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Abstract

Graph convolutional networks (GCNs) are a pow-

erful deep learning approach for graph-structured

data. Recently, GCNs and subsequent variants

have shown superior performance in various ap-

plication areas on real-world datasets. Despite

their success, most of the current GCN models

are shallow, due to the over-smoothing problem.

In this paper, we study the problem of design-

ing and analyzing deep graph convolutional net-

works. We propose the GCNII, an extension of

the vanilla GCN model with two simple yet ef-

fective techniques: Initial residual and Identity

mapping. We provide theoretical and empirical

evidence that the two techniques effectively re-

lieves the problem of over-smoothing. Our ex-

periments show that the deep GCNII model out-

performs the state-of-the-art methods on various

semi- and full-supervised tasks.

1. Introduction

Graph convolutional networks (GCNs) (Kipf & Welling,

2017) generalize convolutional neural networks (CNNs) (Le-

Cun et al., 1995) to graph-structured data. To learn the graph

representations, the “graph convolution” operation applies

the same linear transformation to all the neighbors of a node

followed by a nonlinear activation function. In recent years,

GCNs and their variants (Defferrard et al., 2016; Veličković

et al., 2018) have been successfully applied to a wide range

of applications, including social analysis (Qiu et al., 2018;

Li & Goldwasser, 2019), traffic prediction (Guo et al., 2019;

Li et al., 2019b), biology (Fout et al., 2017; Shang et al.,

2019), recommender systems (Ying et al., 2018), and com-

puter vision (Zhao et al., 2019; Ma et al., 2019).
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Despite their enormous success, most of the current GCN

models are shallow. Most of the recent models, such as

GCN (Kipf & Welling, 2017) and GAT (Veličković et al.,

2018), achieve their best performance with 2-layer models.

Such shallow architectures limit their ability to extract in-

formation from high-order neighbors. However, stacking

more layers and adding non-linearity tends to degrade the

performance of these models. Such a phenomenon is called

over-smoothing (Li et al., 2018b), which suggests that as

the number of layers increases, the representations of the

nodes in GCN are inclined to converge to a certain value

and thus become indistinguishable. ResNet (He et al., 2016)

solves a similar problem in computer vision with residual

connections, which is effective for training very deep neural

networks. Unfortunately, adding residual connections in

the GCN models merely slows down the over-smoothing

problem (Kipf & Welling, 2017); deep GCN models are still

outperformed by 2-layer models such as GCN or GAT.

Recently, several works try to tackle the problem of over-

smoothing. JKNet (Xu et al., 2018) uses dense skip con-

nections to combine the output of each layer to preserve

the locality of the node representations. Recently, DropE-

dge (Rong et al., 2020) suggests that by randomly removing

out a few edges from the input graph, one can relieve the

impact of over-smoothing. Experiments (Rong et al., 2020)

suggest that the two methods can slow down the perfor-

mance drop as we increase the network depth. However,

for semi-supervised tasks, the state-of-the-art results are

still achieved by the shallow models, and thus the benefit

brought by increasing the network depth remains in doubt.

On the other hand, several methods combine deep prop-

agation with shallow neural networks. SGC (Wu et al.,

2019) attempts to capture higher-order information in the

graph by applying the K-th power of the graph convolu-

tion matrix in a single neural network layer. PPNP and

APPNP (Klicpera et al., 2019a) replace the power of the

graph convolution matrix with the Personalized PageRank

matrix to solve the over-smoothing problem. GDC (Klicpera

et al., 2019b) further extends APPNP by generalizing Per-

sonalized PageRank (Page et al., 1999) to an arbitrary graph

diffusion process. However, these methods perform a linear

combination of neighbor features in each layer and lose the

powerful expression ability of deep nonlinear architectures,

which means they are still shallow models.
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In conclusion, it remains an open problem to design a GCN

model that effectively prevents over-smoothing and achieves

state-of-the-art results with truly deep network structures.

Due to this challenge, it is even unclear whether the network

depth is a resource or a burden in designing new graph neu-

ral networks. In this paper, we give a positive answer to this

open problem by demonstrating that the vanilla GCN (Kipf

& Welling, 2017) can be extended to a deep model with

two simple yet effective modifications. In particular, we

propose Graph Convolutional Network via Initial residual

and Identity mapping (GCNII), a deep GCN model that

resolves the over-smoothing problem. At each layer, ini-

tial residual constructs a skip connection from the input

layer, while identity mapping adds an identity matrix to the

weight matrix. The empirical study demonstrates that the

two surprisingly simple techniques prevent over-smoothing

and improve the performance of GCNII consistently as we

increase its network depth. In particular, the deep GCNII

model achieves new state-of-the-art results on various semi-

supervised and full-supervised tasks.

