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1. Introduction

Estimation of average treatment effects is an important goal of much evaluation research, both

in academic studies (e.g, Ashenfelter and Card, 1985; Lalonde, 1986; Heckman, Ichimura, and

Todd, 1997; Dehejia and Wahba, 1999; Blundell, Costa Dias, Meghir, and Van Reenen, 2001),

as well as in government sponsored evaluations of social programs (e.g., Bloom, Michalopoulos,

Hill, and Lei, 2002). Often, analyses are based on the assumption that assignment to treatment

is unconfounded, that is, based on observable pretreatment variables only, and that there is suf-

ficient overlap in the distributions of the pretreatment variables (Barnow, Cain and Goldberger,

1980; Heckman and Robb, 1984; Rubin 1977). Under these assumptions one can estimate the

average effect within subpopulations defined by the pretreatment variables by differencing average

treatment and control outcomes. The population average treatment effect can then be estimated

by averaging these conditional average treatment effects over the appropriate distribution of the

covariates. Methods implementing this in parametric forms have a long history. See for example

Cochran and Rubin (1973), Barnow, Cain, and Goldberger (1980), Rosenbaum and Rubin (1985),

Rosenbaum (1995), and Heckman and Robb (1984). Recently, a number of nonparametric im-

plementations of this idea have been proposed. Hahn (1998) calculates the efficiency bound and

proposes an asymptotically efficient estimator based on nonparametric series estimation. Heck-

man, Ichimura, and Todd (1997) and Heckman, Ichimura, Smith, and Todd (1998) focus on the

average effect on the treated and consider estimators based on local linear regression. Robins

and Rotnitzky (1995) and Robins, Rotnitzky, and Zhao (1995), in the related setting of missing

data problems, propose efficient estimators that combine weighting and regression adjustment.

Hirano, Imbens, and Ridder (2000) propose an estimator that weights the units by the inverse of

their assignment probabilities, and show that nonparametric series estimation of this conditional

probability, labeled the propensity score by Rosenbaum and Rubin (1983a), leads to an efficient

estimator. Ichimura and Linton (2001) consider higher order expansions of such estimators to

analyze optimal bandwidth choices.

Alternatively, simple matching estimators are often used to estimate average treatment effects

when assignment for treatment is believed to be unconfounded. These estimators match each

treated unit to one or a small number of untreated units with similar values for the pretreatment

variables. Then, the average effect of the treatment on the treated units is estimated by averaging

within-match differences in the outcome variable between the treated and the untreated units (see,

e.g., Rosenbaum, 1989, 1995; Gu and Rosenbaum, 1993; Rubin, 1973a,b; Dehejia and Wahba,

1



1999; Zhao, 2001; Becker and Ichino, 2002; Frölich, 2000). Typically, matching is done without

replacement, so each control is used as a match only once and matches are independent. Matching

estimators have great intuitive appeal, and are widely used in practice, as they do not require the

researcher to set any smoothing parameters other than the number of matches. However, their

formal large sample properties have not received much attention.

In this article, we propose a new framework to study simple matching estimators and establish

a number of new results. In contrast with much of the previous literature, we allow each unit to

be used as match more than once. Matching with replacement allows us to reduce biases, since

it produces matches of higher quality than matching without replacement. This is important

because we will show that matching estimators may have poor bias properties. In addition,

matching with replacement enables us to consider estimators that match all units, treated as well

as controls, so that the estimand is identical to the average treatment effect that is the focus of

the Hahn (1998), Robins and Rotnitzky (1995), and Hirano, Imbens and Ridder (2000) studies.

Our results show that the large sample properties of simple matching estimators are not

necessarily very attractive. First, we show that matching estimators include a conditional bias

term which may not vanish at a rate faster than N−1/2 when more than one continuous variable

is used for matching. As a result, matching estimators may not be N1/2-consistent. This crucial

role for the dimension of the covariates also arises in nonparametric differencing methods for

regression models (Honoré, 1992; Yatchew, 1999; Estes and Honoré, 2001). Second, even if the

dimension of the covariates is low enough for the conditional bias term to vanish asymptotically,

we show that the simple matching estimator with a fixed number of matches does not achieve the

semiparametric efficiency bound as calculated by Hahn (1998). However, for the case when only

one continuous covariate is used to match (as for matching on the propensity score), we show that

the efficiency loss can be made arbitrarily close to zero by allowing a sufficiently large number of

matches.

We also investigate estimators that combine matching with an additional bias correction

based on a nonparametric extension of the regression adjustment proposed in Rubin (1973b)

and Quade (1982). We show that the nonparametric bias correction removes the conditional

bias asymptotically without affecting the variance, making matching estimators N1/2-consistent.

Compared to estimators based on regression adjustment without matching (e.g., Hahn, 1998;

Heckman, Ichimura, and Todd, 1997; Heckman, Ichimura, Smith, and Todd, 1998) or estimators

based on weighting by the inverse of the propensity score, (Hirano, Imbens, and Ridder, 2000)
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the new estimators incorporate an additional layer of robustness, since the matching ensures

consistency without accurate approximations to either the regression function or the propensity

score.

Most of the evaluation literature has focused on estimation of the population average treatment

effect. In some cases, however, it may be of interest to focus on the average treatment effect for

the sample at hand. We show that matching estimators can also be interpreted as estimators of

conditional average treatment effects for the sample, which can be estimated more precisely than

the population average treatment effect. For this case, we propose an estimator of the variance

of matching estimators that does not rely on consistent nonparametric estimation of unknown

functions.

We apply the estimators to an example analyzed previously by Lalonde (1986), Heckman

and Hotz (1989), Dehejia and Wahba (1999), Smith and Todd (2001) and Zhao (2002). For that

example, we show that simple matching estimators are very sensitive to the choice for the number

of matches, whereas a simple implementation of the bias correction considered in this article solves

that problem. In a small simulation study based on a data generating process designed to mimic

the data from Lalonde’s application, we find that a simple implementation of the bias-corrected

matching estimator performs well compared to both simple matching estimators and to regression

estimators, in terms of bias and root-mean-squared-error.

In the next section we introduce the notation and define the estimators. In Section 3 we

discuss the large sample properties of simple matching estimators. In Section 4 we analyze bias

corrections. In Section 5 we propose a simple estimator for the conditional variance of matching

estimators. In Section 6 we apply the estimators to Lalonde’s example. In Section 7 we carry

out a small simulation study to investigate the properties of the various estimators in a design

modeled on the data from Section 6. Section 8 concludes. The appendix contains proofs.

2. Notation and Basic Ideas

2.1. Notation

We are interested in estimating the average effect of a binary treatment on some outcome. For

unit i, for i = 1, . . . , N , with all units exchangeable, let (Yi(0), Yi(1)) denote the two potential

outcomes given the control treatment and given the active treatment respectively. The variable

Wi, for Wi ∈ {0, 1} indicates the treatment received. For unit i we observe Wi and the outcome
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for this treatment,

Yi =
{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

as well as a vector of pretreatment variables or covariates Xi. Estimands of interest are the

population average treatment effect

τ = E[Yi(1)− Yi(0)],

and the average effect for the treated

τt = E[Yi(1)− Yi(0)|Wi = 1].

See Rubin (1977) and Heckman and Robb (1984), for some discussion of these estimands.

We assume that assignment to treatment is unconfounded (Rosenbaum and Rubin, 1983a),

and that the probability of assignment is bounded away from zero and one.

Assumption 1: Let X be a random vector of continuous covariates distributed on Rk with compact

and convex support X, with the density bounded, and bounded away from zero on its support.

Assumption 2: For almost every x ∈ X,

(i) W is independent of (Y (0), Y (1)) conditional on X = x;

(ii) c < Pr(W = 1|X = x) < 1− c, for some c > 0 and all x ∈ X.

The dimension of X, denoted by k, will be seen to play an important role in the properties of the

matching estimators. We assume that all covariates have continuous distributions.1 The combi-

nation of the two conditions in Assumption 2 is referred to as strong ignorability (Rosenbaum

and Rubin, 1983a). These conditions are strong, and in many cases may not be satisfied. In

many studies, however, researchers have found it useful to consider estimators based on these

or similar conditions. See, for example, Cochran (1968), Cochran and Rubin (1973), Rubin

(1973a,b), Barnow, Cain, and Goldberger (1980), Heckman and Robb (1984), Rosenbaum and

Rubin (1984), Ashenfelter and Card (1985), Lalonde (1986), Card and Sullivan (1988), Manski,

Sandefur, McLanahan, and Powers (1992), Robins and Rotnitzky (1995), Robins, Rotnitzky, and

Zhao (1995), Rosenbaum (1995), Heckman, Ichimura, and Todd (1997), Hahn (1998), Heckman,
1Discrete covariates can be easily dealt with by analyzing estimating average treatment effects within subsam-

ples defined by their values. The number of discrete covariates does not affect the asymptotic properties of the
estimators. In small samples, however, matches along discrete covariates may not be exact, so discrete covariates
may create the same type of biases as continuous covariates.
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Ichimura, Smith, and Todd (1998), Angrist (1998), Lechner (1998), Dehejia and Wahba (1999),

Becker and Ichino (2002), Blundell, Costa Dias, Meghir, and Van Reenen (2001), and Hotz, Im-

bens, and Mortimer (1999). If the first condition, unconfoundedness, is deemed implausible in a

given application, methods allowing for selection on unobservables such as instrumental variable

analyses (e.g., Heckman and Robb, 1984; Angrist, Imbens and Rubin, 1996; Abadie, 2002), sen-

sitivity analyses (Rosenbaum and Rubin, 1983b), or bounds calculations (Manski, 1990, 1995)

may be considered. See for general discussion of such issues the surveys in Heckman and Robb

(1984), Angrist and Krueger (2000), Blundell and Costa Dias (2001), and Heckman, Lalonde, and

Smith (2000). The importance of second part of the assumption, the restriction on the proba-

bility of assignment, has been discussed in Rubin (1977), Heckman, Ichimura, and Todd (1997),

and Dehejia and Wahba (1999). Compactness and convexity of the support of the covariates are

convenient regularity conditions.

Under Assumption 2 the average treatment effect for the subpopulation with pretreatment

variables equal to X = x, τ(x) = E[Y (1) − Y (0)|X = x], is identified from the distribution of

(Y,W,X) because

τ(x) = E[Y (1)− Y (0)|X = x] = E[Y |W = 1, X = x]− E[Y |W = 0, X = x].

To get the average effect of interest we average this conditional treatment effect over the marginal

distribution of X:

τ = E[τ(X)],

or over the conditional distribution to get the average effect for the treated:

τt = E[τ(X)|W = 1].

Next we introduce some additional notation. For x ∈ X and w ∈ {0, 1}, let let µw(x) =

E[Y (w)|X = x] and σ2
w(x) = V[Y (w)|X = x] be the conditional mean and variance respectively

of Y (w) given X = x, and let εi = Yi − µWi(Xi). By the unconfoundedness assumption

µw(x) = E[Y (w)|X = x] = E[Y (w)|X = x,W = w] = E[Y |X = x,W = w].

Similarly, σ2
w(x) = V(Y |X = x,W = w). Let fw(x) be the conditional density of X given W = w,

and let e(x) = Pr(W = 1|X = x) be the propensity score (Rosenbaum and Rubin, 1983a). In our

analysis, we adopt the following two assumptions.
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Assumption 3: (i) µw(x) and σ2
w(x) are continuous in x for all w, and (ii) the fourth moments

of the conditional distribution of Y given W = w and X = x exist and are uniformly bounded.

Assumption 4: {(Yi,Wi, Xi)}Ni=1 are independent draws from the distribution of (Y,W,X).

The numbers of control and treated units are N0 =
∑

i(1−Wi) and N1 =
∑

iWi respectively,

with N = N0 +N1. Let ‖x‖ = (x′x)1/2, for x ∈ X be the standard Euclidean vector norm.2 Let

jm(i) be the index j that solves∑
l:Wl=1−Wi

1
{
‖Xl −Xi‖ ≤ ‖Xj −Xi‖

}
= m,

where 1{·} is the indicator function, equal to one if the expression in brackets is true and zero

otherwise. In other words, jm(i) is the index of the unit that is the m-th closest to unit i in terms

of the distance measure based on the norm ‖ · ‖, among the units with the treatment opposite

to that of unit i.3 In particular, j1(i), sometimes for notational convenience denoted by j(i), is

the nearest match for unit i. For notational simplicity and since we only consider continuous

covariates, we ignore the possibility of ties, which only happen with probability zero. Let JM (i)

denote the set of indices for the first M matches for unit i:

JM (i) = {j1(i), . . . , jM (i)}.

Define the catchment area AM (i) as the subset of X such that each observation, j, with Wj =

1−Wi and Xj ∈ AM (i) is matched to i:

AM (i) =
{
x
∣∣∣∑j |Wj=Wi

1{‖Xj − x‖ ≤ ‖Xi − x‖} ≤M
}
.

Finally, let KM (i) denote the number of times unit i is used as a match given that M matches

per unit are done:

KM (i) =
N∑
l=1

1{i ∈ JM (l)}.

In many matching methods (e.g., Rosenbaum, 1995), the matching is carried out without replace-

ment, so that every unit is used as a match at most once, and KM (i) ≤ 1. However, when both

treated and control units matched it is imperative that units can be used as matches more than

once. We show below that the distribution of KM (i) is an important determinant of the variance

of the estimators.
2Alternative norms of the form ‖x‖V = (x′V x)1/2 for some positive definite symmetric matrix V are also covered

by the results below, since ‖x‖V = ((Px)′(Px))1/2 for P such that P ′P = V .
3For this definition to make sense, we assume that N0 ≥ m and N1 ≥ m.
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2.2. Estimators

The unit level treatment effect is τi = Yi(1) − Yi(0). For the units in the sample only one

of the potential outcomes Yi(0) and Yi(1) is observed and the other is unobserved or missing.

