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ABSTRACT CAPTCHA, or Completely Automated Public Turing Tests to Tell Computers and Humans

Apart, is a common mechanism used to protect commercial accounts from malicious computer bots, and the

most widely used scheme is text-based CAPTCHA. In recent years, newly emerged deep learning techniques

have achieved high accuracy and speed in attacking text-based CAPTCHAs. However, most of the existing

attacks have various disadvantages, the attack process made high complexity or manually collecting and

labeling a large number of samples to train a deep learning recognition model is time-consuming and

expensive. In this paper, we propose a transfer learning-based approach that greatly reduces the attack

complexity and the cost of labeling samples, specifically, by pre-training the model with randomly generated

samples and fine-tuning the pre-trained model with a small number of real-world samples. To evaluate our

attack, we tested 25 online CAPTCHAs achieving success rates ranging from 36.3% to 96.9%. To further

explore the effect of the training sample characteristics on the attack accuracy, we elaborately imitate some

samples and apply a generative adversarial network to refine the samples, sequentially we use these two

kinds of generated samples to pre-train the models, respectively. The experimental results demonstrate that

the similarity between randomly generated samples and elaborately imitated samples has a negligible impact

on the attack accuracy. Instead, transfer learning is the key factor; it reduces the cost of data preparation while

preserving the model’s attack accuracy.

INDEX TERMS CAPTCHA, security, deep learning, transfer learning.

I. INTRODUCTION

Since the text-based CAPTCHA scheme was first introduced,

it has been widely used to distinguish malicious bots from

humans [1]. A text-based CAPTCHA requires a user to deci-

pher letters or Arabic numerals embedded in an image and

then re-enter them to pass the test. This simple structure

makes CAPTCHAs intuitive for users worldwide. As one

of the most important tools for preventing computer attacks,

the security aspect of text-based CAPTCHAs has attracted

considerable attention from researchers and industry prac-

titioners. To improve security, researchers have introduced

numerous resistance mechanisms that enhance CAPTCHA

complexity, including background interference, noise lines,

and geometric alterations [8]. However, with the advent of

The associate editor coordinating the review of this manuscript and
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deep learning techniques, all these defense mechanisms have

been overcome [2], [3], [6], [7], [9].

To attack text CAPTCHAs, most of the previous attacks

have adopted a three-step strategy: preprocessing, segmen-

tation and recognition. The preprocessing operation involves

extra calculation cost and effort, and the segmentation-based

methods do not perform well in terms of accuracy and effi-

ciency. Moreover, deep learning techniques require a large

number of training samples, but manually collecting and

labeling large numbers of samples is labor-intensive and

inefficient. Therefore, some researchers have attempted to

train models using synthetic data [20], [29]. However, mim-

icking real-world CAPTCHA schemes is also complex, and

time-consuming because of the requirement of background

recovery, font matching, features adjustment, etc. Further-

more, the models trained on synthetic data are usually unable

to achieve considerable accuracy on the real-world attacks.

In 2018, Ye et al. [9] combined a generative adversarial
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network (GAN) [19] and transfer learning to address the limi-

tations of current deep learning attacks. Their method was the

first to adopt a GAN to break text-based CAPTCHAs. How-

ever, that work contains three main limitations. First, using

SimGAN [10] to fine-tune the samples greatly increases

the computational complexity. Second, it uses a compli-

cated method to remove image noise, which is also time-

consuming. Third (and most important), the impact of using

a GAN on the attack success rate was not discussed. Briefly,

the existing methods either have high complexity in the

image-processing stage or requires a large effort on training

the recognition engine.

In this paper, we propose a simple, generic and efficient

transfer learning-based method that can greatly decrease the

complexity in breaking text CAPTCHAs. Unlike previous

works that require manually labeling a large number of real

samples or elaborately imitating the real CAPTCHAs, our

attack requires only randomly generated samples and a small

set of real samples. We achieve this by using randomly gen-

erated synthetic images to pre-train the model and then using

a few real labeled CAPTCHAs to fine-tune the model. The

recognition engine is a combination of a residual network

(ResNet) [12], a recurrent neural network (RNN), and an

attention mechanism.

To evaluate the effectiveness of the attack, 20 Roman-

character-based CAPTCHAs and 5 Chinese CAPTCHAs

found on popular websites, such as Google, Apple,

Wikipedia, Baidu, Alipay, and Sina, were tested. With

transfer learning, only 500 (1,000 for the Chinese scheme)

real samples from each scheme are used to fine-tune the

base-solver model. The proposed attack achieves high suc-

cess rates—ranging from 36.3% to 96.9%. The experimental

result shows that our approach reduces the crack complexity

while remaining high accuracy, and it also demonstrates

that transfer learning is a generic and efficient strategy for

breaking text-based CAPTCHAs.

To further study the effect of the similarity between syn-

thetic data and real-world samples on the attack accuracy,

we used carefully simulated samples and GAN-based refined

samples to pre-train the model. Seven targeted schemes were

chosen as representatives. The results show that the level of

similarity between the synthetic and real samples has only

a small impact on attack accuracy and that using a GAN

to imitate real samples has little influence on improving the

attack success rate.

The remainder of this paper is organized as follows.

In Section II, we survey prior attacks and introduce back-

ground information about transfer learning. Section III

includes not only our overall cracking idea and the details

of our attack scheme but also reports the attack results using

randomly generated samples. In Section IV, we instead use

elaborately imitated samples and GAN-based generated sam-

ples to evaluate our attack. We also conducted a further study

on the similarity between the synthetic data and the real-world

samples. In section V, the results of a comprehensive com-

parison between our attack and prior works and the analysis

are provided. Then, we experimentally discuss the effects of

some CNN models and how to optimize the training speed;

also, we further analyze the impact of using different training

strategies. Finally, we summarize our work in Section VI.

II. BACKGROUND

A. PRIOR ATTACKS

In large numbers of commercial websites, a CAPTCHA

scheme is the most prevalent method used for protection

against malicious bots. However, many of these text schemes

have been successfully broken by the attacks of prior works,

which has spurred the development of CAPTCHA designs.

