknologi, Copenhagen, Denmark, August 5-9,

1996, pages 340–345.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-

nitive Science, 14(2):179–211.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic ora-

cle for arc-eager dependency parsing. In Proceedings

of COLING 2012, pages 959–976, Mumbai, India, De-

cember. The COLING 2012 Organizing Committee.

Yoav Goldberg and Joakim Nivre. 2013. Training

deterministic parsers with non-deterministic oracles.

Transactions of the Association for Computational

Linguistics, 1:403–414.

Yoav Goldberg. 2015. A primer on neural net-

work models for natural language processing. CoRR,

abs/1510.00726.

Alex Graves. 2008. Supervised sequence labelling with

recurrent neural networks. Ph.D. thesis, Technical

University Munich.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

short-term memory. Neural Computation, 9(8):1735–

1780.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-

gramming for linear-time incremental parsing. In Pro-

ceedings of the 48th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 1077–1086,

Uppsala, Sweden, July. Association for Computational

Linguistics.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining

with deep recurrent neural networks. In Proceedings

of the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 720–728,

Doha, Qatar, October. Association for Computational

Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,

and Hal Daumé III. 2015. Deep unordered composi-

tion rivals syntactic methods for text classification. In

Proceedings of the 53rd Annual Meeting of the Associ-

ation for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Pro-

cessing (Volume 1: Long Papers), pages 1681–1691,

Beijing, China, July. Association for Computational

Linguistics.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.

Visualizing and understanding recurrent networks.

CoRR, abs/1506.02078.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A

method for stochastic optimization. In Proceedings of

the 3rd International Conference for Learning Repre-

sentations, San Diego, California.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.

Easy-first dependency parsing with hierarchical tree

LSTMs. Transactions of the Association for Compu-

tational Linguistics, 4. To appear.

Terry Koo and Michael Collins. 2010. Efficient third-

order dependency parsers. In Proceedings of the 48th

Annual Meeting of the Association for Computational

Linguistics, pages 1–11, Uppsala, Sweden, July. Asso-

ciation for Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

Simple semi-supervised dependency parsing. In Pro-

ceedings of the 46th Annual Meeting of the Associ-

ation for Computational Linguistics, pages 595–603,

Columbus, Ohio, June. Association for Computational

Linguistics.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.

2009. Dependency Parsing. Synthesis Lectures on

Human Language Technologies. Morgan & Claypool

Publishers.

325

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-

gio Satta. 2011. Dynamic programming algorithms

for transition-based dependency parsers. In Proceed-

ings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Tech-

nologies, pages 673–682, Portland, Oregon, USA,

June. Association for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-

manian, Kazuya Kawakami, and Chris Dyer. 2016.

Neural architectures for named entity recognition. In

Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,

pages 260–270, San Diego, California, June. Associ-

ation for Computational Linguistics.

Phong Le and Willem Zuidema. 2014. The inside-

outside recursive neural network model for depen-

dency parsing. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Process-

ing (EMNLP), pages 729–739, Doha, Qatar, October.

Association for Computational Linguistics.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio

Ranzato, and Fu Jie Huang. 2006. A tutorial on

energy-based learning. Predicting structured data, 1.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and

Tommi Jaakkola. 2014. Low-rank tensors for scor-

ing dependency structures. In Proceedings of the

52nd Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages

1381–1391, Baltimore, Maryland, June. Association

for Computational Linguistics.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.

LSTM CCG parsing. In Proceedings of the 2016 Con-

ference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language

Technologies, pages 221–231, San Diego, California,

June. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a large annotated cor-

pus of English: The Penn Treebank. Computational

Linguistics, 19(2):313–330.

Andre Martins, Noah A. Smith, and Eric Xing. 2009.

Concise integer linear programming formulations for

dependency parsing. In Proceedings of the Joint Con-

ference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Lan-

guage Processing of the AFNLP, pages 342–350, Sun-

tec, Singapore, August. Association for Computational

Linguistics.