All estimators we consider impute the unobserved potential outcomes in some way. The first

estimator, the simple matching estimator, uses the following estimates for the potential outcomes:

Ŷi(0) =


Yi if Wi = 0,

1
M

∑
j∈JM (i)

Yj if Wi = 1,

and

Ŷi(1) =


1
M

∑
j∈JM (i)

Yj if Wi = 0,

Yi if Wi = 1.

The simple matching estimator we shall study is

τ̂ smM =
1
N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

)
. (1)

Consider the case with a single match (M = 1). The differences Ŷi(1)−Ŷi(0) and Ŷj(1)−Ŷj(0) are

not necessarily independent, and in fact they will be identical if i is matched to l (that is, j(i) = l)

and l is matched to i (that is, j(l) = i). This procedure differs from standard pairwise matching

procedures where one constructs a number of distinct pairs, without replacement. Matching with

replacement leads to a higher variance, but produces higher match quality, and thus typically a

lower bias.

The computational ease of the simple matching estimator is illustrated in Table 1 for an

example with four units. In this example unit 1 is matched to unit 3, units 2 and 3 are both

matched to unit 1, and unit 4 is matched to unit 2. Hence unit 1 is used as a match twice, units

2 and 3 are used as a match once, and unit 4 is never used as a match. The estimated average

treatment effect is
∑4

i=1 τ̂i/4 = (2 + 5 + 2 + 0)/4 = 9/4.

The simple matching estimator can easily be modified to estimate the average treatment effect

for the treated:

τ smtM =
∑N

i=1Wi(Ŷi(1)− Ŷi(0))∑N
i=1Wi

=
1
N1

∑
Wi=1

(
Yi − Ŷi(0)

)
, (2)

because if Wi = 1, then Ŷi(1) = Yi.
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We shall compare the matching estimators to covariance-adjustment or regression imputation

estimators. Let µ̂w(Xi) be a consistent estimator of µw(Xi). Let

Ȳi(0) =
{
Yi if Wi = 0,
µ̂0(Xi) if Wi = 1,

(3)

and

Ȳi(1) =
{

µ̂1(Xi) if Wi = 0,
Yi if Wi = 1.

(4)

The regression imputation estimator is defined by

τ̂ reg =
1
N

N∑
i=1

(
Ȳi(1)− Ȳi(0)

)
. (5)

If µw(Xi) is estimated using a nearest neighbor estimator with a fixed number of neighbors,

then the regression imputation estimator is identical to the matching estimator with the same

number of matches. However, the regression imputation and matching estimators differ in the

way they change with the number of observations. We classify as matching estimators those

estimators which use a finite and fixed number of matches. We classify as regression imputation

estimators those for which µ̂w(x) is a consistent estimator for µw(x). The estimators considered

by Hahn (1998) and some of the those considered by Heckman, Ichimura, and Todd (1997) and

Heckman, Ichimura, Smith, and Todd (1998) are regression imputation estimators. Hahn shows

that if nonparametric series estimation is used for E[YW |X], E[Y (1 − W )|X], and E[W |X],

and those are used to estimate µ1(x) as µ̂1(x) = Ê[YW |X = x]/Ê[W |X = x] and µ0(x) as

µ̂0(x) = Ê[Y (1 − W )|X = x]/Ê[1 − W |X = x], then the regression imputation estimator is

asymptotically efficient for τ .

In addition we consider a bias-corrected matching estimator where the difference within the

matches is adjusted for the difference in covariate values:

Ỹi(0) =


Yi if Wi = 0,

1
M

∑
j∈JM (i)

(Yj + µ̂0(Xi)− µ̂0(Xj)) if Wi = 1, (6)

and

Ỹi(1) =


1
M

∑
j∈JM (i)

(Yj + µ̂1(Xi)− µ̂1(Xj)) if Wi = 0,

Yi if Wi = 1,
(7)
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with corresponding estimator

τ̂ bcmM =
1
N

N∑
i=1

(
Ỹi(1)− Ỹi(0)

)
. (8)

Rubin (1979) and Quade (1982) discusses such estimators in the context of matching without

replacement and with linear covariance adjustment.

To set the stage for some of the discussion below, consider the bias of the simple matching

estimator relative to the average effect in the sample. Conditional on {Xi,Wi}Ni=1, the bias is,

under Assumption 2:

E

[
1
N

N∑
i=1

((
Ŷi(1)− Ŷi(0)

)
−
(
Yi(1)− Yi(0)

))∣∣∣∣∣ {Xi,Wi}Ni=1

]

=
1
N

N∑
i=1

(2Wi − 1)

{
1
M

M∑
m=1

(
µWjm(i)(Xi)− µWjm(i)(Xjm(i))

)}
. (9)

That is, the conditional bias consists of terms of the form µw(Xi)− µw(Xjm(i)). These terms are

small when Xi ' Xjm(i), as long as the regression functions are continuous. Similarly, the bias

of the regression imputation estimator consists of terms of the form µw(Xi) − E[µ̂w(Xi)], which

are small when E[µ̂w(Xi)] ' µw(Xi). On the other hand, the bias of the bias-corrected estimator

consists of terms of the form µw(Xi) − µw(Xjm(i)) − E[µ̂w(Xi) − µ̂w(Xjm(i))], which are small

if either Xi ' Xjm(i) or E[µ̂w(Xi)] ' µw(Xi). The bias-adjusted matching estimator combines

some of the bias reductions from the matching, by comparing units with similar values of the

covariates, and the bias-reduction from the regression. Compared to only regression imputation,

the bias-corrected matching estimator relies less on the accuracy of the estimator of the regression

function since it only needs to adjust for relatively small differences in the covariates.

We are interested in the properties of the simple and bias-corrected matching estimators in

large samples, that is, as N increases, for fixed M .4 The properties of interest include bias

and variance. Of particular interest is the dependence of these results on the dimension of

the covariates. Some of these properties will be considered conditional on the covariates. In

particular, we will propose an estimator for the conditional variance of matching estimators given
4Of course, M could be specified as a function of the number observations. This would entail, however, the

selection of a smoothing parameter as a function of the number of observations; something that simple matching
methods allows one to avoid. The purpose of this article is to study the properties of a simple matching procedure
which does not require the selection of smoothing parameters as functions of the sample size. In addition, we will
show that simple matching estimators, with fixed M , may incorporate large biases created by poor match quality.
Letting M increase with the sample size may only exacerbate this problem, since matches of lower quality would
be made.
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X1, . . . , XN ,W1, . . . ,WN , viewed as estimators of the sample average conditional treatment effect

τ(X) =
∑
τ(Xi)/N , or its version for the treated τ(X)t =

∑
Wi · τ(Xi)/N1. There are two

reasons for focusing on the conditional distribution. First, in many cases one is interested in the

average effect for the sample at hand, rather than for the hypothetical population this sample

is drawn from, especially given that the former can typically be estimated more precisely. The

second reason is that there exists an estimator for the conditional variance that, in the spirit

of the matching estimator, does not rely on additional choices for smoothing parameters. The

difference between the marginal variance and the conditional variance is the variance of τ(X),

V τ(X) = E[(τ(X) − τ)2], divided by the sample size. This variance represents the difference

between the sample distribution of the covariates and the population. Therefore, estimating

the unconditional variance requires estimating the variance of τ(X), which, in turn, as in Hirano,

Imbens, and Ridder (2001), requires choices regarding the smoothing parameters in nonparametric

estimation of the conditional means and variances.

3. Simple Matching Estimators

In this section we investigate the properties of the simple matching estimator τ̂ smM defined in (1).

Let X and W be the matrices with i-th row equal to X ′i, and Wi, respectively. Define the two

N ×N matrices A1(X,W) and A0(X,W), with typical element

A1,ij =


1 if i = j, Wi = 1
1/M if j ∈ JM (i), Wi = 0,
0 otherwise,

(10)

and

A0,ij =


1 if i = j, Wi = 0
1/M if j ∈ JM (i), Wi = 1,
0 otherwise,

(11)

and define A = A1 −A0. For the example in Table 1,

A1 =


1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1

 , A0 =


0 0 1 0
0 1 0 0
0 0 1 0
0 1 0 0

 and A =


1 0 −1 0
1 −1 0 0
1 0 −1 0
0 −1 0 1

 .

Notice that for any N × 1 vector V = (V1, . . . , VN )′:

ι′NAV =
N∑
i=1

(2Wi − 1)
(

1 +
KM (i)
M

)
Vi =

N∑
i=1

(2Wi − 1)
1
M

M∑
m=1

(Vi − Vjm(i)), (12)
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where ιN be the N -dimensional vector with all elements equal to one.

Let Y, Y(0), Y(1), Ŷ(0), and Ŷ(1) be the matrices with i-th row equal to Yi, Yi(0), Yi(1),

Ŷi(0), and Ŷi(1), respectively. Furthermore, let µ(X,W) and ε be the N × 1 vectors with i-th

element equal to µWi(Xi) and εi, respectively, and let µ0(X) and µ1(X) are the N × 1 vectors

with i-th element equal to µ0(Xi) and µ1(Xi), respectively. Then

Ŷ(1) = A1Y, and Ŷ(0) = A0Y.

We can now write the estimator τ̂ smM as

τ̂ smM = ι′N

(
Ŷ(1)− Ŷ(0)

)/
N =

(
ι′NA1Y − ι′NA0Y

)/
N = ι′NAY/N

= ι′NAµ(X,W)/N + ι′NAε/N.

Using equation (12), we can also write this as:

τ̂ smM = ι′NAY/N =
1
N

N∑
i=1

(2Wi − 1)
(

1 +
KM (i)
M

)
Yi. (13)

Finally, using the fact that A1µ(X,W) = A1µ1(X) and A0µ(X,W) = A0µ0(X) we can write

τ̂ smM − τ =
(
τ(X)− τ

)
+ Esm +Bsm, (14)

where τ(X) is the average conditional treatment effect:

τ(X) = ι′N

(
µ1(X)− µ0(X)

)
/N, (15)

Esm is the contribution of the residuals:

Esm = ι′NAε/N =
1
N

N∑
i=1

Esmi ,

where Esmi = (2Wi−1) · (1+KM (i)/M) ·εi, and Bsm is the bias relative to the average treatment

effect for the sample, conditional on X and W:

Bsm = ι′N (A1 − IN )µ1(X)/N − ι′N (A0 − IN )µ0(X)/N =
1
N

N∑
i=1

Bsm
i , (16)

where Bsm
i = (2Wi − 1)(1/M)

∑
j∈JM (i)(µ1−Wi(Xi) − µ1−Wi(Xj)). We will refer to Bsm as the

bias term, or the conditional bias, and to Biassm = E[Bsm] as the (unconditional) bias. If the
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matching is exact, and Xi = Xjm(i) for all i, then the bias term is equal to zero. In general

it is not and its properties will be analyzed in Section 3.1. The first two terms on the right-

hand side of (14) are important for the large sample variance of the estimator. The first term

depends only on the covariates X and has variance equal to the variance of the treatment effect,

V τ(X)/N = E[(τ(X)− τ)2]/N . The variance of the second term is the conditional variance of the

estimator. We will analyze these two terms in Section 3.2.

Similarly we can write the estimator for the average effect for the treated, (2), as

τ̂ sm,tM − τt =
(
τ(X)t − τt

)
+Esm,t +Bsm,t, (17)

where τ(X)t is the average conditional treatment effect over sample of treated:

τ(X)t =
1
N1

∑
i:Wi=1

(µ1(Xi)− µ0(Xi)) , (18)

Esm,t is the contribution of the residuals:

Esm,t =
1
N1

N∑
i=1

Esm,ti ,

where Esm,ti = (Wi − (1−Wi) ·KM (i)/M) · εi, and Bsm,t is the bias term:

Bsm,t = −ι′N (A0 − IN )µ0(X)/N =
1
N1

N∑
i=1

Bsm,t
i , (19)

where Bsm,t
i = (1−Wi)(1/M)

∑
m(µ0(Xi)− µ0(Xjm(i))).

3.1. Bias

The conditional bias in equation (16) consists of terms of the form µ1(Xjm(i))−µ1(Xi) or µ0(Xi)−

µ0(Xjm(i)). To investigate the nature of these terms expand the difference µ1(Xjm(i)) − µ1(Xi)

around Xi:

µ1(Xjm(i))− µ1(Xi) = (Xjm(i) −Xi)′
∂µ1

∂x
(Xi)

+
1
2

(Xjm(i) −Xi)′
∂2µ1

∂x∂x′
(Xi)(Xjm(i) −Xi) + O(‖Xjm(i) −Xi‖3).

In order to study the components of the bias it is therefore useful to analyze the distribution of

the matching discrepancy Xjm(i) −Xi.

First, let us analyze the matching discrepancy at a general level. Fix the covariate value at

X = z, and suppose we have a random sample X1, ..., XN from some distribution over the support

12



X (with density f(x) and distribution function F (x)). Now, consider the closest match to z in

the sample. Let

j1 = argminj=1,... ,N ‖Xj − z‖,

and let U1 = Xj1 − z be the matching discrepancy. We are interested in the distribution of the

difference U1, which is a k× 1 vector. More generally, we are interested in the distribution of the

m-th closest match discrepancy, Um = Xjm − z, where Xjm is the m-th closest match to z from

the random sample of size N . The following lemma describes some key asymptotic properties of

the matching discrepancy.