Although many other CAPTCHA schemes have been pro-

posed, such as image-based schemes, audio-based schemes,

and game-based schemes, text-based CAPTCHAs are still the

most widely used type because of their intuitiveness and low

deployment costs.

The early text-based CAPTCHAs were simple and dif-

fered only in character size and rotation angle; consequently,

most of them were easily recognized using optical charac-

ter recognition (OCR) engines [13]. Later, designers added

more security features to text-based CAPTCHAs; however,

the advances in traditional machine learning techniques

quickly broke these schemes as well. In 2003, Mori et al.

applied the shape context matching-based method to break

two early simple schemes named Gimpy and EZ-Gimpy,

achieving success rates of 33% and 92%, respectively [14].

In 2006, using pattern recognition algorithms, Yan et al.

successfully brokemost of the CAPTCHAs at CAPTCHAser-

vice.org [16]. In 2008, Yan’s work applied amachine learning

mechanism to recognize segmented CAPTCHA charac-

ters [4]. Using a K-Nearest Neighbors (KNN) model, Gao’s

team proposed a generic attack in 2016 that achieved success

rates of between 5% and 77% on Google reCAPTCHA,

Yahoo! and Microsoft designs [18]. Undeniably, traditional

machine learning algorithms are able to successfully attack

some simple schemes. However, most of the traditional attack

methods are very slow. The numerous image processing

details they required also made them difficult to implement.

In addition, they are unsuitable for attacking difficult schemes

that feature complex resistance mechanisms.

As deep learning techniques developed and achieved great

results in image classification tasks, neural networks (NNs)

were also adopted in the CAPTCHA field; however, training

an efficient neural network requires a certain number of

labeled samples. Thus, some works used manually labeled

collected CAPTCHAs to train their models. Using LeNet

for recognition, Chellapilla attempted two-step attacks (seg-

mentation and recognition) to study the security of some

typical CAPTCHAs [15]. For each scheme, they labeled

1,800 CAPTCHAs for training. In 2013, using their novel

segmentation algorithms and a convolutional neural network

(CNN), a model by Gao et al. was able to attack a fam-

ily of hollow CAPTCHA schemes [7]. However, their seg-

mentation process was highly complex, and they used a

manually labeled sample set to train the CNN. In 2017,
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George et al. [32] proposed a recursive cortical network

(RCN)-based approach to attack four CAPTCHA schemes.

However, their attack required clean individual characters,

which also increased the difficulty. In 2018, [3] proposed a

deep-learning-based three-step attack. To obtain an efficient

model, they used 2,400 manually labeled samples from each

scheme for training. Most recently in 2019, Zi et al. [24]

proposed an end-to-end attack to solve text CAPTCHAs with

a deep learning network; but they trained the recognition

models with 10,000 manually labeled CAPTCHAs for each

scheme. In particular, to obtain higher accuracy in Google

reCAPTCHA, they even used 200,000 manually labeled sam-

ples for training the model, which took a lot of time and labor

costs.

Using real-world labeled samples to train the model is

the most effective way, but training deep-learning networks

requires a large number of labeled samples that are some-

times difficult to collect, and manual labeling is expen-

sive and time-consuming. Moreover, when the CAPTCHAs

expand their character classes, for example, by adopting

large-alphabet languages such as Korean and Chinese, even

more samples are required to train the model, which increases

the labeling cost. Due to the difficulty of collecting and

manually labeling real CAPTCHAs, it has become a trend

to use synthetic samples to break text-based CAPTCHA.

In 2015, Stark et al. [33] introduced a simple method to

recognize CAPTCHAs using synthetic training data. How-

ever, their training process required that new samples be

continuously added to the training dataset, which is com-

plicated and inefficient. Besides, their approach applied to

fixed-length CAPTCHAs only. In 2017, Gao’s team proposed

another deep-learning-based method that used an imitator

to generate CAPTCHAs for attacking Microsoft’s two-layer

hollow scheme [2]. Later, Le et al. [20] used synthetic

data to train the recognition model and achieved good suc-

cess rates on their synthetic data, ranging from 91.05% to

99.8%, but their model performed poorly on the real-world

CAPTCHAs. While using synthetic data indeed reduces the

cost of manually labeling samples, the traditional image gen-

eration algorithms used to imitate real-world samples also

introduce extra time and labor costs. Therefore, attackers

must create diverse samples with different character fonts,

sizes, rotation angles, backgrounds, and so on to make

their synthetic samples as similar to real-world ones as

possible.

To solve the sample simulation problem, in 2018, [9] first

utilized SimGAN [10] to implement a CAPTCHA synthe-

sizer that could generate synthetic CAPTCHA automatically.

They also used a specific GAN named Pix2Pix [28] to train

a preprocessing model to remove security features and stan-

dardize the font style. In conjunction with transfer learn-

ing, their attack achieved good success rates, ranging from

3% to 100% on 33 text-based CAPTCHAs. However, their

work involves training two individual GANs, which greatly

increases the time and computational cost. Adjusting the

parameters for the two GANs to closely imitate real samples

also requires extra labor and time. Last but not least, they did

not report the effects of using the GANs in their work. Thus,

it is still unclear whether using aGAN to generate CAPTCHA

samples can indeed improve the attack results.

In summary, regardless of which types of resistance mech-

anisms are used in text CAPTCHAs, some approaches exist

that can attack them successfully. However, the prior attacks

have various drawbacks with regard to attack efficiency and

cost.

• Image preprocessing and segmentation are complex

operations that have a great impact on the subsequent

recognition step.

• Manually labeling samples is expensive and time-

consuming. (especially for large-alphabet schemes)

• Generating synthetic samples requires careful adjust-

ments that involve additional time and labor costs.More-

over, training GANs induces yet more costs, and the

effects of using a GAN are still unclear.

Thus, an approach is expected to solve these defects while

achieving low-cost and efficient attacks, and this is the nov-

elty and motivation of our work.