Second, we provide theoretical analysis for multi-layer GCN

and GCNII models. It is known (Wu et al., 2019) that by

stacking k layers, the vanilla GCN essentially simulates a

K-th order of polynomial filter with predetermined coef-

ficients. (Wang et al., 2019) points out that such a filter

simulates a lazy random walk that eventually converges to

the stationary vector and thus leads to over-smoothing. On

the other hand, we prove that a K-layer GCNII model can

express a polynomial spectral filter of order K with arbi-

trary coefficients. This property is essential for designing

deep neural networks. We also derive the closed-form of

the stationary vector and analyze the rate of convergence

for the vanilla GCN. Our analysis implies that nodes with

high degrees are more likely to suffer from over-smoothing

in a multi-layer GCN model, and we perform experiments

to confirm this theoretical conjecture.

2. Preliminaries

Notations. Given a simple and connected undirected

graph G = (V,E) with n nodes and m edges. We de-

fine the self-looped graph G̃ = (V, Ẽ) to be the graph with

a self-loop attached to each node in G. We use {1, . . . , n}
to denote the node IDs of G and G̃, and dj and dj + 1 to

denote the degree of node j in G and G̃, respectively. Let

A denote the adjacency matrix and D the diagonal degree

matrix. Consequently, the adjacency matrix and diagonal de-

gree matrix of G̃ is defined to be Ã = A+I and D̃ = D+I,

respectively. Let X ∈ Rn×d denote the node feature ma-

trix, that is, each node v is associated with a d-dimensional

feature vector Xv . The normalized graph Laplacian matrix

is defined as L = In−D−1/2AD−1/2, which is a symmet-

ric positive semidefinite matrix with eigendecomposition

UΛUT ,. Here Λ is a diagonal matrix of the eigenvalues

of L, and U ∈ Rn×n is a unitary matrix that consists of

the eigenvectors of L. The graph convolution operation

between signal x and filter gγ(Λ) = diag(γ) is defined as

gγ(L) ∗ x = Ugγ(Λ)U
Tx, where the parameter γ ∈ Rn

corresponds to a vector of spectral filter coefficients.

Vanilla GCN. (Kipf & Welling, 2017) and (Defferrard

et al., 2016) suggest that the graph convolution operation

can be further approximated by the K-th order polynomial

of Laplacians

Ugθ(Λ)U
Tx ≈ U

(

K
∑

ℓ=0

θℓΛ
ℓ

)

U⊤x =

(

K
∑

ℓ=0

θℓL
ℓ

)

x,

where θ ∈ RK+1 corresponds to a vector of polynomial

coefficients. The vanilla GCN (Kipf & Welling, 2017) sets

K = 1, θ0 = 2θ and θ1 = −θ to obtain the convolution

operation gθ ∗ x = θ
(

I+D−1/2AD−1/2
)

x. Finally, by

the renormalization trick, (Kipf & Welling, 2017) replaces

the matrix I+D−1/2AD−1/2 by a normalized version P̃ =
D̃−1/2ÃD̃−1/2 = (D + In)

−1/2(A + In)(D + In)
−1/2.

and obtains the Graph Convolutional Layer

H(ℓ+1) = σ
(

P̃H(ℓ)W(ℓ)
)

. (1)

Where σ denotes the ReLU operation.

SGC (Wu et al., 2019) shows that by stacking K lay-

ers, GCN corresponds to a fixed polynomial filter of or-

der K on the graph spectral domain of G̃. In particu-

lar, let L̃ = In − D̃−1/2ÃD̃−1/2 denote the normalized

graph Laplacian matrix of the self-looped graph G̃. Con-

sequently, applying a K-layer GCN to a signal x corre-

sponds to
(

D̃−1/2ÃD̃−1/2
)K

x =
(

In − L̃
)K

x. (Wu

et al., 2019) also shows that by adding a self-loop to each

node, L̃ effectively shrinks the underlying graph spectrum.

APPNP. (Klicpera et al., 2019a) uses Personalized PageR-

ank to derive a fixed filter of order K. Let fθ(X) denote the

output of a two-layer fully connected neural network on the

feature matrix X, PPNP’s model is defined as

H = α
(

In − (1− α)Ã
)−1

fθ(X). (2)

Due to the property of Personalized PageRank, such a fil-

ter preserves locality and thus is suitable for classification

tasks. (Klicpera et al., 2019a) also proposes APPNP, which

replaces α
(

In − (1− α)Ã
)−1

with an approximation de-

rived by a truncated power iteration. Formally, APPNP with

K-hop aggregation is defined as

H
(ℓ+1) = (1− α)P̃H

(ℓ) + αH(0), (3)
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where H
(0) = fθ(X). By decoupling feature transfor-

mation and propagation, PPNP and APPNP can aggregate

information from multi-hop neighbors without increasing

the number of layers in the neural network.

JKNet. The first deep GCN framework is proposed by

(Xu et al., 2018). At the last layer, JKNet combines all

previous representations
[

H(1), . . . ,H(K)
]

to learn repre-

sentations of different orders for different graph substruc-

tures. (Xu et al., 2018) proves that 1) a K-layer vanilla

GCN model simulates random walks of K steps in the self-

looped graph G̃ and 2) by combining all representations

from the previous layers, JKNet relieves the problem of

over-smoothing.