Lemma 1: (Matching Discrepancy – Asymptotic Properties)

Suppose that f(z) > 0 and that f is differentiable in a neighborhood of z. Then, N1/k ·Um
d−→ Vm,

where

fVm(v) =
f(z)

(m− 1)!

(
‖v‖k f(z)

k

2πk/2

Γ(k/2)

)m−1

exp

(
−‖v‖k f(z)

k

2πk/2

Γ(k/2)

)
,

and Γ(y) =
∫∞

0 e−tty−1dt (for y > 0) is Euler’s Gamma Function. Moreover, the first three

moments of Um are:

E [Um] = Γ
(
mk + 2
k

)
1

(m− 1)!k

(
f(z)

πk/2

Γ (1 + k/2)

)−2/k
1

f(z)
∂f

∂x
(z)

1
N2/k + o

(
1

N2/k

)
,

E[UmU ′m] = Γ
(
mk + 2
k

)
1

(m− 1)!k

(
f(z)

πk/2

Γ (1 + k/2)

)−2/k
1

N2/k · Ik + o

(
1

N2/k

)
,

and

E[‖Um‖3] = O
(
N−3/k

)
,

where Ik is the identity matrix of size k.

(All proofs are given in the appendix.)

The lemma shows that the order of the matching discrepancy increases with the number of

continuous covariates. Intuitively, as the number of covariates increases, it becomes more difficult

to find close matches. The lemma also shows that the first term in the stochastic expansion of

N1/kUm has a rotation invariant distribution with respect to the origin.
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Lemma 2: (Matching Discrepancy – Uniformly Bounded Moments)

If Assumption 1 holds, then all the moments of N1/k ·Um are uniformly bounded in N and z ∈ X.

These results allow us to calculate the bias and stochastic order of the bias term.

Theorem 1: (Bias for the Average Treatment Effect)

Under assumptions 1, 2 and 4, and if µ0(x) and µ1(x) are three times continuously differentiable

with bounded third derivatives, and f0(x) and f1(x) are differentiable, then

(i) Bsm = Op(N−1/k), and

(ii) the bias of the simple matching estimator is

Biassm = E[Bsm] =

(
1
M

M∑
m=1

Γ
(
mk + 2
k

)
1

(m− 1)!k

)
1

N2/k ×(1− p)
p2/k

∫ (
f1(x)

πk/2

Γ (1 + k/2)

)−2/k{
1

f1(x)
∂f1

∂x′
(x)

∂µ1

∂x
(x) +

1
2

tr
(
∂2µ1

∂x′∂x
(x)
)}

f0(x)dx

− p

(1− p)2/k

∫ (
f0(x)

πk/2

Γ (1 + k/2)

)−2/k{
1

f0(x)
∂f0

∂x′
(x)

∂µ0

∂x
(x) +

1
2

tr
(
∂2µ0

∂x′∂x
(x)
)}

f1(x)dx


+ o

(
1

N2/k

)
.

Consider the implications of this theorem for the asymptotic properties of the simple matching

estimator. First note that
√
N(τ(X) − τ) = Op(1) with a normal limiting distribution, by a

standard central limit theorem. Also, as will be shown later,
√
NEsm = Op(1), with again

a normal limiting distribution. Now, suppose the covariate is scalar (k = 1). In that case

Bsm = Op(N−1). Hence the asymptotic properties of the simple matching estimator will be

dominated by those of τ(X)− τ and Esm, and
√
N(τ̂ sm − τ) will be asymptotically normal.

Next, consider the case with k = 2. In that case Bsm = Op(N−1/2), and the asymptotic

properties will be determined by all three terms. Note that there is no asymptotic bias as Biassm =

O(N−1). However, it is unclear whether the estimator in this case is normally distributed as we

have no asymptotic distribution theory for
√
N ·Bsm for this case.

Next, consider the case with k ≥ 3. Now the order of Bsm is Op(N−1/k), so that the normal-

ization factor for τ̂ sm − τ is N1/k. In this case the asymptotic distribution is dominated by the

bias term. Note that the asymptotic bias itself is still zero as Biassm = O(N−2/k). Note also that

experimental data does not reduce the order of Biassm. If the data comes from a randomized
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experiment, then f0(x) and f1(x) coincide. However, this is not enough in general to reduce the

order of the bias if a matching procedure is adopted.

The bias for the average treatment effect for the treated follows directly from the earlier result:

Corollary 1: (Bias for the Average Treatment Effect on the Treated)

Under assumptions 1, 2 and 4, if µ0(x) has bounded third derivatives, and f0(x) is differentiable,

then

(i) Bsm,t = Op(N
−1/k
0 ), and

(ii)

Biassm,t = E[Bsm,t] = −

(
1
M

M∑
m=1

Γ
(
mk + 2
k

)
1

(m− 1)!k

)
1

N
2/k
0

×

p

(1− p)2/k

∫ (
f0(x)

πk/2

Γ (1 + k/2)

)−2/k{
1

f0(x)
∂f0

∂x′
(x)

∂µ0

∂x
(x) +

1
2

tr
(
∂2µ0

∂x′∂x
(x)
)}

f1(x)dx

+ o

(
1

N
2/k
0

)
,

This case is particularly relevant since often matching estimators have been used to estimate the

average effect for the treated. Generally in those cases the bias is ignored. This is justified if

there is only a single continuous covariate. It is also justified using an asymptotic arguments if the

number of controls is very large relative to the number of treated. Suppose that the two sample

sizes go to infinity at different rates, N1 = O(N s
0 ). Then Bsm,t = Op(N

−1/k
0 ) = Op(N

1/(sk)
1 ).

Hence if s < 2/k, it follows that Bsm,t = op(N
−1/2
1 ), and the bias term will get dominated in the

large sample distribution by the two other terms, τ(X)t − τ and Esm,t, which are Op(N
−1/2
1 ).

3.2. Conditional Variance

In this section we investigate the conditional variance of the simple matching estimator τ̂ smM .

Consider the representation of the estimator in (14). Only the second term contributes to the

conditional variance. Conditional on X and W, the variance of τ̂ is

V(τ̂ smM |X,W) = V(Esm|X,W) = V(ι′NAε/N |X,W) =
1
N2 ι

′
NAΩA′ιN , (20)

where

Ω = E
[
εε′|X,W

]
,
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is a diagonal matrix with the ith diagonal element equal to σ2
Wi

(Xi), the conditional variance of

Yi given Xi and Wi. Note that (20) gives the exact variance, not relying on any large sample

approximations. Using the representation of the simple matching estimator in equation (13), we

can write this as:

V(τ̂ smM |X,W) =
1
N2

N∑
i=1

(
1 +

KM (i)
M

)2

σ2
Wi

(Xi). (21)

The following lemma shows that the expectation of this conditional variance is finite. The key is

that KM (i), the number of times unit i is used as a match, is Op(1) with finite moments.

Lemma 3: Suppose Assumptions 1 to 4 hold. Then

(i) KM (i) = Op(1), and its moments are bounded uniformly in N , and

(ii)

V E = lim
N→∞

E

[(
1 +

KM (i)
M

)2

σ2
Wi

(Xi)

]
,

is finite.

3.3. Consistency and Asymptotic Normality

In this section we show that the simple matching estimator is consistent for the average treatment

effect and that, without the bias term, is N1/2-consistent and asymptotically normal.

Theorem 2: (Consistency of the Simple Matching Estimator)

Suppose Assumptions 1, 2, and 4 hold. If in addition µ1(x) and µ0(x) are continuous, then

τ̂ sm − τ p−→ 0.

Note that the consistency result does not require restrictions on the dimension of the covari-

ates. The conditions are largely smoothness of the regression functions, which implies that

µw(Xi) − µw(Xjm(i)) converges to zero. This convergence is uniform by the restrictions on the

two conditional densities fw(x), which in turn follows from the fact that the propensity score is

bounded away from zero and one, and from the compact support of the covariates.

Next, we state the formal result for asymptotic normality. The first result gives an asymptotic

normality result for the estimator τ̂ sm after subtracting the bias Bsm.

Theorem 3: (Asymptotic Normality for the Simple Matching Estimator)

Suppose Assumptions 1 to 4 hold, and that µ1(x) and µ0(x) have bounded third derivatives. Then
√
N(τ̂ sm −Bsm − τ) d−→ N

(
0, V E + V τ(X)

)
.
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In the scalar covariate case there is no need to remove the bias:

Corollary 2: (Asymptotic Normality for Simple Matching Estimator with Scalar Covari-

ate)

Suppose Assumptions 1 to 4 hold, and that µ1(x) and µ0(x) have bounded third derivatives. Sup-

pose in addition that the covariate is a scalar (k = 1). Then

√
N(τ̂ sm − τ) d−→ N

(
0, V E + V τ(X)

)
.

If we focus on τ̂ sm as an estimator for the conditional average treatment effect τ(X), we obtain

the following result:

Corollary 3: (Asymptotic Normality for the Simple Matching Estimator as an Estimator

of τ(X))

Suppose Assumptions 1 to 4, and that µ1(x) and µ0(x) have bounded third derivatives. Then

√
N(τ̂ sm −Bsm − τ(X)) d−→ N

(
0, V E

)
.

3.4. Efficiency

To compare the efficiency of the estimator considered here to previously proposed estimators and

in particularly to the efficiency bound calculated by Hahn (1998), it is useful to go beyond the

conditional variance and compute the unconditional variance. In general the key to the efficiency

properties of the matching estimators is the distribution of KM (i), the number of times each

unit is used as a match. It is difficult to work out the limiting distribution of this variable for

the general case.5 Here we investigate the form of the variance for the special case with a scalar

covariate and a general M .

Theorem 4: Suppose k = 1. If Assumptions 1 to 4 hold, then

N · V(τ̂ smM ) = E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

]
+ V τ(X)

+
1

2M
E
[(

1
e(X)

− e(X)
)
σ2

1(X) +
(

1
1− e(X)

− (1− e(X))
)
σ2

0(X)
]

+ o(1).

5The key is the second moment of the volume of the “catchment area” AM (i), defined as the subset of X such
that each observation, j, with Wj = 1−Wi and Xj ∈ AM (i) is matched to i. In the single match case with M = 1
these objects are studied in stochastic geometry where they are known as Poisson-Voronoi tesselations (Moller,
1994; Okabe, Boots, Sugihara and Nok Chiu, 2000; Stoyan, Kendall, and Mecke, 1995). The variance of the volume
of such objects under uniform f0(x) and f1(x), normalized by the mean, has been worked out numerically for the
one, two, and three dimensional cases.
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Since the semiparametric efficiency bound for this problem is, as established by Hahn (1998),

Veff = E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

]
+ Var(τ(X)),

the matching estimator is not efficient in general. However, the efficiency loss can be bounded in

percentage terms in this case:

N · V(τ̂ smM )− Veff

Veff
≤ 1

2M
.

The efficiency loss quickly disappears if the number of matches is large enough, and the efficiency

loss from using a few matches is very small. For example, the asymptotic variance with a single

match is less than 50% higher than the asymptotic variance of the efficient estimator, and with

five matches the asymptotic variance is less than 10% higher.

4. Bias Corrected Matching

In this section we analyze the properties of the bias corrected matching estimator τ̂ bcmM , defined

in equation (8). The bias correction presented in equation (8) requires the estimation of the

regression functions µ0(x) and µ1(x). In order to establish the asymptotic behavior of the bias-

corrected estimator, in this section, we consider a nonparametric series estimator for the two

regression functions with K(N) terms in the series, where K(N) increases with N . This type of

nonparametric estimation relies however on selecting smoothing parameters as functions of the

sample size, something that matching estimator allows to avoid. For this reason, in sections 6

and 7 we consider a simple implementation of the bias correction which uses linear regression to

estimate µ0(x) and µ1(x).

Let λ = (λ1, ..., λk) be a multi-index of dimension k, that is, a k-dimensional vector of non-

negative integers, with |λ| =
∑k

i=1 λi, and let xλ = xλ1
1 . . . xλkk . Consider a series {λ(r)}∞r=1

containing all distinct such vectors and such that |λ(r)| is nondecreasing. Let pr(x) = xλ(r),

where pK(x) = (p1(x), ..., pK(x))′. Following Newey (1995), the nonparametric series estimator

of the regression function µw(x) is given by:

µ̂w(x) = pK(N)(x)′

 ∑
i:Wi=w

pK(N)(Xi)pK(N)(Xi)′

− ∑
i:Wi=w

pK(N)(Xi)Yi,

where (·)− denotes a generalized inverse. Given the estimated regression function, let B̂sm be the
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estimated bias term:

B̂sm =
1
N

N∑
i=1

Wi ·

 1
M

∑
j∈JM (i)

(µ̂0(Xi)− µ̂0(Xj))



−(1−Wi) ·

 1
M

∑
j∈JM (i)

(µ̂1(Xi)− µ̂1(Xj))

 ,

so that τ̂ bcm = τ̂ sm − B̂sm.

The following theorem shows that the bias correction removes the bias without affecting the

asymptotic variance.

Theorem 5: (Bias Corrected Matching Estimator)

Suppose that Assumptions 1 to 4 hold. Assume also:

(i) The support of X, X ⊂ Rk, is a Cartesian product of compact intervals,

(ii) K(N) = Nν , with 0 < ν < 2/(3k + 4k2),

(iii) There is a C such that for each multi-index λ the λ-th partial derivative of µw(x) exists for

w = 0, 1 and is bounded by C |λ|. Then,

√
N
(
Bsm − B̂sm

)
d−→ 0,

and

√
N(τ̂ bcm − τ) d−→ N

(
0, V E + V τ(X)

)
.