B. TRANSFER LEARNING

In many machine learning and deep learning tasks, it is

assumed that the training and test data should exist in the

same feature space and have a similar distribution. However,

in many real-world cases, that assumption cannot be satis-

fied because collecting sufficient training data for machine

learning or deep learning models may be difficult (labeling

may be expensive). Under this circumstance, researchers seek

to find substitute samples that are similar to the source data

to train their models and complete their tasks. In this way,

the knowledge learned from the substitute data can be applied

to the source data, which underpins the concept of transfer

learning.

The fundamental motivation for transfer learning was first

discussed in 1995 with a focus on ‘‘learning to learn’’,1 and it

subsequently attracted more attention in different tasks such

as classification, object localization, and clustering problems.

It is a promising strategy for the tasks that lack sufficient

samples. For example, suppose we want to classify cats of

different breeds, but we only have sufficient training data

from ImageNet, which contains some cats. We could train

a base model on the ImageNet dataset and later retrain the

model using a few detailed cat data to obtain a more accu-

rate model. In transfer learning applications, we define the

source data that are sufficient and related to the target as

the source domain and the task when training the source

domain as the source task. Naturally, the other important

definition in such applications is the target domain and target

task, which respectively indicate the domain-specific data

used for training the model to achieve the final goal. In this

definition, transfer learning uses a dual learning approach that

1http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/
transfer.workshop.1995.html.
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TABLE 1. A survey of text-based scheme targeted by our work.

first attempts to learn the knowledge from the source domain

and then to retrain the model for detailed parameters in the

target domain to finally complete the target task [11].

III. PROPOSED ATTACK

In this section, we introduce our attack based on simple

synthetic data and transfer learning. To evaluate the effec-

tiveness of our attack, we tested our approach on 25 real-

world text CAPTCHAs with randomly generated samples,

including both Roman-character-based schemes and Chinese

schemes.

A. DATA PREPARATION

To test the feasibility of the proposed attack, we select

25 targeted CAPTCHAs, all of which are deployed by highly

popular websites as ranked by Alexa. As shown in Table 1,

each scheme has distinct security features, and our tar-

geted schemes cover almost all the resistance mechanisms

employed in text CAPTCHAs.

1) ROMAN-CHARACTER-BASED SCHEMES

Roman-character-based schemes are the most widely used

type of CAPTCHA because they are universal for worldwide

use. In this study, we selected 20 Roman-character-based

schemes deployed by famous websites worldwide, including

Google, Microsoft, Wikipedia, Apple, Baidu and so on. For

each scheme, we collected 1,500 real CAPTCHAs from the

websites. Note that only 500 of them are used for fine-tuning,

and another 1,000 are applied to calculate the test accuracy,

which is not required in the real attack. Each scheme uses a

different character dictionary; we found a total of 62 charac-

ters, including 52 English letters and 10 digits.

2) CHINESE SCHEMES

To expand the solution space of text CAPTCHAs,

many schemes have utilized large-alphabet languages for

CAPTCHA designs. For example, Chinese has over 3,000

commonly used characters, many more than the Roman

alphabet’s 62 characters. Moreover, most Chinese characters

consist of integrated Chinese radicals, which alsomakes them

more difficult to recognize than Roman characters [5]. In fact,

some prior works have analyzed the significance of and

worked partly with Chinese schemes [3], [5], [22]. To investi-

gate the potential of our attack, we also evaluated our transfer-

learning-based attack on five Chinese CAPTCHA schemes

deployed by five well-known Chinese commercial websites.

For each scheme, we collected 2,000 samples in total, half of

whichwere used for fine-tuning, and the other half for testing.

Each CAPTCHA image was labeled manually. In the Chinese

schemes, the total number of character classes was 3,626.

B. ATTACK DETAILS

As Fig. 1 shows, our attack consists of three parts:

Step 1. CAPTCHA generation. This step uses image-

processing algorithms to generate CAPTCHAs unrelated to

the targeted scheme for training our recognition network.

In our attack, all the pre-training samples are generated com-

pletely randomly without any special design, which is easy to

implement and greatly reduces the effort taken in gathering

training samples.

Step 2. Pre-training. After generation, the synthetic

CAPTCHAs are input directly into the recognition engine

without any preprocessing to train a base model. After the

pre-training, we adopted the trained model as the base model

of all the subsequent schemes.
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FIGURE 1. The overview of our attack approach.

Step 3. Fine-tuning. Finally, for each scheme, we used

500 real samples to fine-tune the base model. This stage was

achieved by retraining the base model using transfer learning

for the purpose of updating the parameters corresponding to

the real features. Note that we only used domain adaptation

of transfer learning, and the model retained consistency in the

pre-training and retraining stages.

In the following, we explain the details of our attack.

1) CAPTCHA GENERATION

To reduce the costs associated with manual labeling,

in this study, we also generated synthetic CAPTCHAs as

pre-training data. All of the training data for the base model

is generated by simple image processing algorithms.

As Fig. 2 shows, all the pre-training samples are generated

with black characters on a pure white background. Unlike the

original CAPTCHAs, we did not add any security features

to the generated CAPTCHAs, e.g., no noise lines, distortion,

overlapping, and so on. Instead, the samples were generated

in the simplest manner to reduce the generation cost since

this type of CAPTCHA is easy to implement and requires

no special effort. Note that our generated CAPTCHAs are

completely unrelated to targeted CAPTCHAs, and they are

not similar to any of the targeted schemes.

For the Roman-character-based schemes, the length of the

text string is set to between 4 and 10; the fonts are randomly

selected from the font library, including both regular and

hollow styles; all the images are the same size and the text

rotation angle is set from minus 45 to 45 degrees. We gen-

erate 200,000 images for base model pre-training. For the

Chinese schemes, we set the string length between 2 and 5;

FIGURE 2. Some examples of our randomly generated CAPTCHAs for
training the base model: (a) Randomly generated Roman-character-based
CAPTCHAs; (b) Randomly generated Chinese characters.

selected themost commonly used fonts in the font library; and

randomly generated 500,000 images. All the samples were

resized to 500 × 150 and can be generated within an hour in

Python using an image processing framework named Pillow

on a desktop with Intel Core i3 CPU.