DropEdge A recent work (Rong et al., 2020) suggests

that randomly removing some edges from G̃ retards the con-

vergence speed of over-smoothing. Let P̃drop denote the

renormalized graph convolution matrix with some edge re-

moved at random, the vanilla GCN equipped with DropEdge

is defined as

H(ℓ+1) = σ
(

P̃dropH
(ℓ)W(ℓ)

)

. (4)

3. GCNII Model

It is known (Wu et al., 2019) that by stacking K layers, the

vanilla GCN simulates a polynomial filter
(

∑K
ℓ=0 θℓL̃

ℓ
)

x

of order K with fixed coefficients θ on the graph spectral

domain of G̃. The fixed coefficients limit the expressive

power of a multi-layer GCN model and thus leads to over-

smoothing. To extend GCN to a truly deep model, we need

to enable GCN to express a K order polynomial filter with

arbitrary coefficients. We show this can be achieved by two

simple techniques: Initial residual connection and Identity

mapping. Formally, we define the ℓ-th layer of GCNII as

H(ℓ+1)=σ
((

(1−αℓ)P̃H(ℓ)+αℓH
(0)
)(

(1−βℓ)In+βℓW
(ℓ)
))

,

(5)

where αℓ and βℓ are two hyperparameters to be discussed

later. Recall that P̃ = D̃−1/2ÃD̃−1/2 is the graph con-

volution matrix with the renormalization trick. Note that

compared to the vanilla GCN model (equation (1)), we make

two modifications: 1) We combine the smoothed represen-

tation P̃H(ℓ) with an initial residual connection to the first

layer H(0); 2) We add an identity mapping In to the ℓ-th
weight matrix W(ℓ).

Initial residual connection. To simulate the skip connec-

tion in ResNet (He et al., 2016), (Kipf & Welling, 2017)

proposes residual connection that combines the smoothed

representation P̃H(ℓ) with H(ℓ). However, it is also shown

in (Kipf & Welling, 2017) that such residual connection only

partially relieves the over-smoothing problem; the perfor-

mance of the model still degrades as we stack more layers.

We propose that, instead of using a residual connection to

carry the information from the previous layer, we construct

a connection to the initial representation H(0). The initial

residual connection ensures that that the final representation

of each node retains at least a fraction of αℓ from the input

layer even if we stack many layers. In practice, we can

simply set αℓ = 0.1 or 0.2 so that the final representation of

each node consists of at least a fraction of the input feature.

We also note that H(0) does not necessarily have to be the

feature matrix X. If the feature dimension d is large, we

can apply a fully-connected neural network on X to obtain

a lower-dimensional initial representation H(0) before the

forward propagation.

Finally, we recall that APPNP (Klicpera et al., 2019a) em-

ploys a similar approach to the initial residual connection in

the context of Personalized PageRank. However, (Klicpera

et al., 2019a) also shows that performing multiple non-

linearity operations to the feature matrix will lead to over-

fitting and thus results in the performance drop. Therefore,

APPNP applies a linear combination between different lay-

ers and thus remains a shallow model. This suggests that

the idea of initial residual alone is not sufficient to extend

GCN to a deep model.

Identity mapping. To amend the deficiency of APPNP,

we borrow the idea of identity mapping from ResNet. At the

ℓ-th layer, we add an identity matrix In to the weight matrix

W(ℓ). In the following, we summarize the motivations for

introducing identity mapping into our model.

• Similar to the motivation of ResNet (He et al., 2016),

identity mapping ensures that a deep GCNII model

achieves at least the same performance as its shallow

version does. In particular, by setting βℓ sufficiently

small, deep GCNII ignores the weight matrix W(ℓ)

and essentially simulates APPNP (equation (3)).

• It has been observed that frequent interaction between

different dimensions of the feature matrix (Klicpera

et al., 2019a) degrades the performance of the model

in semi-supervised tasks. Mapping the smoothed rep-

resentation P̃H(ℓ) directly to the output reduces such

interaction.

• Identity mapping is proved to be particularly useful

in semi-supervised tasks. It is shown in (Hardt &

Ma, 2017) that a linear ResNet of the form H(ℓ+1) =
H(ℓ)

(

W(ℓ) + In
)

satisfies the following properties: 1)

The optimal weight matrices W(l) have small norms;

2) The only critical point is the global minimum. The

first property allows us to put strong regularization on
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Wℓ to avoid over-fitting, while the later is desirable in

semi-supervised tasks where training data is limited.

• (Oono & Suzuki, 2020) theoretically proves that the

node features of a K-layer GCNs will converge to

a subspace and incur information loss. In particular,

the rate of convergence depends on sK , where s is

the maximum singular value of the weight matrices

W(ℓ), ℓ = 0, . . . ,K−1. By replacing W(ℓ) with (1−
βℓ)In+βℓW

(ℓ) and imposing regularization on W(ℓ),

we force the norm of W(ℓ) to be small. Consequently,

the singular values of (1 − βℓ)In + βℓW
(ℓ) will be

close to 1. Therefore, the maximum singular value s
will also be close to 1, which implies that sK is large,

and the information loss is relieved.