Thus, the bias corrected matching estimator has the same normalized variance as the simple

matching estimator.

5. Estimating the Conditional Variance

Estimating the conditional variance V E = E[ι′NAΩA′ιN/N ] is complicated by the fact that it

involves the conditional outcome variances σ2
w(x). In principle, one can estimate the conditional

variances σ2
w(x) consistently, first using nonparametric regression to obtain µw(x), and then using

nonparametric regression again to obtain σ2
w(x). Although this leads to a consistent estimator

for the conditional variance, it would require exactly the type of nonparametric regression that

the simple matching estimator allows one to avoid. For this reason, we propose a new estimator

of the conditional variance of the simple matching estimator which does not require consistent

nonparametric estimation of σ2
w(x).
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The conditional variance of the average treatment effect estimator depends on the unit-level

variances σ2
w(x) only through an average. To estimate these unit-level variances we use a matching

approach. Our method can be interpreted as a nonparametric estimator for σ2
w(x) with a fixed

bandwidth, where instead of the original matching of treated to control units, we now match

treated units with treated units and control units with control units. This leads to an approxi-

mately unbiased estimate of σ2
w(x), although not a consistent one. However, the average of these

inconsistent variance estimators is consistent for the average of the variances. Suppose we have

two pairs i and j with the same covariates, Xi = Xj = x and the same treatment Wi = w, and

consider the squared difference between the within-pair differences:

E
[(
Yi − Yj

)2∣∣∣Xi = Xj = x,Wi = w
]

= 2 · σ2
w(x).

In that case we can estimate the variance σ2
Wi

(Xi) as σ̂2
Wi

(Xi) = (Yi − Yj)2/2. This estimator is

unbiased, but it is not consistent as its variance does not go to zero with the sample size. However,

this is not necessary for the estimator for the normalized variance of τ̂ smM to be consistent.

In practice, it may not be possible to find different pairs with the same value of the covariates.

Hence let us consider the nearest pair to pair i by solving

l(i) = argminl:l 6=i,wi=wl ||Xi −Xl||,

and let

σ̂2
Wi

(Xi) =
1
2

(
Yi − Yl(i)

)2
, (22)

be an estimator for the conditional variance σ2
Wi

(Xi).6 The next theorem establishes consistency

of an estimator of the conditional variance based on the estimators of σ2
Wi

(Xi) defined in equation

(22).

Theorem 6: Suppose that Assumptions 1 to 4 hold, and let σ̂2
Wi

(Xi) be as in equation (22). Then

ι′NAΩ̂A′ιN/N =
1
N

N∑
i=1

(
1 +

KM (i)
M

)2

σ̂2
Wi

(Xi)
p−→ V E .

6More generally one can use a number of nearest neighbors to estimate the local variances with the same result.
Such estimates would have slightly higher bias but also lower variances.
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6. An Application to the the Evaluation of a Labor Market Program

In this section we apply the estimators studied in this article to data from an evaluation of a

job training program first analyzed by Lalonde (1986) and subsequently by Heckman and Hotz

(1989), Dehejia and Wahba (1999) and Smith and Todd (2001).7 We use experimental data from

a randomized evaluation of the job training program and also a nonexperimental sample from the

Panel Study of Income Dynamics (PSID). Using the experimental data we obtain an unbiased

estimate of the average effect of the training. We then see how well the non-experimental matching

estimates compare using the experimental trainees and the nonexperimental controls from the

PSID. Given the size of the experimental and the PSID samples, and in line with previous studies

using these data, we focus on the average effect for the treated and therefore only match the

treated units.

Table 2 presents summary statistics for the three groups. The first two columns present the

summary statistics for the experimental trainees. The second pair of columns presents summary

statistics for the experimental controls. The third pair of columns presents summary statistics

for the non-experimental control group constructed from the PSID. The last two columns present

t-statistics for the hypothesis that the population averages for the trainees and the experimental

controls, and for the trainees and the PSID controls, respectively, are zero. Panel A contains

the results for pretreatment variables and Panel B for outcomes. Note the large differences

in background characteristics between the trainees and the PSID sample. This is what makes

drawing causal inferences from comparisons between the PSID sample and the trainee group a

tenuous task. From Panel B, we can obtain an unbiased estimate of the effect of the training

on earnings in 1978 by comparing the averages for the trainees and the experimental controls,

6.35 − 4.55 = 1.80 with a standard error of 0.67 (earnings are measured in thousand dollars).

Using a normal approximation to the limiting distribution of the effect of the training on earnings

in 1978, we obtain a 95% confidence interval, which is [0.49, 3.10].

Table 3 presents estimates of the causal effect of training on earnings using various match-

ing and regression adjustment estimators. Panel A reports estimates for the experimental data

(experimental trainees and experimental controls). Panel B reports estimates based on the ex-

perimental trainees and the PSID controls. The first set of rows in each case reports matching

estimates, based on a number of matches including 1, 4, 16, 64 and 2490. The matching estimates

7Programs for implementing the matching estimators in Matlab and STATA is available from the authors on
the web at http://elsa.berkeley.edu/users/imbens/.
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include simple matching with no bias adjustment, and bias-adjusted matching. All matching esti-

mators use the Euclidean norm to measure the distance between different values for the covariates,

after normalizing the covariates to have zero mean and unit variance. For the bias adjustment

the regression uses all nine coe higher order terms. The bias correction is estimated using only

the matched control units. Note that since we only match the treated units, there is no need

to estimate the regression function for the trainees. The last three rows of each panel report

estimates based on linear regression with no controls, all covariates linearly and all covariates

with quadratic terms and a full set of interactions.

The experimental estimates range from 1.17 (bias corrected matching with one match) to

2.27 (quadratic regression). The non-experimental estimates have a much wider range, from -

15.20 (simple difference) to 3.26 (quadratic regression). For the non-experimental sample, using

a single match, there is little difference between the simple matching estimator and its bias-

corrected version, 2.09 and 2.45 respectively. However, simple matching, without bias-correction,

produces radically different estimates when the number of matches changes, a troubling result for

the empirical implementation of these estimators. With M ≥ 16 the simple matching estimator
produces results outside the experimental 95% confidence interval. In contrast, the bias-corrected

matching estimator shows a much more robust behavior when the number of matches changes:

only with M = 2490 (that is, when all controls are matched to each treated) the bias-corrected

estimate deteriorates to 0.84, still inside the experimental 95% confidence interval.

To see how well the simple matching estimator performs in terms of balancing the covariates,

Table 4 reports average differences within the matched pairs. First, all the covariates are nor-

malized to have zero mean and unit variance. The first two columns report the averages of the

normalized covariates for the PSID controls and the experimental trainees. Before matching, the

averages for some of the variables are more than one standard deviation apart, e.g., the earnings

and employment variables. The next pair of columns reports the within-matched-pairs average

difference and the standard deviation of this within-pair difference. For all the indicator variables

the matching is exact: every trainee is matched to someone with the same ethnicity, marital status

and employment history for the years 1974 and 1975. The other, more continuously distributed

variables are not matched exactly, but the quality of the matches appears very high: the average

difference within the pairs is very small compared to the average difference between trainees and

controls before the matching, and it is also small compared to the standard deviations of these

differences. If we increase the number of matches the quality of the matches goes down, with even
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the indicator variables no longer matched exactly, but in most cases the average difference is still

far smaller than the standard deviation till we get to 16 or more matches. As expected, matching

quality deteriorates when the number of matches increases. This explains that, as shown in Table

3, the bias-correction matters more for larger M . The last row reports matching differences for

logistic estimates of the propensity score. Although the matching is not directly on the propen-

sity score, with single matches the average difference in the propensity score is only 0.21, whereas

without matching the difference between trainees and controls is 8.16, 40 times higher.

7. A Monte Carlo Study

In this section, we discuss some simulations designed to assess the performance of the various

matching estimators. To mimic as closely as possible the behavior of matching estimators in real

applications, we simulated data sets that closely resemble the Lalonde data set analyzed in the

previous section.

In the simulation we have nine regressors, designed to match the following variables in the

Lalonde data set: age, education, black, hispanic, married, earnings1974, unemployed1974, earn-

ings1975, unemployed1975. For each simulated data set we sampled with replacement 185 ob-

servations from the empirical covariate distribution of the trainees, and 2490 observations from

the empirical covariate distribution of the PSID controls. This gives us the joint distribution

of covariates and treatment indicators. For the conditional distribution of the outcome given

covariates, we estimated a two-part model on the PSID controls, where the probability of zero

earnings is a logistic function of the covariates with a full set of quadratic terms and interactions.

Conditional on being positive, the log of earnings is a function of the covariates with again a full

set of quadratic terms and interactions. We then assume a constant treatment effect of 2.0.

For each data set simulated in this way we report results for the same set of estimators. For

each estimator we report the mean and median bias, the root-mean-squared-error (rmse), the

median-absolute-error (mae), the standard deviation, the average estimated standard error, and

the coverage rates for nominal 95% and 90% confidence intervals. The results are reported in

Table 5.

In terms of rmse and mae, the bias-adjusted matching estimator is best with 4 or 16 matches.

The simple matching estimator does not perform as well neither in terms of bias or rmse. The pure

regression adjustment estimators do not perform very well. They have high rmse and substantial

bias. Bias-corrected estimator also perform better in terms of coverage rates. Non-corrected
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matching estimators and regression estimators have lower than nominal coverage rates for any

value of M .

8. Conclusion

In this paper we derive large sample properties of simple matching estimators that are widely used

in applied evaluation research. The formal large sample properties turn out to be surprisingly

poor. We show out that simple matching estimators may include biases which do not disappear

in large samples, under the standard N1/2 normalization. We also show that matching estimators

with a fixed number of matches are not efficient. We suggest a nonparametric bias-adjustment

that renders matching estimators N1/2-consistent. In simulations based on realistic settings for

nonexperimental program evaluations, a simple implementation of this estimator where the bias-

adjustment is based on linear regression appears to perform well compared to both matching

estimators without bias-adjustment and regression-based estimators.
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Appendix

Before proving Lemma 1, we collect some results on integration using polar coordinates that will be useful.
See for example Stroock (1999). Let Sk = {ω ∈ Rk : ‖ω‖ = 1} be the unit k-sphere, and λSk be its surface
measure. Then, the area of the unit k-sphere is:∫

Sk

λSk(dω) =
2πk/2

Γ(k/2)
.

The volume of the unit k-ball is:∫ 1

0
rk−1

∫
Sk

λSk(dω) dr =
2πk/2

kΓ(k/2)
=

πk/2

Γ(1 + k/2)
.

In addition,∫
Sk

ω λSk(dω) = 0,

and

∫
Sk

ωω′ λSk(dω) =

∫
Sk

λSk(dω)

k
Ik =

πk/2

Γ(1 + k/2)
Ik,

where Ik is the k-dimensional identity matrix. For any non-negative measurable function g(·) on Rk,∫
Rk
g(x) dx =

∫ ∞
0

rk−1
(∫

Sk

g(rω)λSk(dω)
)
dr.

We will also use the following result on Laplace approximation of integrals.

Lemma A.1: Let a(r) and b(r) be two real functions, a(r) is continuous in a neighborhood of zero and
b(r) has continuous first derivative in a neighborhood of zero. Let b(0) = 0, b(r) > 0 for r > 0, and that
for every r̃ > 0 the infimum of b(r) over r ≥ r̃ is positive. Suppose that there exist positive real numbers
a0, b0, α, β such that

lim
r→0

a(r)r1−α = a0, lim
r→0

b(r)r−β = b0, and lim
r→0

db

dr
(r)r1−β = b0β.

Suppose also that
∫∞

0 a(r) exp(−Nb(r)) dr converges absolutely throughout its range for all sufficiently
large N . Then, for N →∞∫ ∞

0
a(r) exp(−Nb(r))dr = Γ

(
α

β

)
a0

βb
α/β
0

1
Nα/β

+ o

(
1

Nα/β

)
.

Proof: It follows from Theorem 7.1 in Olver (1997).

Proof of Lemma 1: First consider the conditional probability of unit i being the m-th closest match to
z, given Xi = x:

Pr(jm = i|Xi = x)
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=
(
N − 1
m− 1

)
(Pr(‖X − z‖ > ‖x− z‖))N−m (Pr(‖X − z‖ ≤ ‖x− z‖))m−1

=
(
N − 1
m− 1

)
(1− Pr(‖X − z‖ ≤ ‖x− z‖))N−m (Pr(‖X − z‖ ≤ ‖x− z‖))m−1

.

Since the marginal probability of unit i being the m-th closest match to z is Pr(jm = i) = 1/N , and the
marginal density is f(x), the distribution of Xi, conditional on it being the m-th closest match, is:

fXi|jm=i(x) = Nf(x) · Pr(jm = i|Xi = x)

= Nf(x)
(
N − 1
m− 1

)
(1− Pr(‖X − z‖ ≤ ‖x− z‖))N−m (Pr(‖X − z‖ ≤ ‖x− z‖))m−1

,

and this is also the distribution of Xjm . Now transform to the matching discrepancy Um = Xjm − z to get

fUm(u) = N

(
N − 1
m− 1

)
f(z + u) (1− Pr(‖X − z‖ ≤ ‖u‖))N−m

× (Pr(‖X − z‖ ≤ ‖u‖))m−1
. (A.1)

Transform to Vm = N1/k · Um with Jacobian N−1 to get:

fVm(v) =
(
N − 1
m− 1

)
f
(
z +

v

N1/k

)(
1− Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))N−m
×

(
Pr
(
‖X − z‖ ≤ ‖v‖

N1/k

))m−1

= N1−m
(
N − 1
m− 1

)
f
(
z +

v

N1/k

)(
1− Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))N
× (1 + o(1))

(
N Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))m−1

.