2) PRE-TRAINING

To recognize the entire character string in one step, a com-

bined model [23] consisting of a CNN and a long short-term

memory (LSTM) model [27] was utilized as the recognition

engine. The CNN is responsible for extracting the feature vec-

tor of the CAPTCHA image. For this study, we chose ResNet

v2-101 [12] as our CNN, which is designed to solve the

degradation problem that occurs as network depth increases.

The performance of other CNN structures was also evaluated,

such as Inception v3 [25] and SeNet [26]; however, ResNet

performs better than those two candidates. The details are

described in Section V-B.

The LSTM converts the feature vectors extracted by

CNN into a single text string; it can be considered as a

character-level language model. The main operations are
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applying input and output gate units and memory cells to

learn to open and close access to the constant error flow.

Decisions are made using the last states in the memory cells.

In this experiment, the number of LSTM cells depends on the

maximum string length of the targeted CAPTCHA.

To make the model ‘‘location-aware’’, we also utilized a

spatial attention mechanism following [23]. The attention

mechanism allows our model to tackle text strings of different

lengths without segmentation. Spatial attention models are

typically used for OCR prediction based on the RNN state,

as in [30]. They combine image content and spatial informa-

tion to determinewhere the network should look. In this work,

we utilized the same attention model as in [23] to enable the

network to locate the characters automatically.

We trained the model by maximizing
∑T

t=1 log p (yt |y1:t−1, x), where x is the input image, yt is

the predicted label for location t , and T ranges from 2 to 10

(indicating the length of the string). The model is optimized

by a stochastic gradient descent (SGD) strategy with an

initial learning rate of 0.004, weight decay of 0.00004 and

momentum of 0.9. We finally obtained one base model for

Roman-character-based schemes with 20 epochs and one for

Chinese schemes with 30 epochs.

3) FINE-TUNING

In the last step, we use transfer learning to fine-tune the

pre-trained model parameters with few real CAPTCHAs.

To further illustrate the fine-tuning process, we first provide

mathematical justifications for how the mechanism of trans-

fer learning works. In transfer learning [11], domain D is

denoted as D = {X ,P(X )}, where X is the feature space

and P(X ) is a marginal probability distribution. For a specific

domain, a task can be defined as T = {Y , f }, where Y

denotes the label space and f denotes the objective predictive

function. In general, a complete transfer learning process

involves one source domain (DS ) and one target domain (DT ),

which correspond to one source task (TS ) and one target

task (TT ), respectively. From the knowledge in DS and TS ,

transfer learning aims to help improve the learning of the

target predictive function f in DT . In our CAPTCHA solver,

f denotes the predictive function in ResNet, and DS and DT
are as follows:

DS =

{

(

xS1 , yS1
)

, . . . ,

(

xSnS , ySnS

)}

(1)

DT =

{

(

xT1 , yT1
)

, . . . ,

(

xTnT , yTnT

)}

(2)

Regarding the training data, xSi ∈ XS is the synthetic

CAPTCHA and yTi ∈ YT is the corresponding CAPTCHA

label, a character string. Here, xTi and yTi have the same

meanings as in the real CAPTCHAs. Note that all the labels

remain the same in DS and DT (62 or 3,626 characters), but

the feature spaces are different because the features of the

synthetic and real CAPTCHAs have different details.

To fine-tune the model, for each scheme, we restored the

pre-trained model and all the layers were fixed unchanged

before updating the prediction model. The architecture of the

TABLE 2. Attack results.

network was exactly the same as the pre-training stage. All

of the parameters also remained the same and only the epoch

for each scheme was turned to 1. For each Roman-character-

based scheme, 500 manually labeled real samples were used.

Considering that the Chinese CAPTCHAs feature a larger

character set than do the Roman CAPTCHAs, we adopted

1,000 real-world manually labeled Chinese CAPTCHAs per

Chinese scheme.

Both pre-training and fine-tuning were implemented on

the called TensorFlow deep learning framework. The models

were trained on a computer equipped with an Intel Core

i7 CPU (1.80GHz), an NVIDIA GeForce GTX 1080 GPU,

and 16 GB of RAM. Training one epoch takes nearly 15 min-

utes.

C. ATTACK RESULTS

We implemented our attack and tested it on all the targeted

schemes. For each scheme, 1,000 real-world CAPTCHAs

were tested using the pre-trained and fine-tuned models,

respectively. We summarize the resulting success rates and

test speeds in Table 2.

1) SUCCESS RATE

As shown in Table 2, before fine-tuning the base model with

real CAPTCHAs, the success rates of the targeted schemes

are extremely low on both Roman-character-based and Chi-

nese schemes. Most of the tested schemes achieved suc-

cess rates of 0%—only four were above 1%. This demon-

strates that training using only the randomly generated data

is not feasible. However, after using a small number of real

CAPTCHAs to fine-tune the base models, our approach was

able to attack all the targeted schemes with considerable
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FIGURE 3. The loss (training VS validation) and accuracy (training
VS validation) of retraining stage.

success rates. For more than half of the schemes, the attack

achieved a success rate of over 90%. On reCAPTCHA, which

has historically proven to be a difficult scheme [24], the fine-

tuned model also achieved good results—51.9%. The low-

est accuracy was achieved on the Dajie scheme of 36.3%

(a Chinese scheme): this scheme is the most difficult because

it hasmany security features and over 3,000 classes. However,

the success rate on Dajie also satisfies the criteria commonly

used in the CAPTCHA community—higher than 1% [31],

which means that the attack was successful.

2) ATTACK SPEED

Finally, regarding runtime speed, our model requires approx-

imately 0.02 seconds to test one CAPTCHA, which is com-

pletely acceptable because it satisfies the commonly used cri-

terion in [31]. The results suggest that our approach executes

in real time.

From the retraining process, we can argue that the transfer

learning can help improve attack accuracy and accelerate the

training stage. Taking Baidu_1 as an example, we recorded

the loss and accuracy of training and validation, respectively,

and showed them in Fig. 3. It is clear that when the number

of training iterations is increased to 150, the loss is basically

stable (1 epoch includes 1000 iterations).

To sum up, first of all, our attack is clearly extremely easy.