The principle of setting βℓ is to ensure the decay of the

weight matrix adaptively increases as we stack more layers.

In practice, we set βℓ = log(λℓ + 1) ≈ λ
ℓ , where λ is a

hyperparameter.

Connection to iterative shrinkage-thresholding. Re-

cently, there has been work on optimization-inspired net-

work structure design (Zhang & Ghanem, 2018; Papyan

et al., 2017). The idea is that a feedforward neural network

can be considered as an iterative optimization algorithm

to minimize some function, and it was hypothesized that

better optimization algorithms might lead to better network

structure (Li et al., 2018a). Thus, theories in numerical

optimization algorithms may inspire the design of better

and more interpretable network structures. As we will show

next, the use of identity mappings in our structure is also

well-motivated from this. We consider the LASSO objec-

tive:

min
x∈Rn

1

2
‖Bx− y‖22 + λ‖x‖1.

Similar to compressive sensing, we consider x as the signal

we are trying to recover, B as the measurement matrix, and

y as the signal we observe. In our setting, y is the original

feature of a node, and x is the node embedding the network

tries to learn. As opposed to standard regression models,

the design matrix B is unknown parameters and will be

learned through back propagation. So, this is in the same

spirit as the sparse coding problem, which has been used to

design and to analyze CNNs (Papyan et al., 2017). Iterative

shrinkage-thresholding algorithms are effective for solving

the above optimization problem, in which the update in the

(t+ 1)th iteration is:

xt+1 = Pµtλ

(

xt − µtB
TBxt + µtB

Ty
)

,

Here µt is the step size, and Pβ(·) (with β > 0) is the

entry-wise soft thresholding function:

Pθ(z) =







z − θ, if z ≥ θ
0, if |z| < θ
z + θ, if z ≤ −θ

.

Now, if we reparameterize −BTB by W, the above up-

date formula becomes quite similar to the one used in

our method. More spopposeecifically, we have xt+1 =
Pµtλ

(

(I+ µtW)xt + µtB
Ty
)

, where the term µtB
Ty

corresponds to the initial residual, and I+µtW corresponds

to the identity mapping in our model (5). The soft threshold-

ing operator acts as the nonlinear activation function, which

is similar to the effect of ReLU activation. In conclusion,

our network structure, especially the use of identity map-

ping is well-motivated from iterative shrinkage-thresholding

algorithms for solving LASSO.

4. Spectral Analysis

4.1. Spectral analysis of multi-layer GCN.

We consider the following GCN model with residual con-

nection:

H(ℓ+1) = σ
((

P̃H(ℓ) +H(ℓ)
)

W(ℓ)
)

. (6)

Recall that P̃ = D̃−1/2ÃD̃−1/2 is the graph convolution

matrix with the renormalization trick. (Wang et al., 2019)

points out that equation (6) simulates a lazy random walk

with the transition matrix In+D̃
−1/2

ÃD̃
−1/2

2 . Such a lazy

random walk eventually converges to the stationary state

and thus leads to over-smoothing. We now derive the closed-

form of the stationary vector and analyze the rate of such

convergence. Our analysis suggests that the converge rate of

an individual node depends on its degree, and we conduct

experiments to back up this theoretical finding. In particular,

we have the following Theorem.

Theorem 1. Assume the self-looped graph G̃ is connected.

Let h(K) =
(

In+D̃
−1/2

ÃD̃
−1/2

2

)K

·x denote the representa-

tion by applying a K-layer renormalized graph convolution

with residual connection to a graph signal x. Let λG̃ de-

note the spectral gap of the self-looped graph G̃, that is,

the least nonzero eigenvalue of the normalized Laplacian

L̃ = In − D̃−1/2ÃD̃−1/2. We have

1) As K goes to infinity, h(K) converges to π =
〈D̃1/2

1,x〉
2m+n ·

D̃1/21, where 1 denotes an all-one vector.

2) The convergence rate is determined by

h(K) = π ±
(

n
∑

i=1

xi

)

·
(

1−
λ2
G̃

2

)K

· 1. (7)

Recall that m and n are the number of nodes and edges in

the original graph G. We use the operator ± to indicate that

for each entry h(K)(j) and π(j), j = 1, . . . , n,

∣

∣

∣h
(K)(j)− π(j)

∣

∣

∣ ≤
(

n
∑

i=1

xi

)

·
(

1−
λ2
G̃

2

)K

.
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The proof of Theorem 1 can be found in the supplementary

materials. There are two consequences from Theorem 1.

First of all, it suggests that the K-th representation of GCN

h(K) converges to a vector π =
〈D̃1/2

1,x〉
2m+n · D̃1/21. Such

convergence leads to over-smoothing as the vector π only

carries the two kinds of information: the degree of each

node, and the inner product between the initial signal x and

vector D1/21.