Note that Pr(‖X − z‖ ≤ ‖v‖N−1/k) is∫ ‖v‖/N1/k

0
rk−1

(∫
Sk

f(z + rω)λSk(dω)
)
dr,

where Sk = {ω ∈ Rk : ‖ω‖ = 1} is the unit k -sphere, and λSk is its surface measure. The derivative w.r.t.
N is (

−1
N2

)
‖v‖k

k

∫
Sk

f

(
z +
‖v‖k

N1/k ω

)
λSk(dω).

Therefore,

lim
N→∞

Pr(‖X − z‖ ≤ ‖v‖N−1/k)
1/N

=
‖v‖k

k
f(z) ·

∫
Sk

λSk(dω).

In addition, it is easy to check that

N1−m
(
N − 1
m− 1

)
=

1
(m− 1)!

+ o(1).
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Therefore,

lim
N→∞

fVm(v) =
f(z)

(m− 1)!

(
‖v‖k f(z)

k

∫
Sk

λSk(dω)
)m−1

exp
(
−‖v‖k f(z)

k

∫
Sk

λSk(dω)
)
.

The previous equation shows that the density of Vm converges pointwise to a non-negative function which
is rotation invariant with respect to the origin. To check that this function defines a proper distribution,
transform to polar coordinates and integrate:

∫ ∞
0

f(z)
(m− 1)!

rk−1

(∫
Sk

(
rk
f(z)
k

∫
Sk

λ(dω)
)m−1

exp
(
−rk f(z)

k

∫
Sk

λ(dω)
)
λ(dω)

)
dr

=
∫ ∞

0

krmk−1

(m− 1)!

(
f(z)
k

∫
Sk

λ(dω)
)m

exp
(
−rk f(z)

k

∫
Sk

λ(dω)
)
dr.

Transform t = rk to get∫ ∞
0

tm−1

(m− 1)!

(
f(z)
k

∫
Sk

λ(dω)
)m

exp
(
−t f(z)

k

∫
Sk

λ(dω)
)
dt,

which is equal to one because is the integral of the density of a gamma random variable with parameters
(m, k(f(z)

∫
Sk
λ(dω))−1) over its support. As a result, the matching discrepancy Um is Op(N−1/k) and

the limiting distribution of N1/kUm is rotation invariant with respect to the origin. This finishes the proof
of the first result.
Next, given fUm(u) in (A.1),

EUm = N

(
N − 1
m− 1

)
Am,

where

Am =
∫
Rk
u f(z + u) (1− Pr(‖X − z‖ ≤ ‖u‖))N−m (Pr(‖X − z‖ ≤ ‖u‖))m−1

du.

Changing variables to polar coordinates gives:

Am =
∫ ∞

0
rk−1

(∫
Sk

rω f(z + rω)λSk(dω)
)

(1− Pr(‖X − z‖ ≤ r))N−m (Pr(‖X − z‖ ≤ r))m−1
dr

Then rewriting the probability Pr(‖X − z‖ ≤ r) as∫
Rk
f(x)1{‖x− z‖ ≤ r}dx =

∫
Rk
f(z + v)1{‖v‖ ≤ r}dv

=
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

and substituting this into the expression for Am gives:

Am =
∫ ∞

0
rk−1

(∫
Sk

rω f(z + rω)λSk(dω)
)(

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)N−m
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×
(∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m−1

dr

=
∫ ∞

0
e−Nb(r) a(r) dr,

where

b(r) = − log
(

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)
,

and

a(r) = rk ·
(∫

Sk

ω f(z + rω)λSk(dω)
) (∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m−1

(
1−

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m .
That is, a(r) = q(r)p(r), q(r) = rkc(r), and p(r) = (g(r))m−1, where

c(r) =

∫
Sk

ω f(z + rω)λSk(dω)

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

,

g(r) =

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

.

First note that b(r) is continuous in a neighborhood of zero and b(0) = 0. By Theorem 6.20 in Rudin

(1976), sk−1
∫
Sk

f(z + sω)λSk(dω) is continuous, and

db

dr
(r) =

rk−1
(∫

Sk

f(z + rω)λSk(dω)
)

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

,

which is also continuous. Using L’Hospital’s rule:

lim
r→0

b(r)r−k = lim
r→0

1
krk−1

db

dr
(r) =

1
k
f(z)

∫
Sk

λSk(dω).

Similarly, c(r) is continuous in a neighborhood of zero, c(0) = 0, and

lim
r→0

c(r)r−1 = lim
r→0

dc

dr
(r) =

∂f

∂x
(z)
∫
Sk

ωω′λSk(dω) =
1
k

∂f

∂x
(z)
∫
Sk

λSk(dω).

Therefore,

lim
r→0

q(r)r−(k+1) = lim
r→0

dc

dr
(r) =

1
k

∂f

∂x
(z)
∫
Sk

λSk(dω).
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Similar calculations yield

lim
r→0

g(r)r−k = lim
r→0

1
krk−1

dg

dr
(r) =

1
k
f(z)

∫
Sk

λSk(dω).

Therefore

lim
r→0

p(r)r−(m−1)k =
(

1
k
f(z)

∫
Sk

λSk(dω)
)m−1

.

Now, it is clear that

lim
r→0

a(r)r−(mk+1) =
(

lim
r→0

p(r)r−(m−1)k
)(

lim
r→0

q(r)r−(k+1)
)

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m−1 1

k

∂f

∂x
(z)
∫
Sk

λSk(dω)

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m 1

f(z)
∂f

∂x
(z).

Therefore, the conditions of Lemma A.1 hold for α = mk + 2, β = k

a0 =
(

1
k
f(z)

∫
Sk

λSk(dω)
)m 1

f(z)
∂f

∂x
(z)

b0 =
1
k
f(z)

∫
Sk

λSk(dω).

Applying Lemma A.1, we get

Am = Γ
(
mk + 2
k

)
a0

kb
(mk+2)/k
0

1
N (mk+2)/k + o

(
1

N (mk+2)/k

)

= Γ
(
mk + 2
k

)
1
k

(
f(z)
k

∫
Sk

λSk(dω)
)−2/k 1

f(z)
df

dx
(z)

1
N (mk+2)/k + o

(
1

N (mk+2)/k

)
.

= Γ
(
mk + 2
k

)
1
k

(
f(z)

πk/2

Γ
(
1 + k

2

))−2/k
1

f(z)
df

dx
(z)

1
N (mk+2)/k + o

(
1

N (mk+2)/k

)
.

Now, since

lim
N→∞

Nm/(m− 1)!

N

(
N − 1
m− 1

) = 1,

we have that

E[Um] = N

(
N − 1
m− 1

)
Am

= Γ
(
mk + 2
k

)
1

(m− 1)!k

(
f(z)

πk/2

Γ
(
1 + k

2

))−2/k
1

f(z)
df

dx
(z)

1
N2/k + o

(
1

N2/k

)
,
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which finishes the proof for the second result of the theorem.
To get the result for E[UmU ′m], notice that

E[UmU ′m] = N

(
N − 1
m− 1

)
Bm,

where

Bm =
∫
Rk
uu′ f(z + u) (1− Pr(‖X − z‖ ≤ ‖u‖))N−m (Pr(‖X − z‖ ≤ ‖u‖))m−1

du.

Transforming to polar coordinates again leads to

Bm =
∫ ∞

0
rk−1

(∫
Sk

r2ωω′ f(z + rω)λSk(dω)
)(

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)N−m

×
(∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m−1

dr

=
∫ ∞

0
e−Nb(r) ã(r) dr,

where, as before

b(r) = − log
(

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)
,

and

ã(r) = rk+1 ·
(∫

Sk

ωω′ f(z + rω)λSk(dω)
) (∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m−1

(
1−

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m .
That is, ã(r) = q̃(r)p(r), q̃(r) = rk+1c̃(r), and, as before, p(r) = (g(r))m−1, where

c̃(r) =

∫
Sk

ωω′ f(z + rω)λSk(dω)

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

,

g(r) =

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

.

Clearly,

lim
r→0

q̃(r)r−(k+1) = lim
r→0

c̃(r) =
1
k
f(z)

∫
Sk

λSk(dω)Ik.

30



Hence,

lim
r→0

ã(r)r−(mk+1) =
(

lim
r→0

p(r)r−(m−1)k
)(

lim
r→0

q̃(r)r−(k+1)
)

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m−1 1

k
f(z)

∫
Sk

λSk(dω)Ik

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m

Ik.

Therefore, the conditions of Lemma A.1 hold for α = mk + 2, β = k

a0 =
(

1
k
f(z)

∫
Sk

λSk(dω)
)m

Ik

b0 =
1
k
f(z)

∫
Sk

λSk(dω).

Applying Lemma A.1, we get

Bm = Γ
(
mk + 2
k

)
a0

kb
(mk+2)/k
0

1
N (mk+2)/k + o

(
1

N (mk+2)/k

)

= Γ
(
mk + 2
k

)
1
k

(
f(z)
k

∫
Sk

λSk(dω)
)−2/k 1

N (mk+2)/k · Ik + o

(
1

N (mk+2)/k

)
.

= Γ
(
mk + 2
k

)
1
k

(
f(z)

πk/2

Γ (1 + k/2)

)−2/k
1

N (mk+2)/k · Ik + o

(
1

N (mk+2)/k

)
.

Hence, using the fact that

lim
N→∞

Nm/(m− 1)!

N

(
N − 1
m− 1

) = 1,

we have that

E[UmU ′m] = N

(
N − 1
m− 1

)
·Bm

= Γ
(
mk + 2
k

)
1

(m− 1)!k

(
f(z)

πk/2

Γ
(
1 + k

2

))−2/k
1

N2/k · I + o

(
1

N2/k

)
.

Using the same techniques as for the first two moments,

E‖Um‖3 = N

(
N − 1
m− 1

)
Cm,

where

Cm =
∫ ∞

0
e−Nb(r) ā(r) dr,
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b(r) = − log
(

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)
,

and

ā(r) = rk+2 ·
(∫

Sk

f(z + rω)λSk(dω)
) (∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m−1

(
1−

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

)m .
That is, ā(r) = q̄(r)p(r), q̄(r) = rk+2c̄(r), and p(r) = (g(r))m−1, where

c̄(r) =

∫
Sk

f(z + rω)λSk(dω)

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

,

g(r) =

∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

1−
∫ r

0
sk−1

(∫
Sk

f(z + sω)λSk(dω)
)
ds

.

Now,

lim
r→0

q̃(r)r−(k+2) = lim
r→0

c̃(r) = f(z)
∫
Sk

λSk(dω).

Hence,

lim
r→0

ā(r)r−(mk+2) =
(

lim
r→0

p(r)r−(m−1)k
)(

lim
r→0

q̄(r)r−(k+2)
)

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m−1

f(z)
∫
Sk

λSk(dω)

=
(

1
k
f(z)

∫
Sk

λSk(dω)
)m

k.

Therefore, the conditions of Lemma A.1 hold for α = mk + 3, β = k

a0 =
(

1
k
f(z)

∫
Sk

λSk(dω)
)m

k

b0 =
1
k
f(z)

∫
Sk

λSk(dω).

Applying Lemma A.1, we get

Cm = Γ
(
mk + 3
k

)
a0

kb
(mk+3)/k
0

1
N (mk+3)/k + o

(
1

N (mk+3)/k

)

= Γ
(
mk + 3
k

)(
f(z)
k

∫
Sk

λSk(dω)
)−3/k 1

N (mk+3)/k + o

(
1

N (mk+3)/k

)
.
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= Γ
(
mk + 3
k

)(
f(z)

πk/2

Γ (1 + k/2)

)−3/k
1

N (mk+3)/k + o

(
1

N (mk+3)/k

)
.

Hence, using the fact that

lim
N→∞

Nm/(m− 1)!

N

(
N − 1
m− 1

) = 1,

we have that

E[‖Um‖3] = N

(
N − 1
m− 1

)
· Cm

= Γ
(
mk + 3
k

)
1

(m− 1)!

(
f(z)

πk/2

Γ (1 + k/2)

)−3/k
1

N3/k + o

(
1

N3/k

)
.

Therefore

E‖Um‖3 = O

(
1

N3/k

)
.

�
Proof of Lemma 2: The proof consists of showing that the density of Vm = N1/k · Um, denoted by
fVm(v), is bounded by f̄Vm(v) followed by a proof that

∫
‖v‖Lf̄Vm(v)dv is uniformly bounded in N , for

any L > 0. It is enough to show the result for N > m (bounded support guarantees finite moments of Vm
for any given N , and in particular for N = m.) Recall from the proof of Lemma 1 that

fVm(v) =
(
N − 1
m− 1

)
f
(
z +

v

N1/k

)(
1− Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))N−m
×

(
Pr
(
‖X − z‖ ≤ ‖v‖

N1/k

))m−1

.

Define f = infx∈X f(x) and f̄ = supx∈X f(x). By assumption, f > 0 and f̄ is finite. Let ū be the diameter
of X (ū = supx,y∈X ‖x− y‖). Consider all the balls B(x, ū) with centers x ∈ X and radius ū. Let c be the
infimum over x ∈ X of the proportion that the intersection with X represents in volume of the balls. Note
that 0 < c < 1, and that, since X is convex, this proportion can only increase for a smaller radius. Let
x ∈ X and ‖v‖ ≤ N1/kū.