The proposed approach requires neither preprocessing nor

CAPTCHA segmentation. It achieves one-step recognition

and is an end-to-end attack because when a new CAPTCHA

comes, it can recognize all the characters directly. It is also

suitable for solving variable-length strings. Furthermore, our

method is very low cost in that we can attack any text-based

CAPTCHAby using only a small number of real labeled sam-

ples, and mimicking those samples is not necessary; instead,

we simply generate images with random fonts in a simple

style. Moreover, our attack is undoubtedly efficient. The eval-

uation of the targeted 25 schemes all achieved considerable

success rates at a very fast speed. In addition, this is the first

work to use transfer learning to attack Chinese CAPTCHAs,

and the results showed that our attack is also applicable to

large-alphabet CAPTCHAs. The results also demonstrate that

transfer learning is a promising way of to enhance attack

efficiency. In brief, this result not only helps make our attack

extremely low-cost but also greatly reduces the complexity

and effort for attacking text CAPTCHAs—and once again

demonstrates the insecurity of text CAPTCHAs.

IV. THE EFFECT OF THE SIMILARITY OF SYNTHETIC

SAMPLES

Based on the results in the last section, it is clear that even

when pre-trained with randomly generated data, our attack

achieved high success rates after transfer learning. However,

most prior works that used synthetic data spent consider-

able effort to simulate real CAPTCHAs: they even applied

deep-learning-based generation mechanisms to assist with

sample generation. Therefore, in this section, we further

analyze the impact of the similarity of pre-training data.

To explore whether the similarity of the training samples

affects the attack accuracy, we first use traditional (non-

deep-learning) image generation algorithms to carefully sim-

ulate each scheme and generate corresponding samples.

Then, we utilize a GAN mechanism to refine our imitated

CAPTCHAs to make them more similar to real CAPTCHAs.

Finally, we use the simulated data and the GAN-based refined

data to train the base model.

A. MOTIVATION

To train an effective model, the ideal solution is to train

the network with the original dataset. However, in reality,

many factors affect the difficulty of obtaining sufficient quan-

tities of labeled data. In such cases, we can simulate the

original data to generate training samples. As is known,

highly similar training samples will lead to good perfor-

mance. However, generating synthetic samples that have

high similarity requires substantial human effort and time.

Therefore, Ye proposed a GAN-based attack in [9] for text

CAPTCHAs, claiming that they could use SimGAN to refine

synthetic CAPTCHAs, making them highly similar to real

CAPTCHAs. However, they did not verify this claim through

experiments.

In this paper, to verify whether training data similarity

substantially influences the results of transfer-learning-based

attacks, we also generated samples similar to real-world

CAPTCHAs and employed SimGAN [10] to make the visual

characteristics of our simulated samples more similar to real

data. Then, we test the targeted schemes using base models

trained with the simulated samples and fine-tuned with a few

real CAPTCHAs.

Our experiments were intended to answer two main ques-

tions:

• Does the similarity between pre-trained data and origi-

nal data have a large impact on transfer-learning-based

attacks (including ours and Ye’s)?

• Is it truly practical to use a GAN to assist with sample

generation?Moreover, is it truly necessary to expend the

effort to closely simulate real CAPTCHAs?
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FIGURE 4. Examples of real and imitated targeted CAPTCHAs.

B. ATTACK WITH SIMULATED DATA

1) SIMULATING REAL CAPTCHAs

We first generated 25 types of CAPTCHAs by imitating real

samples. For each targeted scheme, we observed the security

features and tried our best to generate CAPTCHAs that were

visually similar to the real CAPTCHAs. Our generation pro-

cess is the same as in [24]. Fig. 4 shows some examples of

the real data and our generated data for all the schemes.

For each Roman-character-based CAPTCHA scheme,

we generated 10,000 imitation samples for training and

another 1,000 for validation. Then, we mixed all the training

and validation samples together to train one base model on

20 targeted schemes. For each Chinese scheme, we generated

100,000 imitated CAPTCHAs and then mixed them all to

train a base model.

2) ATTACK RESULTS WITH SIMULATED DATA

In this experiment, the same 1,000 real-world CAPTCHAs

were tested for each scheme as in Section III. Table 3 shows

the results achieved by the pre-trained and fine-tuned models,

respectively.

As Table 3 shows, when using our elaborately imitated

samples without fine-tuning, we were able to successfully

break most of the targeted schemes according to the criteria

proposed by [31]. However, for some complex schemes such

as Douban, QQ, and Wiki, the success rates were extremely

low. For example, the success rate of our scheme on Google

was still zero. However, after using a small number of real

CAPTCHAs to refine the base model for each scheme,

the success rates increased rapidly. Using the fine-tunedmod-

els, our attack achieved success rates of over 90% on more

than half the targeted schemes.

C. ATTACK WITH GAN-BASED REFINED SAMPLES

1) USING SimGAN TO REFINE THE SIMULATED SAMPLES

In this experiment, we also used SimGAN to refine

the synthetic samples. Fig. 5 shows an overview of the

SimGAN-based generation method. As proposed in [10],

SimGAN learns from simulated and unsupervised images

through adversarial training, where the goal is to improve

the realism of synthetic images. It uses an adversarial loss

TABLE 3. Attack success rates with simulation data.

FIGURE 5. The training process of our GAN-based refining model.

to make the refined images indistinguishable from real ones

with a neural network as discriminator. To preserve the anno-

tations of synthetic images, the adversarial loss was com-

plemented with a self-regularization loss to penalize large

changes. Moreover, a fully convolutional neural network was

used. It operates on a pixel level and preserves the global

structure, thus the image content was not modified holisti-

cally. To obtain the most accurate synthetic data, we chose

to terminate synthesizer training when the discriminator fail-

ure rate for distinguishing real from synthetic CAPTCHAs

exceeds 95%—the same as in [9].

Five Roman-character-based schemes and two Chinese

schemes from Table 1 were selected as representatives

because they include different security features. For each

scheme, we utilized the GAN to refine the synthetic

CAPTCHAs generated in the last section. To further

reveal the difference between samples refined by the GAN

model with different numbers of iterations, the samples

refined by SimGAN [10], which was trained in 2,000,

5,000, and 8,000 steps, respectively, were used to train

the base model. Note that during this period, the base

model of each scheme was trained separately rather than all

together.
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FIGURE 6. Changes in the sample refined by SimGAN.