Convergence rate and node degree. Equation (7) sug-

gests that the converge rate depends on the summation of

feature entries
∑n

i=1 xi and the spectral gap λG̃. If we take

a closer look at the relative converge rate for an individual

node j, we can express its final representation h(K)(j) as

h(K)(j)=
√

dj + 1







n
∑

i=1

√
di+1

2m+n
xi±

∑n
i=1 xi

(

1− λ2

G̃

2

)K

√

dj + 1






.

This suggests that if a node j has a higher degree of dj
(and hence a larger

√

dj + 1), its representation h(K)(j)
converges faster to the stationary state π(j). Based on this

fact, we make the following conjecture.

Conjecture 1. Nodes with higher degrees are more likely

to suffer from over-smoothing.

We will verify Conjecture 1 on real-world datasets in our

experiments.

4.2. Spectral analysis of GCNII

We consider the spectral domain of the self-looped graph

G̃. Recall that a polynomial filter of order K on a graph

signal x is defined as
(

∑K
ℓ=0 θℓL̃

ℓ
)

x, where L̃ is the nor-

malized Laplacian matrix of G̃ and θk’s are the polynomial

coefficients. (Wu et al., 2019) proves that a K-layer GCN

simulates a polynomial filter of order K with fixed coef-

ficients θ. As we shall prove later, such fixed coefficients

limit the expressive power of GCN and thus leads to over-

smoothing. On the other hand, we show a K-layer GCNII

model can express a K order polynomial filter with arbitrary

coefficients.

Theorem 2. Consider the self-looped graph G̃ and a graph

signal x. A K-layer GCNII can express a K order polyno-

mial filter
(

∑K
ℓ=0 θℓL̃

ℓ
)

x with arbitrary coefficients θ.

The proof of Theorem 2 can be found in the supplementary

materials. Intuitively, the parameter β allows GCNII to

simulate the coefficient θℓ of the polynomial filter.

Expressive power and over-smoothing. The ability to

express a polynomial filter with arbitrary coefficients is es-

sential for preventing over-smoothing. To see why this is the

case, recall that Theorem 1 suggests a K-layer vanilla GCN

simulates a fixed K-order polynomial filter P̃Kx, where

P̃ is the renormalized graph convolution matrix. Over-

smoothing is caused by the fact that P̃Kx converges to

a distribution isolated from the input feature x and thus

incuring gradient vanishment. DropEdge (Rong et al., 2020)

slows down the rate of convergence, but eventually will fail

as K goes to infinity.

On the other hand, Theorem 2 suggests that deep GCNII

converges to a distribution that carries information from

both the input feature and the graph structure. This prop-

erty alone ensures that GCNII will not suffer from over-

smoothing even if the number of layers goes to infinity.

More precisely, Theorem 2 states that a K-layer GCNII

can express h(K) =
(

∑K
ℓ=0 θℓL̃

ℓ
)

· x with arbitrary co-

efficients θ. Since the renormalized graph convolution

matrix P̃ = In − L̃, it follows that K-layer GCNII can

express h(K) =
(

∑K
ℓ=0 θ

′
ℓP̃

ℓ
)

· x with arbitrary coef-

ficients θ′. Note that with a proper choice of θ′, h(K)

can carry information from both the input feature and the

graph structure even with K going to infinity. For example,

APPNP (Klicpera et al., 2019a) and GDC (Klicpera et al.,

2019b) set θ′i = α(1−α)i for some constant 0 < α < 1. As

K goes to infinity, h(K) =
(

∑K
ℓ=0 θ

′
ℓP̃

ℓ
)

· x converges to

the Personalized PageRank vector of x, which is a function

of both the adjacency matrix Ã and the input feature vector

x. The difference between GCNII and APPNP/GDC is that

1) the coefficient vector theta in our model is learned from

the input feature and the label, and 2) we impose a ReLU

operation at each layer.

5. Other Related Work

Spectral-based GCN has been extensively studied for the

past few years. (Li et al., 2018c) improves flexibility by

learning a task-driven adaptive graph for each graph data

while training. (Xu et al., 2019) uses the graph wavelet

basis instead of the Fourier basis to improve sparseness and

locality. Another line of works focuses on the attention-

based GCN models (Veličković et al., 2018; Thekumpara-

mpil et al., 2018; Zhang et al., 2018), which learn the edge

weights at each layer based on node features. (Abu-El-Haija

et al., 2019) learn neighborhood mixing relationships by

mixing of neighborhood information at various distances

but still uses a two-layer model. In graph-level classifica-

tion, (Li et al., 2019a) proposed residual connections and

dilated convolutions to facilitate the training of deep models.

(Gao & Ji, 2019; Lee et al., 2019) devote to extend pooling

operations to graph neural network. For unsupervised infor-

mation, (Velickovic et al., 2019) train graph convolutional

encoder through maximizing mutual information. (Pei et al.,

2020) build structural neighborhoods in the latent space of
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Table 1. Dataset statistics.