Pr
(
‖X − z‖ > ‖v‖

N1/k

)
= 1−

∫ ‖v‖N−1/k

0
rk−1

∫
Sk

f(z + rω)λSk(dω)dr

≤ 1− cf
∫ ‖v‖N−1/k

0
rk−1

∫
Sk

λSk(dω)dr

= 1− c‖v‖
k

N
f

πk/2

Γ(1 + k/2)
.

Note also that

0 ≤ c‖v‖
k

N
f

πk/2

Γ(1 + k/2)
≤ cūkf πk/2

Γ(1 + k/2)
≤ 1.
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Similarly,

Pr
(
‖X − z‖ ≤ ‖v‖

N1/k

)
≤ ‖v‖

k

N
f̄

πk/2

Γ(1 + k/2)
.

Hence, using the fact that for positive a, log(a) ≤ a−1 and thus for all 0 < b < N we have (1−b/N)(N−m) ≤
exp(−b(N −m)/N) ≤ exp(−b/(m+ 1)), and that

N1−m
(
N − 1
m− 1

)
≤ 1

(m− 1)!
,

it follows that

fVm(v) ≤ 1
(m− 1)!

f̄ exp
(
− ‖v‖k

(m+ 1)
f

2πk/2

Γ(k/2)

)(
‖v‖kf̄ 2πk/2

Γ(k/2)

)m−1

= C1 · ‖v‖k(m−1) · exp
(
−C2 · ‖v‖k

)
,

with C1 and C2 positive. This inequality holds trivially for ‖v‖ > N1/kū. This establishes an exponential
bound that does not depend on N or z. Hence for all N and z,

∫
‖v‖LfVm(v)dv is finite and thus all

moments of N1/k · Um are uniformly bounded in N and z. �

Proof of Theorem 1:

For part (i) of the theorem, define the unit-level matching discrepancy Um,i = Xi −Xjm(i), and tm from
the m-th match:

Bsmm,i = Wi ·
(
µ0(Xi)− µ0(Xjm(i)))

)
− (1−Wi) ·

(
µ1(Xi)− µ1(Xjm(i)))

)
= Wi · (µ0(Xi)− µ0(Xi + Um,i))− (1−Wi) · (µ1(Xi)− µ1(Xi + Um,i))) .

Hence |Bsmm,i| ≤ C ·‖Um,i‖, where C = supx ‖∂µ0(x)/∂x‖+supx ‖∂µ1(x)/∂x‖ which is finite by assumption.
The bias term is

BsmM =
1

N ·M

N∑
i=1

M∑
m=1

Bsmm,i.

Now consider

E[N2/k(Bsm)2] = N2/k · E

 1
N2 ·M2

∑
i,j

∑
l,m

Bsmm,i ·Bsml,j



≤ N2/k ·max
m,i

E
[
(Bsmm,i)

2] ≤ C2 ·max
m,i

E
[
(N1/k‖Um,i‖)2

]
.

By Lemma 1, for any given m, the second moment of N1/kUm,i is finite for all N and i. Since m only
takes on M values, N1/kBsm has a finite second moment, and Bsm is Op(N−1/k), proving the first part
of the theorem.
Next consider the second part of the theorem. The bias is

Biassm = E[Bsm] = E[Ŷi(1)− Ŷi(0)]− E[Yi(1)− Yi(0)]
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=
∫
E
[
(Ŷi(1)− Ŷi(0))− (Yi(1)− Yi(0))

∣∣∣Xi = x
]
f(x) dx

= (1− p)
∫
E
[
(1/M)

∑
j∈JM (i) µ1(Xj)− µ1(Xi)

∣∣∣Xi = x,Wi = 0
]
f0(x) dx

− p

∫
E
[
(1/M)

∑
j∈JM (i) µ0(Xj)− µ0(Xi)

∣∣∣Xi = x,Wi = 1
]
f1(x) dx. (A.2)

Applying a second order Taylor expansion

E[µ1(Xjm(i))− µ1(Xi)|Xi = x,Wi = 0, ι′NW = N1]

= E[(Xjm(i) − x)′|Xi = x,Wi = 0, ι′NW = N1]
∂µ1

∂X
(x)

+
1
2

tr
(

∂2µ1

∂X ′∂X
(x)E[(Xjm(i) − x)(Xjm(i) − x)′|Xi = x,Wi = 0, ι′NW = N1]

)
+R(x),

where |R(x)| = O
(
E[‖Xjm(i) − x‖3|Xi = x,Wi = 0, ι′NW = N1]

)
. Applying Lemma 1, we get

E[µ1(Xjm(i))− µ1(Xi)|Xi = x,Wi = 0, ι′NW = N1]

= Γ
(
mk + 2
k

)
1

(m− 1)!k

(
f1(x)

πk/2

Γ (1 + k/2)

)−2/k

×
{

1
f1(x)

∂f1

∂X ′
(x)

∂µ1

∂X
(x) +

1
2

tr
(

∂2µ1

∂X ′∂X
(x)
)}
· 1

N
2/k
1

+ o

(
1

N
2/k
1

)

Note that

N−M∑
N1=M

1

N
2/k
1

· Pr (ι′NW = N1|Xi = x,Wi = 0)

=
N−M∑
N1=M

1

N
2/k
1

·
(

N
N1

)
pN1(1− p)N−N1

=
1

p2/kN2/k

N−M∑
N1=M

p2/k

(N1/N)2/k ·
(

N
N1

)
pN1(1− p)N−N1 =

1
p2/kN2/k + o

(
1

N2/k

)
,

since N1/N = p+ op(1). Therefore,

E
[
(1/M)

∑
j∈JM (i) µ1(Xj)− µ1(Xi)|Xi = x,Wi = 0

]
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=

(
1
M

M∑
m=1

Γ
(
mk + 2
k

)
1

(m− 1)!k

)(
f1(x)

πk/2

Γ (1 + k/2)

)−2/k
1

p2/k

×
{

1
f1(x)

∂f1

∂X ′
(x)

∂µ1

∂X
(x) +

1
2

tr
(

∂2µ1

∂X ′∂X
(x)
)}
· 1
N2/k + o

(
1

N2/k

)
. (A.3)

Similarly,

E
[
(1/M)

∑
j∈JM (i) µ0(Xj)− µ0(Xi)|Xi = x,Wi = 1

]

=

(
1
M

M∑
m=1

Γ
(
mk + 2
k

)
1

(m− 1)!k

)(
f0(x)

πk/2

Γ (1 + k/2)

)−2/k
1

(1− p)2/k

×
{

1
f0(x)

∂f0

∂X ′
(x)

∂µ0

∂X
(x) +

1
2

tr
(

∂2µ0

∂X ′∂X
(x)
)}
· 1
N2/k + o

(
1

N2/k

)
. (A.4)

Combine equations (A.2), (A.3), and (A.4) to obtain the result. �

Corollary 1 follows directly from Theorem 1, and its proof is therefore omitted.

Proof of Lemma 3: Define f = infx,w fw(x) and f̄ = supx,w fw(x), with f > 0 and f̄ finite. Let X be a
compact and convex set of dimension equal to k and ū = supx,y∈X ‖x− y‖. Consider all the balls B(x, u)
with centers x ∈ X and radius u. Let c(u) (0 < c(u) < 1) be the infimum over x ∈ X of the proportion that
the intersection with X represents in volume of the balls. Note that, since X is convex, this proportion
nondecreasing in u, so let c = c(ū), and c(u) ≥ c for u ≤ ū.
The proof consists of three parts. First we derive an exponential bound the probability that the distance
to a match, ‖Xjm(i)−Xi‖ exceeds some value. Second, we use this to obtain an exponential bound on the
volume of the catchment area AM (i), the subset of X such that each observation, j, with Wj = 1 −Wi

and Xj ∈ AM (i) is matched to i:

AM (i) =
{
x
∣∣∣∑j |Wj=Wi

1{‖Xj − x‖ ≤ ‖Xi − x‖} ≤M
}
.

Third, we use the exponential bound on the volume of the catchment area to derive an exponential bound
on the probability of a large KM (i), which will be used to bound the moments of KM (i).
For the first part we bound the probability of the distance to a match. Let x ∈ X and u < N

1/k
1−Wi

ū. Then,

Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN ,Wj = 1−Wi, Xi = x
)

= 1−
∫ uN

−1/k
1−Wi

0
rk−1

∫
Sk

f1−Wi(x+ rω)λSk(dω)dr

≤ 1− cf
∫ uN

−1/k
1−Wi

0
rk−1

∫
Sk

λSk(dω)dr

= 1− cfukN−1
1−Wi

πk/2/Γ(1 + k/2).
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Similarly

Pr
(
‖Xj −Xi‖ ≤ u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN ,Wj = 1−Wi, Xi = x
)
≤ f̄ukN−1

1−Wi
πk/2/Γ(1 + k/2).

Thus

Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN , Xi = x, j ∈ JM (i)
)

≤ Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN , Xi = x, j = jM (i)
)

=
M−1∑
m=0

(
N1−Wi

m

)
Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN ,Wj = 1−Wi, Xi = x
)N1−Wi−m

·Pr
(
‖Xj −Xi‖ ≤ u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN ,Wj = 1−Wi, Xi = x
)m

.

Notice that(
N1−Wi

m

)
Pr
(
‖Xj −Xi‖ ≤ u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN ,Wj = 1−Wi, Xi = x
)m

≤ 1
m!

(
ukf̄

πk/2

Γ(1 + k/2)

)m
.

Therefore,

Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN , Xi = x, j ∈ JM (i)
)

≤
M−1∑
m=0

1
m!

(
ukf̄

πk/2

Γ(1 + k/2)

)m(
1− ukcf πk/2

Γ(1 + k/2)
· 1
N1−Wi

)N1−Wi−m

.

Then, for some constant C1 > 0,

Pr
(
‖Xj −Xi‖ > u ·N−1/k

1−Wi

∣∣∣W1, . . . ,WN , Xi = x, j ∈ JM (i)
)

≤ C1 max{1, uk(M−1)}
M−1∑
m=0

(
1− ukcf πk/2

Γ(1 + k/2)
· 1
N1−Wi

)N1−Wi−m

≤ C1M max{1, uk(M−1)} exp
(
− uk

(M + 1)
cf

πk/2

Γ(1 + k/2)

)
.

(The last inequality holds because for a > 0, log a ≤ a−1.) Note that this bound also holds for u ≥ N1/k
1−Wi

ū,

since in that case the probability that ‖Xjm(i)−Xi‖ > u ·N−1/k
1−Wi

is zero. Since the bound does not depend
on x, this inequality also holds without conditioning on x.
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Next, we consider for unit i, the volume BM (i) of the catchment area AM (i), defined as:

BM(i) =
∫
AM(i)

dx,

Conditional on W1, . . . ,WN , the match j ∈ JM (i), and AM (i) the distribution of Xj is proportional to
f1−Wi(x) · 1{x ∈ AM (i)}. Note that a ball with radius (b/2)1/k/(πk/2/Γ(1 + k/2))1/k has volume b/2.
Therefore

Pr
(
‖Xj −Xi‖ >

(b/2)1/k

(πk/2/Γ(1 + k/2))1/k

∣∣∣∣ W1, . . . ,WN , j ∈ JM (i), BM (i) ≥ b
)
≥

f

2f̄
.

As a result, if

Pr
(
‖Xj −Xi‖ >

(b/2)1/k

(πk/2/Γ(1 + k/2))1/k

∣∣∣∣ W1, . . . ,WN , j ∈ JM (i)
)
≤ δ

f

2f̄
, (A.5)

then it must be the case that Pr(BM (i) ≥ b |W1, . . . ,WN , j ∈ JM (i)) ≤ δ. In fact, the inequality in
equation (A.5) has been established above for

b/2 =
uk

N1−Wi

(
πk/2

Γ(1 + k/2)

)
, and δ

f

2f̄
= C1M max{1, uk(M−1)} exp

(
− uk

(M + 1)
f

πk/2

Γ(1 + k/2)

)
.

Let t = 2uk πk/2/Γ(1 + k/2), then

Pr(N1−Wi BM (i) ≥ t |W1, . . . ,WN , j ∈ JM (i)) ≤ C2 max{1, C3t
M−1} exp(−C4t),

for some positive constants, C2, C3, and C4. This establishes an uniform exponential bound, so all the
moments of N1−WiBM (i) exist conditional on W1, . . . ,WN , j ∈ JM (i) (uniformly in N). Since conditioning
on j ∈ JM (i) only increases the moments of BM (i) we conclude that all the moments of N1−WiBM (i) are
uniformly bounded in N .
For the third part of the proof, consider the distribution of KM (i), the number of times unit i is used as
a match. Conditional on the catchment area, AM (i), and on W1, . . . ,WN , the distribution is binomial
with parameters N1−Wi and PM (i), where the probability of a catch is the integral of the density over the
catchment area:

PM (i) =
∫
AM (i)

f1−Wi(x)dx ≤ BM (i)f̄ .