Andre Martins, Miguel Almeida, and Noah A. Smith.

2013. Turning on the turbo: Fast third-order non-

projective turbo parsers. In Proceedings of the 51st

Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 617–622,

Sofia, Bulgaria, August. Association for Computa-

tional Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.

2005. Online large-margin training of dependency

parsers. In Proceedings of the 43rd Annual Meet-

ing of the Association for Computational Linguistics

(ACL’05), pages 91–98, Ann Arbor, Michigan, June.

Association for Computational Linguistics.

Ryan McDonald. 2006. Discriminative Training and

Spanning Tree Algorithms for Dependency Parsing.

Ph.D. thesis, University of Pennsylvania.

Joakim Nivre. 2004. Incrementality in deterministic de-

pendency parsing. In Frank Keller, Stephen Clark,

Matthew Crocker, and Mark Steedman, editors, Pro-

ceedings of the ACL Workshop Incremental Parsing:

Bringing Engineering and Cognition Together, pages

50–57, Barcelona, Spain, July. Association for Com-

putational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic incre-

mental dependency parsing. Computational Linguis-

tics, 34(4):513–553.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An ef-

fective neural network model for graph-based depen-

dency parsing. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguis-

tics and the 7th International Joint Conference on Nat-

ural Language Processing (Volume 1: Long Papers),

pages 313–322, Beijing, China, July. Association for

Computational Linguistics.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-

tional recurrent neural networks. IEEE Trans. Signal

Processing, 45(11):2673–2681.

Benjamin Taskar, Vassil Chatalbashev, Daphne Koller,

and Carlos Guestrin. 2005. Learning structured pre-

diction models: A large margin approach. In Machine

Learning, Proceedings of the Twenty-Second Interna-

tional Conference (ICML 2005), Bonn, Germany, Au-

gust 7-11, 2005, pages 896–903.

Hillel Taub-Tabib, Yoav Goldberg, and Amir Glober-

son. 2015. Template kernels for dependency pars-

ing. In Proceedings of the 2015 Conference of the

North American Chapter of the Association for Com-

putational Linguistics: Human Language Technolo-

gies, pages 1422–1427, Denver, Colorado, May–June.

Association for Computational Linguistics.

Ivan Titov and James Henderson. 2007. A latent variable

model for generative dependency parsing. In Proceed-

ings of the Tenth International Conference on Parsing

Technologies, pages 144–155, Prague, Czech Repub-

lic, June. Association for Computational Linguistics.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan

Musa. 2016. Supertagging with LSTMs. In Pro-

ceedings of the 15th Annual Conference of the North

326

American Chapter of the Association for Computa-

tional Linguistics (Short Papers), San Diego, Califor-

nia, June.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,

Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-

mar as a foreign language. In Advances in Neural In-

formation Processing Systems 28: Annual Conference

on Neural Information Processing Systems 2015, De-

cember 7-12, 2015, Montreal, Quebec, Canada, pages

2773–2781.

David Weiss, Chris Alberti, Michael Collins, and Slav

Petrov. 2015. Structured training for neural network

transition-based parsing. In Proceedings of the 53rd

Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference

on Natural Language Processing (Volume 1: Long Pa-

pers), pages 323–333, Beijing, China, July. Associa-

tion for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two

parsers: Investigating and combining graph-based and

transition-based dependency parsing. In Proceedings

of the 2008 Conference on Empirical Methods in Nat-

ural Language Processing, pages 562–571, Honolulu,

Hawaii, October. Association for Computational Lin-

guistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based

dependency parsing with rich non-local features. In

Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Lan-

guage Technologies, pages 188–193, Portland, Ore-

gon, USA, June. Association for Computational Lin-

guistics.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing

Huang. 2015. A re-ranking model for dependency

parser with recursive convolutional neural network. In

Proceedings of the 53rd Annual Meeting of the Associ-

ation for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Pro-

cessing (Volume 1: Long Papers), pages 1159–1168,

Beijing, China, July. Association for Computational

Linguistics.

327

328