Dataset Classes Nodes Edges Features

Cora 7 2,708 5,429 1,433

Citeseer 6 3,327 4,732 3,703

Pubmed 3 19,717 44,338 500

Chameleon 4 2,277 36,101 2,325

Cornell 5 183 295 1,703

Texas 5 183 309 1,703

Wisconsin 5 251 499 1,703

PPI 121 56,944 818,716 50

graph embedding for aggregation to extract more structural

information. (Dave et al., 2019) uses a single represen-

tation vector to capture both topological information and

nodal attributes in graph embedding. Many of the sampling-

based methods proposed to improve the scalability of GCN.

(Hamilton et al., 2017) uses a fixed size of neighborhood

samples through layers, (Chen et al., 2018a; Huang et al.,

2018) propose efficient variants based on importance sam-

pling. (Chiang et al., 2019) construct minibatch based on

graph clustering.

6. Experiments

In this section, we evaluate the performance of GCNII

against the state-of-the-art graph neural network models

on a wide variety of open graph datasets.

Dataset and experimental setup. We use three standard

citation network datasets Cora, Citeseer, and Pubmed (Sen

et al., 2008) for semi-supervised node classification. In these

citation datasets, nodes correspond to documents, and edges

correspond to citations; each node feature corresponds to the

bag-of-words representation of the document and belongs

to one of the academic topics. For full-supervised node

classification, we also include Chameleon (Rozemberczki

et al., 2019), Cornell, Texas, and Wisconsin (Pei et al.,

2020). These datasets are web networks, where nodes and

edges represent web pages and hyperlinks, respectively. The

feature of each node is the bag-of-words representation of

the corresponding page. For inductive learning, we use

Protein-Protein Interaction (PPI) networks (Hamilton et al.,

2017), which contains 24 graphs. Following the setting of

previous work (Veličković et al., 2018), we use 20 graphs

for training, 2 graphs for validation, and the rest for testing.

Statistics of the datasets are summarized in Table 1.

Besides GCNII (5), we also include GCNII*, a variant

of GCNII that employs different weight matrices for the

smoothed representation P̃H(ℓ) and the initial residual H(0).

Table 2. Summary of classification accuracy (%) results on Cora,

Citeseer, and Pubmed. The number in parentheses corresponds to

the number of layers of the model.

Method Cora Citeseer Pubmed

GCN 81.5 71.1 79.0
GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1
JKNet 81.1 (4) 69.8 (16) 78.1 (32)
JKNet(Drop) 83.3 (4) 72.6 (16) 79.2 (32)
Incep(Drop) 83.5 (64) 72.7 (4) 79.5 (4)

GCNII 85.5 ± 0.5 (64) 73.4 ± 0.6 (32) 80.2 ± 0.4 (16)
GCNII* 85.3 ± 0.2 (64) 73.2 ± 0.8 (32) 80.3 ± 0.4 (16)

Formally, the (ℓ+ 1)-th layer of GCNII* is defined as

H(ℓ+1) = σ
(

(1− αℓ)P̃H(ℓ)
(

(1− βℓ)In + βℓW
(ℓ)
1

)

+

+αℓH
(0)
(

(1− βℓ)In + βℓW
(ℓ)
2

))

.

As mentioned in Section 3, we set βℓ = log(λℓ + 1) ≈ λ/ℓ,
where λ is a hyperparameter.

6.1. Semi-supervised Node Classification

Setting and baselines. For the semi-supervised node

classification task, we apply the standard fixed train-

ing/validation/testing split (Yang et al., 2016) on three

datasets Cora, Citeseer, and Pubmed, with 20 nodes per

class for training, 500 nodes for validation and 1,000 nodes

for testing. For baselines, we include two recent deep GNN

models: JKNet (Xu et al., 2018) and DropEdge (Rong

et al., 2020). As suggested in (Rong et al., 2020), we

equip DropEdge on three backbones: GCN (Kipf & Welling,

2017), JKNet (Xu et al., 2018) and IncepGCN (Rong et al.,

2020). We also include three state-of-the-art shallow mod-

els: GCN (Kipf & Welling, 2017), GAT (Veličković et al.,

2018) and APPNP (Klicpera et al., 2019a).

We use the Adam SGD optimizer (Kingma & Ba, 2015) with

a learning rate of 0.01 and early stopping with a patience

of 100 epochs to train GCNII and GCNII*. We set αℓ =
0.1 and L2 regularization to 0.0005 for the dense layer on

all datasets. We perform a grid search to tune the other

hyper-parameters for models with different depths based on

the accuracy on the validation set. More details of hyper-

parameters are listed in the supplementary materials.

Comparison with SOTA. Table 2 reports the mean clas-

sification accuracy with the standard deviation on the test

nodes of GCN and GCNII after 100 runs. We reuse the

metrics already reported in (Fey & Lenssen, 2019) for GCN,

GAT, and APPNP, and the best metrics reported in (Rong

et al., 2020) for JKNet, JKNet(Drop) and Incep(Drop). Our

results successfully demonstrate that GCNII and GCNII*
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Table 3. Summary of classification accuracy (%) results with vari-

ous depths.