Therefore, conditional on AM (i), and W1, . . . ,WN , the r-th moment of KM (i) is

E[Kr
M (i)|AM (i),W1, . . . ,WN , ] =

r∑
n=1

S(r, n)N1−Wi !PM (i)n

(N1−Wi − n)!
≤ f̄

r∑
n=1

S(r, n)(N1−WiBM (i))n,

where S(r, n) are Stirling numbers of the second kind. Then,

E[Kr
M (i)] ≤ f̄

r∑
n=1

S(r, n) · E
[(

N1−Wi

NWi

)n
(NWiBM (i))n

]
is uniformly bounded in N (by the Law of Iterated Expectations and Hölder’s Inequality). This proves
the first part of the Lemma.
Next, consider part (ii) of Lemma 3. Because the moments of KM (i) are bounded uniformly in N , and
because the variance σ2

w(x) is bounded by σ̄2 = supw,x σ2
w(x), finite by Assumption 3, the expectation of
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(1+KM/M)2σ2
w(x) is bounded by σ̄2E[(1+KM/M)2], and hence the expectation of (1 +KM/M)2σ2

W (X)
is finite.

�

Proof of Theorem 2:

Consider the three terms. First, by a standard law of large numbers τ̄(X)
p−→ τ . Second, by Theorem 1,

Bsm = Op(N−1/k) = op(1). Third, N ·E[(Esm)2] = V E , with V E finite, so that Esm = Op(N−1) = op(1).

Proof of Theorem 3:

First, consider the contribution of
√
N(τ(X)− τ). By a standard central limit theorem

√
N · (τ(X)− τ) d−→ N (0, V τ(X)). (A.6)

Second, consider the contribution of
√
N · Esm:

√
N · Esm =

1√
N

N∑
i=1

Esmi .

Conditional on W and X the unit-level terms Esmi are independent with non-identical distributions. All
conditional means are zero. The conditional variances are (1 + KM (i)/M)2 · σ2

Wi
(Xi). We will use a

Lindeberg-Feller central limit theorem. Define

Ω2
N =

N∑
i=1

(1 +KM (i)/M)2σ2
Wi

(Xi),

as the sum of the variances. We will show that the Lindeberg-Feller condition that for all ε > 0

1
Ω2
N

N∑
i=1

E
[
(Esmi )21{|Esmi | ≥ εΩN}

]
→ 0, (A.7)

is satisfied almost surely. First note that if the Lth moment of εi is finite, then the Lth moment of Esmi
is finite. Hence, by Assumption 1, and Lemma 3, E[(Esmi )4] is finite. To prove that (A.7) condition holds,
note that by Hölder’s inequality we have

E
[
(Esmi )21{|Esmi | ≥ εΩN}

]
≤
(
E
[
(Esmi )4])1/2 (E [1{|Esmi | ≥ εΩN}])

1/2

≤
(
E
[
(Esmi )4])1/2 (Pr (|Esmi | ≥ εΩN ))

≤
(
E
[
(Esmi )4])1/2 Pr

(
max

j=1,... ,N
(Esmj )2 ≥ ε2Ω2

N

)
.

Hence

1
Ω2
N

N∑
i=1

E
[
(Esmi )21{|Esmi | ≥ εΩN}

]

≤ 1
Ω2
N

N∑
i=1

(
E
[
(Esmi )4])1/2(Pr

(
max

j=1,... ,N
(Esmj )2 ≥ ε2Ω2

N

))
.
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≤ 1
Ω2
N/N

(
E
[
(Esmi )4])1/2 Pr

(
max

j=1,... ,N
(Esmj )2 ≥ ε2Ω2

N

)
.

Since ΩN/N > infw,x σ2
w(x) > 0, this is bounded by

C · Pr
(

max
j=1,... ,N

(Esmj )2 ≥ ε2Ω2
N

)
.

Note that the second factor converges to zero as maxi(Esmi )2 is of order op(N1/2) since the second moment
of Esmi exists by assumption. Hence the Lindeberg-Feller condition (A.7) is satisfied.
Because (A.7) holds, we have

N1/2∑N
i=1E

sm
i∑N

i=1(1 +KM (i)/M)2σ2
Wi

(Xi)
=
N3/2 · Esm

ΩN
d−→ N (0, 1), (A.8)

by the Lindeberg-Feller central limit theorem.
Next, we show

Ω2
N/N −→ V E = E[(1 +KM (i)/M)2σ2

Wi
(Xi)].

First note that the expectation of Ω2
N/N is equal to E[(1+KM (i))2σ2

Wi
(Xi)]. Second, consider the variance

1
N2

N∑
i=1

N∑
j=1

E
[(

(1 +KM (i)/M)2σ2
Wi

(Xi)− E[(1 +KM (i)/M)2σ2
Wi

(Xi)]
)

×
(

(1 +KM (j)/M)2σ2
Wj

(Xj)− E[(1 +KM (i)/M)2σ2
Wi

(Xi)]
)]
.

Now the volumes of the catchment areas Bi satisfy Pr(Bi ≤ b|Bj ≥ c,Wi = Wj) ≥ Pr(Bi ≤ b|Wi = Wj).
To see this note that the Bi all have the same distribution. Hence given the adding up condition (the
catchment areas partition the covariate space), it must be that conditional on Bj being larger than c, the
distribution function of all others must increase. This makes the volumes Bi and Bj negatively correlated.
Hence the counts KM (i) and KM (j) are negatively correlated, and thus the covariances are negative,
implying that the sum is less than the sum of the terms with i = j, so that the variance is less than or
equal to

1
N2

N∑
i=1

E
[(

(1 +KM (i)/M)2σ2
Wi

(Xi)− E[(1 +KM (i))2σ2
Wi

(Xi)]
)2]

.

=
1
N
E
[(

(1 +KM (i)/M)2σ2
Wi

(Xi)− E[(1 +KM (i))2σ2
Wi

(Xi)]
)2]

.

The expectation is finite because KM (i) has finite fourth moment, so the variance goes to zero.
Hence N3/2 · Esm/ΩN

d−→ N1/2Esm/V E , and thus

√
N · Esm d−→ N (0, V E). (A.9)

Finally, Esm and τ(X)−τ are uncorrelated (take expectations conditional on X and W). Thus, combining
(A.6), (A.9) and the zero correlation gives the result in the theorem. �

Corollaries 2 and 3 follow directly from Theorem 3 and their proofs are therefore omitted.

40



Before proving Theorem 4, we give some preliminary results. The exact conditional distribution of KM (i)
is,

KM (i)
∣∣∣∣ W, {Xj}Wj=1,Wi = 1 ∼ Binomial

(
N0,

∫
AM (i)

f0(z)dz

)
,

and

KM (i)
∣∣∣∣ W, {Xj}Wj=0,Wi = 0 ∼ Binomial

(
N1,

∫
AM (i)

f1(z)dz

)
.

Let us describe the set AM (i) in more detail for the special case in which X is a scalar. First, let r̄w(x) be
the number of units with Wi = w and Xi ≥ x. Then, define X(i,k) = Xj if r̄Wi(Xi) − r̄Wi(Xj) = k, and
r̄Wi(Xi)− limx↑Xj r̄Wi(x) = k − 1. Then the set AM (i) is equal to the interval

AM (i) = (Xi/2 +X(i,−M)/2, Xi/2 +X(i,M))/2),

with width (X(i,M) −X(i,−M))/2.

Lemma A.2: Given Xi = x, and Wi = 1

2N1 ·
f1(x)
f0(x)

·
∫
AM (i)

f0(z)dz d→ Gamma (2M, 1),

and given Xi = x and Wi = 0,

2N0 ·
f0(x)
f1(x)

·
∫
AM (i)

f1(z)dz d→ Gamma (2M, 1).

Proof: We only prove the first part of the lemma. The second part follows exactly the same proof. First
we establish that

2N1f1(x) ·
∫
AM (i)

dz = N1f1(x)
(
X(i,M) −X(i,−M)

)
+ op(1) d→ Gamma (2M, 1).

Let F1(x) be the distribution function of X given W = 1. Then D = F1(X(i,+M)) − F1(X(i,−M)) is the
difference in order statistics of the uniform distribution, 2M orders apart. Hence the exact distribution
of D is Beta with parameters 2M and N1. For large N1, the distribution of N1D is then Gamma with
parameters 2M and 1. Now approximate N1D as

N1D = N1 ·
(
F1(X(i,M))− F1(X(i,−M))

)
= N1f1(X̃i) ·

(
X(i,M) −X(i,−M)

)
.

For X̃i ∈ (X(i,−M), X(i,M)). The first claims follows because X̃i converges almost surely to x. Second, we
show that

2N1
f1(x)
f0(x)

·
∫
AM (i)

f0(z)dz − 2N1f1(x) ·
∫
AM (i)

dz = op(1).

This difference can be written as

2N1
f1(x)
f0(x)

·
∫
AM (i)

f0(z)dz − 2N1
f1(x)
f0(x)

·
∫
AM (i)

f0(x)dz

= 2N1
f1(x)
f0(x)

·

(∫
AM (i)

(f0(z)− f0(x))dz

)
.
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Notice that∣∣∣∣∣
(∫

AM (i)
(f0(z)− f0(x))dz

)/(∫
AM (i)

dz

)∣∣∣∣∣ ≤
sup

∣∣∣∣∂f0

∂z

∣∣∣∣
(∫

AM (i)
|z − x| dz

)/(∫
AM (i)

dz

)
≤ sup

∣∣∣∣∂f0

∂z

∣∣∣∣
(∫

AM (i)
dz

)
= op(1).

because |∂f0/∂z| is bounded and AM (i) vanishes asymptotically. Thus,∣∣∣∣∣2N1
f1(x)
f0(x)

·

(∫
AM (i)

(f0(z)− f0(x))dz

)∣∣∣∣∣ ≤∣∣∣∣∣2N1
f1(x)
f0(x)

·
∫
AM (i)

dz

∣∣∣∣∣ ·
∣∣∣∣∣
(∫

AM (i)
(f0(z)− f0(x))dz

)/(∫
AM (i)

dz

)∣∣∣∣∣ = op(1).

�

Proof of Theorem 4:

Consider

E

[(
1 +

KM (i)
M

)2

σ2
Wi

(Xi)

]
= E

[(
1 +

KM (i)
M

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]
p

+ E

[(
1 +

KM (i)
M

)2

σ2
0(Xi)

∣∣∣∣∣ Wi = 0

]
(1− p).

Define PM (i) = Wi ·
∫
AM (i) f0(z)dz + (1−Wi) ·

∫
AM (i) f1(z)dz. We know that

E[KM (i)|W, {Xj}Wj=1,Wi = 1] = N0PM (i),

and

E[K2
M (i)|W, {Xj}Wj=1,Wi = 1] = N0PM (i) +N0(N0 − 1)PM (i)2.

Therefore,

E

[(
1 +

KM (i)
M

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]

= E
[(

1 +
1
M2

{
N0PM (i) +N0(N0 − 1)PM (i)2}+

2
M
N0PM (i)

)
σ2

1(Xi)
∣∣∣∣ Wi = 1

]
.

From the previous results, this expectation is equal to

E
[(

1 +
1
M

{
(1− p)
p

f0(Xi)
f1(Xi)

+
(1− p)2

2p2

f0(Xi)2

f1(Xi)2 (2M + 1)
}

+
2(1− p)

p

f0(Xi)
f1(Xi)

)
σ2

1(Xi)
∣∣∣∣ Wi = 1

]
+ o(1).

Rearranging terms, we get:

E

[(
1 +

KM (i)
M

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]
= E

[(
1 +

(1− p)
p

f0(Xi)
f1(Xi)

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]

+
1
M
E
[(

(1− p)
p

f0(Xi)
f1(Xi)

+
(1− p)2

2p2

f0(Xi)2

f1(Xi)2

)
σ2

1(Xi)
∣∣∣∣ Wi = 1

]
+ o(1).
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Notice that,

E

[(
1 +

(1− p)
p

f0(Xi)
f1(Xi)

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]
p

= E
[
σ2

1(Xi)
e(Xi)2

∣∣∣∣ Wi = 1
]
p =

∫
σ2

1(x)
e(x)

pf1(x)
e(x)f(x)

f(x)dx = E
[
σ2

1(Xi)
e(Xi)

]
.

In addition,

E
[(

(1− p)
p

f0(Xi)
f1(Xi)

+
(1− p)2

2p2

f0(Xi)2

f1(Xi)2

)
σ2

1(Xi)
∣∣∣∣ Wi = 1

]
p

=
∫ (

(1− p)f0(x) +
(1− p)2

2p
f0(x)2

f1(x)

)
σ2

1(x)dx

=
1
2

∫
(1− p)f0(x)

(
2 +

1− p
p

f0(x)
f1(x)

)
σ2

1(x)dx =
1
2

∫
(1− p)f0(x)

(
1 +

1
e(x)

)
σ2

1(x)dx

= E
[
(1− e(Xi))

(
1 +

1
e(Xi)

)
σ2

1(Xi)
]

= E
[
σ2

1(Xi)
e(Xi)

− e(Xi)σ2
1(x)

]
.

Therefore,

E

[(
1 +

KM (i)
M

)2

σ2
1(Xi)

∣∣∣∣∣ Wi = 1

]
p =

(
1 +

1
2M

)
E
[
σ2

1(Xi)
e(Xi)

]
− 1

2M
E[e(Xi)σ2

1(Xi)] + o(1).

The analogous result holds conditioning on Wi = 0, therefore

E

[(
1 +

KM (i)
M

)2

σ2
Wi

(Xi)

]
=

(
1 +

1
2M

)
E
[
σ2

1(Xi)
e(Xi)

+
σ2

0(Xi)
1− e(Xi)

]
− 1

2M
E[e(Xi)σ2

1(Xi) + (1− e(Xi))σ2
0(Xi)] + o(1).