FIGURE 7. Fine-tuned CAPTCHAs by the refiner under different numbers
of training iterations.

2) ATTACK RESULTS WITH REFINED DATA

Fig. 6 detailedly shows the changes in the images before

and after refined. The GAN model changed the color of the

generated CAPTCHA or refined the pixel details. This result

demonstrates that using a GAN can indeed refine the tiny

details of the pixels of generated CAPTCHAs to make them

more accurate and increase their similarity to real samples.

Fig. 7 displays the refined results by the SimGAN under

different numbers of training iterations. Obviously, for most

schemes, the images vary little in visual characteristics.

Before 10,000 training iterations, the generated CAPTCHAs

change at the pixel level to become increasingly visually

similar to real CAPTCHAs. However, after the number of

training iterations increases beyond 10,000, the CAPTCHA

samples become blurry. This result occurs because when the

training iterations increase considerably, the model changes

more pixels from the original image. For the Baidu scheme,

the CAPTCHAs obviously change visually. Therefore, in our

evaluation, we used only the data refined by GAN models

trained with no more than 10,000 steps.

The attack results with the refined data are shown

in Table 4. There are two groups of success rates. The first

group was achieved by pre-training the base model with

refined samples for different numbers of training steps. The

other group of results were achieved by the fine-tuned mod-

els. The numbers in the second sub-row denote the training

steps used in SimGAN to refine the training data. In summary,

these success rates were achieved by a pre-trained model

with refined CAPTCHAs and a fine-tunedmodel with refined

CAPTCHAs. The fine-tuned model was trained on the same

set of real CAPTCHAs as in the last section.

TABLE 4. Attack results achieved by GAN-based generated samples.

As shown in Table 4, for all the schemes, when the training

data are refined by SimGAN, the success rates do not obvi-

ously increase over those of the pre-trainedmodels: the values

are all similar to the success rates achieved by the pre-trained

model evaluation with simulated data in Section IV-B. How-

ever, all the fine-tuned models achieved great increased suc-

cess rates. We infer that the GAN did not help change the

essential features of the generated samples, suggesting that

even using GAN for refinement, there is also a gap between

the synthetic data and the real data when they are used to train

the models.

D. ANALYSIS

Based on the above experimental results, we can formu-

late exact answers to the questions raised in Section IV-A.

We summarize and analyze our conclusions in the following

section.

• First, the similarity between pre-trained data and origi-

nal data has a very small impact on the transfer-learning-

based attack. Based on our attack results, it is clear that

whether using randomly generated samples or carefully

simulated samples, after fine-tuning by a small set of

real CAPTCHAs, the final model can achieve very high

success rates on all the targeted schemes, including

Chinese CAPTCHAs. We can definitively conclude that

between data similarity and transfer learning, transfer

learning is the true reason why the attack performance is

enhanced rather than the use of a generation mechanism

to optimize the generated samples.

• Second, it is unnecessary to use a GAN or, indeed, pay

much effort to refine the synthetic samples. The reason

can be explained in two aspects. From the time cost

perspective, simulating the real CAPTCHAs is complex,

and matching fonts or recovering backgrounds takes

time to implement or requires labor-intensive processes

to adjust the details. For example, in our experiments

in Section IV-B, it takes approximately two days to

imitate one scheme CAPTCHA. For the Google scheme,

it almost takes five days to adjust the details of the

image tomake it more visually similar to the real sample.

For the GAN-based mechanism, apart from the effort

of rebuilding the model, training a GAN model takes

9.6 hours on average for one scheme, which is also

extremely time-consuming. From the attack accuracy
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perspective, either using the simulated samples or the

GAN-based mechanism, regardless of the number of

iterations the training model is allowed to run, the attack

accuracy was not greatly enhanced. For both experi-

ments, the attack accuracy was notably increased after

the models refined by the real data, which again demon-

strates the significance of transfer learning rather than

generated samples’ optimization.

In summary, these experimental results yield two signif-

icant conclusions. On one hand, the experimental results

further demonstrate that using complex operations and pro-

cesses to create highly similar samples makes no sense from

an improvement viewpoint; thus, it is superfluous. In con-

trast, using transfer learning provides substantial benefits for

training an efficient model. On the other hand, our results

also demonstrate that text CAPTCHAs are no longer secure

because no matter what kind of samples are used, the model,

refined by a small set of real samples through transfer

learning, can achieve high success rates for different text

CAPTCHAs.

V. DISCUSSION

In this section, we first present a comprehensive comparison

with prior works and further explain the superiority of our

attack. Then, to further address the implementation details

of our attack, we analyze the effects of different CNNs and

the impacts of each training step to optimize the training

stage. Finally, we summarize all the strategies that can be

implemented using our approach and discuss the differences

among them.

A. COMPARISON WITH PRIOR WORKS

Many prior works have studied CAPTCHA breaking, and

some of our targeted schemes have also been studied by other

excellent works. In this section, we choose five typical latest

works that were accepted by the top conference or by journals

in the security community and conduct a comprehensive

comparison between our attack and the proposed attacks in

those works. The selected works were published between

2014 and 2019. All of the attacks are compared in multiple

dimensions, such as success rate, process complexity, and

the required number of training data. All the success rates

are shown in Table 5 and the attack processes are shown

in Table 6.

From the attack accuracy perspective, for each scheme,

our success rates are all higher than those in [9]. It is worth

mentioning that our attack achieved a 51.9% success rate

on Google reCAPTCHA, which is widely considered to be

a difficult scheme, but the attack in [9] achieved only 3%.

For the attack process, both their work and ours use transfer

learning for attacking text CAPTCHAs, but their approach

differs from ours in two respects. First, they used two GANs

in their attack to pay effort to sample generation: SimGAN to

refine the synthetic CAPTCHAs and Pix2Pix to pre-process

the synthetics. In contrast, our approach uses only irrelevant

TABLE 5. Comparison between our approach and five prior works [3], [9],
[17], [18], [24]. RI = Results by imitated data; RR = Results by randomly
generated data.

randomly generated CAPTCHAs. As discussed in section IV,

an obvious flaw in using GANs is that it is laborious and

time-consuming and does not pay significant role in accuracy

enhancement. Second, their recognition network is based on

LeNet-5 [21], which cannot recognize variable-length strings,

but our attention-based network can solve variable-length

strings. Overall, our approach achieves higher success rates,

is much simpler, and requires a lower effort.