Dataset Method
Layers

2 4 8 16 32 64

Cora

GCN 81.1 80.4 69.5 64.9 60.3 28.7
GCN(Drop) 82.8 82.0 75.8 75.7 62.5 49.5
JKNet - 80.2 80.7 80.2 81.1 71.5
JKNet(Drop) - 83.3 82.6 83.0 82.5 83.2
Incep - 77.6 76.5 81.7 81.7 80.0
Incep(Drop) - 82.9 82.5 83.1 83.1 83.5
GCNII 82.2 82.6 84.2 84.6 85.4 85.5
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3

Citeseer

GCN 70.8 67.6 30.2 18.3 25.0 20.0
GCN(Drop) 72.3 70.6 61.4 57.2 41.6 34.4
JKNet - 68.7 67.7 69.8 68.2 63.4
JKNet(Drop) - 72.6 71.8 72.6 70.8 72.2
Incep - 69.3 68.4 70.2 68.0 67.5
Incep(Drop) - 72.7 71.4 72.5 72.6 71.0
GCNII 68.2 68.9 70.6 72.9 73.4 73.4
GCNII* 66.1 67.9 70.6 72.0 73.2 73.1

Pubmed

GCN 79.0 76.5 61.2 40.9 22.4 35.3
GCN(Drop) 79.6 79.4 78.1 78.5 77.0 61.5
JKNet - 78.0 78.1 72.6 72.4 74.5
JKNet(Drop) - 78.7 78.7 79.1 79.2 78.9
Incep - 77.7 77.9 74.9 OOM OOM
Incep(Drop) - 79.5 78.6 79.0 OOM OOM
GCNII 78.2 78.8 79.3 80.2 79.8 79.7
GCNII* 77.7 78.2 78.8 80.3 79.8 80.1

achieves new state-of-the-art performance across all three

datasets. Notably, GCNII outperforms the previous state-

of-the-art methods by at least 2%. It is also worthwhile to

note that the two recent deep models, JKNet and IncepGCN

with DropEdge, do not seem to offer significant advantages

over the shallow model APPNP. On the other hand, our

method achieves this result with a 64-layer model, which

demonstrates the benefit of deep network structures.

A detailed comparison with other deep models. Table 3

summaries the results for the deep models with various num-

bers of layers. We reuse the best-reported results for JKNet,

JKNet(Drop) and Incep(Drop) 1. We observe that on Cora

and Citeseer, the performance of GCNII and GCNII* con-

sistently improves as we increase the number of layers. On

Pubmed, GCNII and GCNII* achieve the best results with

16 layers, and maintain similar performance as we increase

the network depth to 64. We attribute this quality to the

identity mapping technique. Overall, the results suggest that

with initial residual and identity mapping, we can resolve

the over-smoothing problem and extend the vanilla GCN

into a truly deep model. On the other hand, the performance

of GCN with DropEdge and JKNet drops rapidly as the

number of layers exceeds 32, which means they still suffer

from over-smoothing.

1https://github.com/DropEdge/DropEdge

Table 4. Summary of Micro-averaged F1 scores on PPI.

Method PPI

GraphSAGE (Hamilton et al., 2017) 61.2

VR-GCN (Chen et al., 2018b) 97.8

GaAN (Zhang et al., 2018) 98.71

GAT (Veličković et al., 2018) 97.3

JKNet (Xu et al., 2018) 97.6

GeniePath (Liu et al., 2019) 98.5

Cluster-GCN (Chiang et al., 2019) 99.36

GCNII 99.53 ± 0.01

GCNII* 99.56 ± 0.02

6.2. Full-Supervised Node Classification

We now evaluate GCNII in the task of full-supervised node

classification. Following the setting in (Pei et al., 2020),

we use 7 datasets: Cora, Citeseer, Pubmed, Chameleon,

Cornell, Texas, and Wisconsin. For each datasets, we ran-

domly split nodes of each class into 60%, 20%, and 20%

for training, validation and testing, and measure the perfor-

mance of all models on the test sets over 10 random splits,

as suggested in (Pei et al., 2020). We fix the learning rate

to 0.01, dropout rate to 0.5 and the number of hidden units

to 64 on all datasets and perform a hyper-parameter search

to tune other hyper-parameters based on the validation set.

Detailed configuration of all model for full-supervised node

classification can be found in the supplementary materials.

Besides the previously mentioned baselines, we also include

three variants of Geom-GCN (Pei et al., 2020) as they are

the state-of-the-art models on these datasets.

Table 5 reports the mean classification accuracy of each

model. We reuse the metrics already reported in (Pei et al.,

2020) for GCN, GAT, and Geom-GCN. We observe that

GCNII and GCNII* achieves new state-of-the-art results on

6 out of 7 datasets, which demonstrates the superiority of

the deep GCNII framework. Notably, GCNII* outperforms

APPNP by over 12% on the Wisconsin dataset. This result

suggests that by introducing non-linearity into each layer,

the predictive power of GCNII is stronger than that of the

linear model APPNP.