As a result,

NVar(τ̂smM ) =
(

1 +
1

2M

)
E
[
σ2

1(Xi)
e(Xi)

+
σ2

0(Xi)
1− e(Xi)

]
+ Var(τ(Xi))−

1
2M

Var(ε) + o(1).

�
Before proving Theorem 5 we state two auxiliary lemmas. Let λ be a multi-index of dimension k, that
is, an k-dimensional vector of non-negative integers, with |λ| =

∑k
i=1 λi, and let Λl be the set of λ

such that |λ| = l. Furthermore, let xλ = xλ1
1 . . . xλkk , and let ∂λg(x) = ∂|λ|g(x)/∂xλ1

1 . . . ∂xλkk . Define
|g(·)|d = max|λ≤d| supx |∂λg(x)|.

Lemma A.3: (Uniform Convergence of Series Estimators of Regression Functions, Newey

1995)

Suppose the conditions in Theorem 5 hold. Then for any α > 0 and non-negative integer d,

|µ̂w(·)− µw(·)|d = Op

(
K1+2k

(
(K/N)1/2 +K−α

))
,

for w = 0, 1.

Proof: Assumptions 3.1, 4.1, 4.2 and 4.3 in Newey (1995) are satisfied (with µw(x) infinitely often
differentiable), implying that Newey’s Theorem 4.4 applies. �
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Lemma A.4: (Unit-level Bias Correction)

Suppose the conditions in Theorem 5 hold. Then

max
i
|µ̂w(Xi)− µ̂w(Xjm(i))−

(
µw(Xi)− µw(Xjm(i))

)
| = op(N−1/2),

for w = 0, 1.

Proof:

Fix the non-negative integer L > (k−2)/2. Let Um,i = Xjm(i)−Xi, with jth element Um,i,j . Use a Taylor
series expansion around Xi to write

µ̂w(Xjm(i)) = µ̂w(Xi) +
L∑
l=1

∑
λ∈Λl

∂λµ̂w(Xi)Uλm,i +
∑

λ∈ΛL+1

∂λµ̂(x̃, w)Uλm,i.

First consider the last sum,
∑
λ∈ΛL+1

∂λµ̂(x̃, w)Uλm,i. By the assumptions in Theorem 5, the first factor in

each term is bounded by C |λ| = CL+1. The second factor in each term is of the form
∏k
j=1 U

λj
m,i,j . The

factor Uλjm,i is of order Op(N−λj/k), so that the product is of the order Op(N−
Pk
j=1 λj/k) = Op(N−(L+1)/k).

All moments of N1/kUm,i are finite, hence with ∂µ̂w(x) bounded for |λ| ≤ L + 1, all moments of
N (L+1)/k∑

λ∈ΛL+1
∂λµ̂(x̃, w)Uλm,i are finite. Therefore for any ε > 0

max
i=1,... ,N

∑
λ∈ΛL+1

∂λµ̂(x̃, w)Uλm,i = op(N−(L+1)/k+ε).

Because L > (k − 2)/2, we can choose ε > 0 such that this is op(N−1/2. Hence,

max
i=1,... ,N

(
µ̂w(Xjm(i))− µ̂w(Xi)−

L∑
l=1

∑
λ∈Λl

∂λµ̂w(Xi)Um(Xi)λ
)

= op(N−1/2). (A.10)

Using the same argument as we used for the estimated regression function µ̂w(x) we have for the true
regression function µw(x),

max
i=1... ,N

(
µw(Xjm(i))− µw(Xi) =

L∑
l=1

∑
λ∈Λl

∂λµw(Xi)Um(Xi)λ
)

= op(N−1/2). (A.11)

Now consider the difference:

µ̂w(Xjm(i))− µ̂w(Xi)−
(
µw(Xjm(i))− µw(Xi)

)

=
L∑
l=1

∑
λ∈Λl

(
∂λµ̂w(Xi)− ∂λµw(Xi)

)
· Um(Xi)λ + op(N−1/2).

Consider for a particular λ ∈ Λl the term
(
∂λµ̂w(Xi)− ∂λµw(Xi)

)
· Um(Xi)λ. The second factor is, using

the same argument as before, of order Op(N−l/k), Since l ≥ 1, the second factor is at most Op(N−1/k),
and because all the relevant moments exist maxi Uλm,i = op(N−1/k+ε) for any ε > 0. Now consider the
first factor. By Lemma A.3, | sup(∂λµ̂w(x)− ∂λµw(x))| is of order Op

(
K1+2k

(
(K/N)1/2 +K−α

))
. With

K = Nν , this is Op
(
Nν(3/2+2k)−1/2 +N−αν(1+2k)

)
. We can choose α large enough so that for any given

ν the first term dominates. Hence the order of the product is Op
(
Nν(3/2+2k)−1/2

)
· Op(N−1/k). By the
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assumptions in Theorem 5 we have ν < 2/(3k+4k2). Hence, for ε small enough we have ν(3/2+2k)−1/2 <
1/k − 1/2 + ε, and therefore the order is op(N−1/2). �

Proof of Theorem 5:

The difference |B̂sm −Bsm| can be written as

∣∣∣B̂sm −Bsm∣∣∣ =

∣∣∣∣∣∣ 1
N

 ∑
i|wi=0

µ̂1(Xi)− µ̂1(Xjm(i))−
(
µ1(Xi)− µ1(Xjm(i))

)

+
∑
i|wi=1

µ̂0(Xi)− µ̂0(Xjm(i))−
(
µ0(Xi)− µ0(Xjm(i))

)∣∣∣∣∣∣
≤ 1
N

N∑
i=1

∑
w=0,1

∣∣µ̂w(Xi)− µ̂w(Xjm(i))−
(
µw(Xi)− µw(Xjm(i))

)∣∣
≤ max
i=1,... ,N

∑
w=0,1

∣∣µ̂w(Xi)− µ̂w(Xjm(i))−
(
µw(Xi)− µw(Xjm(i))

)∣∣ = op(N−1/2),

by Lemma A.4. �

Proof of Theorem 6:

By the triangle inequality∣∣∣ι′NAΩ̂A′ιN/N − V E
∣∣∣ ≤ ∣∣∣ι′NAΩ̂A′ιN/N − ι′NAΩA′ιN/N

∣∣∣+
∣∣ι′NAΩA′ιN/N − V E

∣∣ .
Lemma 3 shows that

ι′NAΩA′ιN/N − V E = op(1),

so we only need to show that

ι′NAΩ̂A′ιN/N − ι′NAΩA′ιN/N = op(1). (A.12)

First we make two preliminary observations. The first uses the fact that matching units of one type to
the nearest units of the same type is slightly different from matching to nearest units of the opposite type.
One implication is that L(i) =

∑
j 1{l(j) = i} is bounded from above (by a function of the dimension).

For example, with k = 1, L(i) ≤ 2: no unit can be the closest to more than two other units.
Second, the supremum of the matching discrepancies goes to zero

sup
x,w
‖Xi −Xl(i)‖

d−→ 0.

This follows from the compactness of the covariate spaces and the fact that the densities are bounded away
from zero. To see this, fix ε > 0. Then we can partition the covariate space into N̄ subsets Xn such that
maxn≤N̄ supx,y∈Xn ‖x − y‖ < ε. With probability approaching one, the number of observations in each
subset is at least two. Hence the distance to the nearest match is less than ε.
The implication of the second observation is that

sup
i
‖E[σ̂2

Wi
(Xi)|X,W]− σ2

Wi
(Xi)‖

p−→ 0.
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To see this note that the expectation can be written as

E[σ̂2
Wi

(Xi)|X,W] =
1
2

(
σ2
Wi

(Xi) + σ2
Wl(i)

(Xl(i)) +
(
µWi(Xi)− µWl(i)(Xl(i))

)2)
,

which, by continuity of σ2
w(x) and µw(x) in x, goes to σ2

Wi
(Xi) if supw,x ‖Xi −Xl(i)‖ does.

Now, to prove (A.12), we write, using the representation in (21),

∣∣∣ι′NAΩ̂A′ιN/N − ι′NAΩA′ιN/N
∣∣∣ =

∣∣∣∣∣ 1
N

N∑
i=1

(
1 +

KM (i)
M

)2

·
(
σ2
Wi

(Xi)− σ̂2
Wi

(Xi)
)∣∣∣∣∣

≤

∣∣∣∣∣ 1
N

N∑
i=1

(
1 +

KM (i)
M

)2

·
(
σ2
Wi

(Xi)− E[σ̂2
Wi

(Xi)|X,W]
)∣∣∣∣∣ (A.13)

+

∣∣∣∣∣ 1
N

N∑
i=1

(
1 +

KM (i)
M

)2

·
(
E[σ̂2

Wi
(Xi)|X,W]− σ̂2

Wi
(Xi)

)∣∣∣∣∣ (A.14)

For (A.13) we have:∣∣∣∣∣ 1
N

N∑
i=1

(
1 +

KM (i)
M

)2

·
(
σ2
Wi

(Xi)− E[σ̂2
Wi

(Xi)|X,W]
)∣∣∣∣∣

≤ max
i

(
σ2
Wi

(Xi)− E[σ̂2
Wi

(Xi)|X,W]
)
·

∣∣∣∣∣ 1
N

N∑
i=1

(
1 +

KM (i)
M

)2
∣∣∣∣∣ .

The second factor satisfies a law of large numbers by Lemma 3(i). The first factor converges to zero, and
thus the entire expression converges to zero.
To show that (A.14) converges to zero, first decompose

σ̂2
Wi

(Xi)− E[σ̂2
Wi

(Xi)|X,W]

=
1
2

(
ε2
i − σ2

Wi
(Xi) + ε2

l(i) − σ
2
Wl(i)

(Xl(i))− 2εi · εl(i) + (εi − εl(i)) · (µWi(Xi)− µWl(i)(Xl(i)))
)
.

Ignoring the terms involving εi ·εl(i), and the terms linear in εi, we can write (A.14) as 1
N

∑N
i=1 Ci(ε

2
i−σ2

Wi
),

where

Ci =
(

1 +
KM (i)
M

)2

+
∑

j|i=l(j)

(
1 +

KM (j)
M

)2

≤ L̄ ·max
i

(
1 +

KM (i)
M

)2

,

where L̄ is the upper bound on L(i). With all moments of KM (i) existing, N−α maxNi=1

(
1 + KM (i)

M

)2
is

op(1) for all α > 0, and therefore

1
N2

N∑
i=1

C2
i

p−→ 0,
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and so the sum 1
N

∑N
i=1 Ci(ε

2
i − σ2

Wi
) converges to zero. Similarly we can write the terms linear in εi as∑

i Ci·εi, with |Ci| ≤ L̄·maxi
(

1 + KM (i)
M

)2
·supx,w |µw(x)|, which therefore again satisfiesN−2∑N

i=1 Ci
p−→

0, which shows convergence of the sum of these terms. Finally consider the terms involving εi · εl(i). They
sum up to

1
N

N∑
i=1

(
1 +

KM (i)
M

)2

· εi · εl(i).

Take the expectation of the square of this expression. There are only 2N terms with non-zero expectations,
and hence the sum converges to zero. �
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Estes, E.M., and B.E. Honoré, (2001), “Partially Linear Regression Using One Nearest Neighbor,”
unpublished manuscript, Princeton University.
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Table 1

A Matching Estimator with Four Observations

i Wi Xi Yi j(i) K1(i) Ŷi(0) Ŷi(1) τ̂i

1 1 6 10 3 2 8 10 2
2 0 4 5 1 1 5 10 5
3 0 7 8 1 1 8 10 2
4 1 1 5 2 0 5 5 0

τ̂ = 9/4
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Table 5

Simulation Results

M Estimator mean median rmse mae s.d. mean coverage
bias bias s.e. (nom. 95%) (nom. 90%)

1 simple matching -0.49 -0.45 0.87 0.55 0.72 0.84 0.93 0.88
bias-adjusted 0.04 0.06 0.74 0.47 0.74 0.84 0.96 0.92

4 simple matching -0.85 -0.84 1.03 0.84 0.58 0.59 0.72 0.60
bias-adjusted 0.05 0.06 0.60 0.39 0.60 0.59 0.94 0.89

16 simple matching -1.80 -1.78 1.89 1.78 0.57 0.52 0.07 0.04
bias-adjusted 0.17 0.16 0.62 0.40 0.60 0.52 0.90 0.83

64 simple matching -3.27 -3.25 3.32 3.25 0.59 0.52 0.00 0.00
bias-adjusted 0.15 0.16 0.65 0.43 0.63 0.52 0.87 0.81

All simple matching -19.06 -19.06 19.07 19.06 0.61 0.43 0.00 0.00
(2490) bias-adjusted -2.04 -2.04 2.28 2.04 1.00 0.37 0.09 0.07

difference -19.06 -19.06 19.07 19.06 0.61 0.61 0.00 0.00
linear regression -2.04 -2.04 2.28 2.04 1.00 0.98 0.44 0.33

quadratic regression 2.70 2.64 3.02 2.64 1.34 1.24 0.40 0.27

Note: For each estimator summary statistics are provided for 10,000 replications of the data set. Results are reported
for five values of the number of matches (M = 1, 4, 16, 64, 2490), and for two estimators: the simple matching estimator,
the bias-adjusted matching estimator, based on the regression of only the matched treated and controls. The last three
rows report results for the simple average treatment-control difference, the ordinary least squares estimator, and the
ordinary least square estimator using a full set of quadratic terms and interactions. For each estimator we report
the mean and median bias, the root-mean-squared-error, the median-absolute-error, the standard deviation of the
estimators, the average estimate of the standard error, and the coverage rate of the nominal 95% and 90% confidence
intervals.
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