The success rates in [24] are similar to ours. Their approach

also did not require pre-processing or segmentation and

applied attention mechanism to tackle with variable-length

strings. However, the labeled training-sample numbers in

their method aremuch larger than ours. For each scheme, they

used 10,000 manually labeled CAPTCHAs to train a proper

model. For Google reCAPTCHA, they collected 200,000 real

samples and labeled them to train a more efficient model.

There is no doubt that using real samples is the most effi-

cient strategy; but labeling such large number of CAPTCHA

sample takes a lot of labor and time costs, which is ineffi-

cient from the cost perspective, and this approach does not

work in the case where one does not have access to the

real CAPTCHA system. In addition, they did not evaluate

their attack on real-world large-alphabet text CAPTCHAs,

e.g. Chinese schemes. They trained only synthetic Chi-

nese samples and tested also synthetic CAPTCHAs, which

showed only their deep-learning network capacity but could

not illustrate their approach expandability on large-alphabet

schemes.

The results of our approach compared to those of the other

three works [3], [17], [18] are similar: most of their success

rates are notably lower than ours when attacking the same

scheme. The comparisons are acceptable because all these

works use the image-processing based method to attack the

targeted schemes. The essential traits of these methods are

in three aspects. First, they are complex to implement. For

example, in [18], five individual steps were used in the recog-

nition, whichmakesmuchmore parameters and details for the

readers to perform. Second, the results of the first two steps
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TABLE 6. The attack process comparison between our approach and five prior works [3], [9], [17], [18], [24].

FIGURE 8. Attack results using different CNN models in our approach.

will have a significant impact on the last recognition step so

that much effort is required to optimize the first two steps’

results. In [17], to optimize the segmentation and recogni-

tion results, a large human effort is sacrificed to annotate

segments that have been misclassified, which is a departure

from the original intention of automated cracking. In contrast,

our attack directly recognizes the entire CAPTCHA with-

out any pre-processing or segmentation. Third, the image-

processing based methods are always not generic for various

CAPTCHAs. For instance, different schemes in [3] require

different algorithms and setting parameters to process the

images. The success rate of Wiki in [3] is slightly higher than

ours because they segment the characters individually, which

makes them easier to recognize. Nevertheless, our approach

is still both the simplest and most efficient.

In summary, our proposed approach is by far the simplest

among the existing attacks. It further reduces the complexity

of the attack procedures. From the training data perspective,

it reduces the cost of labeling real samples or the efforts of

imitating real samples. Furthermore, this approach is generic
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FIGURE 9. The success rates achieved with a base model trained with different numbers of epochs and fine-tuned with the same
number of epochs: (a) Roman-character-based schemes; (b) Chinese schemes.

for different text CAPTCHAs, and it ensures comparable

accuracy.

B. OTHER CNN MODEL ALTERNATIVES

In this section, we evaluate the performance of other typ-

ical CNN alternatives, including Inception v3 [25] and

SENet [26], both of which perform excellently on object

recognition and detection tasks. Note that we replace only

the CNN component: the other modules in our recognition

architecture remain the same. In addition, all the experimental

configurations are the same as those reported in Section III.

We depict all the attack results of the three CNNs in Fig. 8.

From the line chart, it is obvious that ResNet outperforms

the other two CNNs on most targeted CAPTCHA schemes.

For most of the schemes, the success rates are very close,

except for Google. For the Google scheme, which is the most

difficult of all the schemes, only ResNet achieves an accuracy

greater than 50%, while the success rates of Inception and

SENet are below 30%. We discuss why the ResNet performs

better than other twomodels for Google reCAPTCHA. In this

paper, we used ResNet-101 with 101 layers, the number of

which is much larger than Inception v3 (47 layers) and SENet

(47 layers (based on Incetion v3)). It makes that ResNet

can extract more advanced features. In addition, ResNet is

constructed by residual mapping, as discussed in [12], which

is easier to optimize than original, unreferenced mapping.

Therefore, we canmake three conclusions. First, regardless

of which of these three CNN models is used for extracting

image features in our approach, the attention-based archi-

tecture can successfully break all the targeted schemes after

fine-tuning the base model. Second, regardless of which

model is used, the overall success rate trends between the

different schemes are highly similar. Thus, different secu-

rity features lead to different levels of difficulty for tex-

tual CAPTCHA. Finally, among the three networks, ResNet

achieved the best performance.

C. TRAINING TIME OPTIMIZATION

To obtain a final appropriate model for CAPTCHA recog-

nition, our CAPTCHA solver is trained in two stages:

pre-training and fine-tuning. This fact is significant when

selecting the number of training epochs: more training epochs

lead to more accurate performance but require more time.

Therefore, in this experiment, we study how the training

time affects model performance. Five representative Roman-

character-based and Chinese schemes were selected for this

experiment.

For the pre-training stage, the synthetic data were trained

in 40 epochs. Fig. 9 shows the test success rates of the

pre-trainedmodels under different epochs. For the fine-tuning

stage, we used the same pre-trained model and then retrained

the model under a different number of epochs for differ-

ent schemes. Because the fine-tuning stage, which learns

detailed features based on the pre-trained model, is much

faster, we trained the real CAPTCHAs using 6 epochs

in total for each scheme. The test results are shown

in Fig. 10.

In Fig. 9, for the Roman-character-based CAPTCHAs,

the test accuracy increased substantially as the training

epochs increased from 1 to 10, while the success rates became

stable after the base-model training epochs exceeded 20.

It is well known that, to some extent, more training epochs

yield more accurate performance; however, more training

epochs require more resources and time. Considering all

20 schemes, 20 epochs were determined for the base model

because the time cost is acceptable, and the performance is

comparable. Since the Chinese CAPTCHAs have a larger

class space, training the base model for 30 epochs is more

reasonable.