6.3. Inductive Learning

For the inductive learning task, we apply 9-layer GCNII and

GCNII* models with 2048 hidden units on the PPI dataset.

We fix the following sets of hyperparameters: αℓ = 0.5,

λ = 1.0 and learning rate of 0.001. Due to the large volume

of training data, we set the dropout rate to 0.2 and the weight

decay to zero. Following (Veličković et al., 2018), we also

add a skip connection from the ℓ-th layer to the (ℓ+ 1)-th
layer of GCNII and GCNII* to speed up the convergence
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Table 5. Mean classification accuracy of full-supervised node classification.

Method Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

GCN 85.77 73.68 88.13 28.18 52.70 52.16 45.88

GAT 86.37 74.32 87.62 42.93 54.32 58.38 49.41

Geom-GCN-I 85.19 77.99 90.05 60.31 56.76 57.58 58.24

Geom-GCN-P 84.93 75.14 88.09 60.90 60.81 67.57 64.12

Geom-GCN-S 85.27 74.71 84.75 59.96 55.68 59.73 56.67

APPNP 87.87 76.53 89.40 54.3 73.51 65.41 69.02

JKNet 85.25 (16) 75.85 (8) 88.94 (64) 60.07 (32) 57.30 (4) 56.49 (32) 48.82 (8)

JKNet(Drop) 87.46 (16) 75.96 (8) 89.45 (64) 62.08 (32) 61.08 (4) 57.30 (32) 50.59 (8)

Incep(Drop) 86.86 (8) 76.83 (8) 89.18 (4) 61.71 (8) 61.62 (16) 57.84 (8) 50.20 (8)

GCNII 88.49 (64) 77.08 (64) 89.57 (64) 60.61 (8) 74.86 (16) 69.46 (32) 74.12 (16)

GCNII* 88.01 (64) 77.13 (64) 90.30 (64) 62.48 (8) 76.49 (16) 77.84 (32) 81.57 (16)

of the training process. We compare GCNII with the fol-

lowing state-of-the-art methods: GraphSAGE (Hamilton

et al., 2017), VR-GCN (Chen et al., 2018b), GaAN (Zhang

et al., 2018), GAT (Veličković et al., 2018), JKNet (Xu et al.,

2018), GeniePath (Liu et al., 2019), Cluster-GCN (Chiang

et al., 2019). The metrics are summarized in Table 4.

In concordance with our expectations, the results show that

GCNII and GCNII* achieve new state-of-the-art perfor-

mance on PPI. In particular, GCNII achieves this perfor-

mance with a 9-layer model, while the number of layers

with all baseline models are less or equal to 5. This suggests

that larger predictive power can also be leveraged by in-

creasing the network depth in the task of inductive learning.

6.4. Over-Smoothing Analysis for GCN

Recall that Conjecture 1 suggests that nodes with higher

degrees are more likely to suffer from over-smoothing. To

verify this conjecture, we study how the classification accu-

racy varies with node degree in the semi-supervised node

classification task on Cora, Citeseer, and Pubmed. More

specifically, we group the nodes of each graph according to

their degrees. The i-th group consists of nodes with degrees

in the range [2i, 2i+1) for i = 0, . . . ,∞. For each group,

we report the average classification accuracy of GCN with

residual connection with various network depths in Figure 1.

We have the following observations. First of all, we note that

the accuracy of the 2-layer GCN model increases with the

node degree. This is as expected, as nodes with higher de-

grees generally gain more information from their neighbors.

However, as we extend the network depth, the accuracy

of high-degree nodes drops more rapidly than that of low-

degree nodes. Notably, GCN with 64 layers is unable to

classify nodes with degrees larger than 100. This suggests

that over-smoothing indeed has a greater impact on nodes

with higher degrees.

6.5. Ablation Study

Figure 2 shows the results of an ablation study that evaluates

the contributions of our two techniques: initial residual con-

nection and identity mapping. We make three observations

from Figure 2: 1) Directly applying identity mapping to the

vanilla GCN retards the effect of over-smoothing marginally.

2) Directly applying initial residual connection to the vanilla

GCN relieves over-smoothing significantly. However, the

best performance is still achieved by the 2-layer model. 3)

Applying identity mapping and initial residual connection

simultaneously ensures that the accuracy increases with the

network depths. This result suggests that both techniques

are needed to solve the problem of over-smoothing.

7. Conclusion

We propose GCNII, a simple and deep GCN model that

prevents over-smoothing by initial residual connection and

identity mapping. The theoretical analysis shows that GC-

NII is able to express a K order polynomial filter with

arbitrary coefficients. For vanilla GCN with multiple layers,

we provide theoretical and empirical evidence that nodes

with higher degrees are more likely to suffer from over-

smoothing. Experiments show that the deep GCNII model

achieves new state-of-the-art results on various semi- and

full-supervised tasks. Interesting directions for future work

include combining GCNII with the attention mechanism and

analyzing the behavior of GCNII with the ReLU operation.
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Figure 1. Semi-supervised node classification accuracy v.s. degree.
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