Fig. 10 shows the success rates when the same base model

is fine-tuned for different epochs. The results intuitively

show that, regardless of whether the target is a Roman or

Chinese scheme, adding additional fine-tuning epochs does

not significantly improve the success rate. The difference

between the 1-epoch model and the 6-epoch model is small

enough to ignore. Therefore, in our experiments, we chose

1 epoch for the fine-tuning stage. One epoch requires

only approximately 15 minutes to complete on an NVIDIA

GeForce GTX 1080 Desktop GPU, which saves time and is

efficient.

VOLUME 8, 2020 59055



P. Wang et al.: Simple and Easy: Transfer Learning-Based Attacks to Text CAPTCHA

FIGURE 10. The achieved success rates with a fixed base model and a fine-tuned model using different numbers of epochs:
Roman-character-based schemes; (b) Chinese schemes.

D. A DISCUSSION OF DIFFERENT TRAINING STRATEGIES

We have highlighted the performance of transfer learning and

achieved considerable improvement by adopting it. However,

what happens if transfer learning is not applied? In this

section, we survey the results obtained by different training

strategies and discuss the impact of the transfer learning

mechanism.

To show the benefit of using transfer learning, we com-

pare the results with and without transfer learning. There

are seven different strategies in total. Without transfer learn-

ing, there are four groups of results obtained by train-

ing the synthetic CAPTCHAs alone, training the synthetic

CAPTCHAs adjusted by GAN, training the randomly gen-

erated CAPTCHAs alone, and training the real CAPTCHAs

individually. When using transfer learning, we used the first

three groups of generated CAPTCHAs to train the base mod-

els and real CAPTCHAs to fine-tune themodels. Note that the

number of real CAPTCHAs for each scheme in the last four

experiments remained the same (500 in the Roman-character-

based schemes and 1,000 in the Chinese schemes).

For the Roman-character-based schemes, we selected Ali-

pay, Sohu, Baidu_1, 360_1 and 360_2 as representative

because they cover the range of results. For Chinese schemes,

we selected Renmin and Dajie, for which the evaluation

described in Section III achieved the best and worst results,

respectively. All the experimental details were the same

for all seven groups. We summarize all the success rates

in Table 7, where G1, G2, G3 and G4 are the results achieved

by models without transfer learning and represent the success

rate achieved by the models trained with imitated samples,

imitated samples refined by SimGAN, randomly generated

samples, and a few real samples, respectively. The remain-

ing three groups are the results achieved by fine-tuning the

models with transfer learning. G1/4, G2/4, G3/4 denote the

success rates achieved by using G4 to fine-tune models

pre-trained by G1, G2, and G3, respectively.

Table 7 shows that among all the strategies, the results

of the models without transfer learning are not as good as

TABLE 7. Attack results of different strategies.

those with transfer learning. After applying transfer learn-

ing, the success rates on most of the schemes increased

sharply due to the fine-tuning using real CAPTCHAs. This

result illustrates that, without transfer learning, using either

synthetic CAPTCHAs or a few real CAPTCHAs to train a

recognition model is not sufficient.

For the three groups of experiments with transfer learning,

although their results are very similar, the scenarios to which

they were applied are not the same. Using imitation data to

train the base model yields the highest success rates. How-

ever, simulating the CAPTCHAs is relatively complicated

and time-consuming, and it is difficult to adjust the details.

Therefore, this strategy is not suitable for tasks that require

real-time cracking. Nevertheless, it could be used for tasks

that require high precision because this method is the most

accurate. Using GAN-based synthetics is also not suitable

for real-time tasks: this strategy is more complicated and

time-consuming because the GAN model must be trained.

In comparison, using randomly generated samples combined

with a small number of real CAPTCHAs for fine-tuning is

the best choice. This is because the random generation is the

simplest approach, has the lowest cost, and is generic for

all schemes. Moreover, it is suitable for real-time tasks and

achieves good results.

In summary, the results demonstrate that using transfer

learning to combine the benefits of generating CAPTCHAs

and labeling a small set of real CAPTCHAs is the
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optimal choice. Moreover, applying transfer learning to

CAPTCHA-breaking tasks enhances performance without

increasing the time or labor costs.

VI. CONCLUSION

This paper systematically analyzed how to enhance the per-

formance and reduce the complexity and costs of text-based

CAPTCHAs attacks. We proposed a simple, low-cost and

efficient method based on transfer-learning that uses ran-

domly generated synthetic CAPTCHAs to train the base

model and a very small set of real CAPTCHAs to fine-tune

the base model. Our approach results in a high-performance

CAPTCHA solver. Using deep learning techniques, we tested

20 Roman-character-based schemes and 5 Chinese schemes

and achieved remarkably good success rates, ranging from

36.3% to 96.9% at an average attack speed 0.02 seconds per

CAPTCHA. These results show that even on large-alphabet-

based text CAPTCHAs, transfer learning can enhance the

attack performance and reduce the collection and labeling

costs.

To further understand how the similarity of training data

affects the recognition results, we also carefully gener-

ated simulation samples and utilized SimGAN to refine

the initial samples, making them more similar in detail to

real CAPTCHAs. The experimental results demonstrate that

under the transfer-learning attacks, the effort to similarity

enhancement is not necessary. In addition, transfer learning

plays a more crucial role in enhancing performance than

refining samples to make themmore similar. Finally, we com-

pared our proposed attack with some typical existing attacks

and further analyzed their respective characteristics. We also

evaluated our method using some other classic CNNs on the

targeted schemes. To study the efficiency of model training,

we conducted further experiments to learn how to optimize

the training time and to show the effects of different training

strategies.

Our attack provides a more promising strategy that not

only reduces the attack complexity and manual-labeling cost

but also preserves comparable accuracy. We all know that

text-based CAPTCHAs have security problems, and we hope

and believe that our investigation will inspire other works.

In addition, it also proves that using GAN-based sample

adjustment is not the correct direction, conversely, attention

should be paid to the fact that as one of the most popular

techniques in generating pictures, a GAN will play a part in

the CAPTCHA community in other ways. We plan to explore

this idea in our ongoing future work.
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