
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 845–855

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

845

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark∗

University of Washington

csquared@cs.washington.edu

Matt Gardner

Allen Institute for Artificial Intelligence

mattg@allenai.org

Abstract

We introduce a method of adapting neural

paragraph-level question answering mod-

els to the case where entire documents are

given as input. Most current question an-

swering models cannot scale to document

or multi-document input, and naively ap-

plying these models to each paragraph in-

dependently often results in them being

distracted by irrelevant text. We show

that it is possible to significantly improve

performance by using a modified training

scheme that teaches the model to ignore

non-answer containing paragraphs. Our

method involves sampling multiple para-

graphs from each document, and using an

objective function that requires the model

to produce globally correct output. We

additionally identify and improve upon a

number of other design decisions that arise

when working with document-level data.

Experiments on TriviaQA and SQuAD

shows our method advances the state of the

art, including a 10 point gain on TriviaQA.

1 Introduction

Teaching machines to answer arbitrary user-

generated questions is a long-term goal of natural

language processing. For a wide range of ques-

tions, existing information retrieval methods are

capable of locating documents that are likely to

contain the answer. However, automatically ex-

tracting the answer from those texts remains an

open challenge. The recent success of neural mod-

els at answering questions given a related para-

graph (Wang et al., 2017c; Tan et al., 2017) sug-

gests they have the potential to be a key part of

∗Work completed while interning at the Allen Institute
for Artificial Intelligence

a solution to this problem. Most neural models

are unable to scale beyond short paragraphs, so

typically this requires adapting a paragraph-level

model to process document-level input.

There are two basic approaches to this task.

Pipelined approaches select a single paragraph

from the input documents, which is then passed to

the paragraph model to extract an answer (Joshi

et al., 2017; Wang et al., 2017a). Confidence

based methods apply the model to multiple para-

graphs and return the answer with the highest con-

fidence (Chen et al., 2017a). Confidence meth-

ods have the advantage of being robust to errors

in the (usually less sophisticated) paragraph selec-

tion step, however they require a model that can

produce accurate confidence scores for each para-

graph. As we shall show, naively trained models

often struggle to meet this requirement.

In this paper we start by proposing an improved

pipelined method which achieves state-of-the-art

results. Then we introduce a method for training

models to produce accurate per-paragraph confi-

dence scores, and we show how combining this

method with multiple paragraph selection further

increases performance.

Our pipelined method focuses on addressing the

challenges that come with training on document-

level data. We use a linear classifier to select

which paragraphs to train and test on. Since an-

notating entire documents is expensive, data of

this sort is typically distantly supervised, mean-

ing only the answer text, not the answer spans,

are known. To handle the noise this creates, we

use a summed objective function that marginal-

izes the model’s output over all locations the an-

swer text occurs. We apply this approach with

a model design that integrates some recent ideas

in reading comprehension models, including self-

attention (Cheng et al., 2016) and bi-directional at-

tention (Seo et al., 2016).

846

Our confidence method extends this approach

to better handle the multi-paragraph setting. Pre-

vious approaches trained the model on questions

paired with paragraphs that are known a priori to

contain the answer. This has several downsides:

the model is not trained to produce low confidence

scores for paragraphs that do not contain an an-

swer, and the training objective does not require

confidence scores to be comparable between para-

graphs. We resolve these problems by sampling

paragraphs from the context documents, includ-

ing paragraphs that do not contain an answer, to

train on. We then use a shared-normalization ob-

jective where paragraphs are processed indepen-

dently, but the probability of an answer candidate

is marginalized over all paragraphs sampled from

the same document. This requires the model to

produce globally correct output even though each

paragraph is processed independently.

We evaluate our work on TriviaQA (Joshi et al.,

2017) in the wiki, web, and unfiltered setting.

Our model achieves a nearly 10 point lead over

published prior work. We additionally perform

an ablation study on our pipelined method, and

we show the effectiveness of our multi-paragraph

methods on a modified version of SQuAD (Ra-

jpurkar et al., 2016) where only the correct docu-

ment, not the correct paragraph, is known. Finally,

we combine our model with a web search backend

to build a demonstration end-to-end QA system1,

and show it performs well on questions from the

TREC question answering task (Voorhees et al.,

1999). We release our code2 to facilitate future

work.

2 Pipelined Method

In this section we propose a pipelined QA system,

where a single paragraph is selected and passed to

a paragraph-level question answering model.

2.1 Paragraph Selection

If there is a single source document, we select the

paragraph with the smallest TF-IDF cosine dis-

tance with the question. Document frequencies are

computed using the individual paragraphs within

the document. If there are multiple input docu-

ments, we found it beneficial to use a linear clas-

sifier that uses the same TF-IDF score, whether

the paragraph was the first in its document, how

1https://documentqa.allenai.org
2https://github.com/allenai/document-qa

many tokens preceded it, and the number of ques-

tion words it includes as features. The classifier is

trained on the distantly supervised objective of se-

lecting paragraphs that contain at least one answer

span. On TriviaQA web, relative to truncating the

document as done by prior work, this improves the

chance of the selected text containing the correct

answer from 83.1% to 85.1%.

2.2 Handling Noisy Labels

Question: Which British general was killed at Khartoum
in 1885?
Answer: Gordon

Context: In February 1885 Gordon returned to the Sudan

to evacuate Egyptian forces. Khartoum came under siege

the next month and rebels broke into the city, killing Gor-

don and the other defenders. The British public reacted to

his death by acclaiming ‘Gordon of Khartoum’, a saint.

However, historians have suggested that Gordon...

Figure 1: Noisy supervision can cause many spans

of text that contain the answer, but are not situated

in a context that relates to the question (red), to

distract the model from learning from more rele-

vant spans (green).

In a distantly supervised setup we label all text

spans that match the answer text as being correct.

This can lead to training the model to select un-

wanted answer spans. Figure 1 contains an exam-

ple. To handle this difficulty, we use a summed

objective function similar to the one from Kadlec

et al. (2016), that optimizes the negative log-

likelihood of selecting any correct answer span.

The models we consider here work by indepen-

dently predicting the start and end token of the an-

swer span, so we take this approach for both pre-

dictions. For example, the objective for predicting

the answer start token becomes − log
(
∑

a∈A pa
)

where A is the set of tokens that start an answer

and pi is the answer-start probability predicted by

the model for token i. This objective has the ad-

vantage of being agnostic to how the model dis-

tributes probability mass across the possible an-

swer spans, allowing the model to focus on only

the most relevant spans.

2.3 Model

We use a model with the following layers (shown

in Figure 2):

Embedding: We embed words using pre-

trained word vectors. We concatenate these with

character-derived word embeddings, which are

847

Figure 2: High level outline of our model.

produced by embedding characters using a learned

embedding matrix and then applying a convolu-

tional neural network and max-pooling.

Pre-Process: A shared bi-directional

GRU (Cho et al., 2014) is used to process

the question and passage embeddings.

Attention: The attention mechanism from

the Bi-Directional Attention Flow (BiDAF)

model (Seo et al., 2016) is used to build a query-

aware context representation. Let hi and qj be

the vector for context word i and question word

j, and nq and nc be the lengths of the question

and context respectively. We compute attention

between context word i and question word j as:

aij = w1 · hi +w2 · qj +w3 · (hi ⊙ qj)

where w1, w2, and w3 are learned vectors and ⊙

is element-wise multiplication. We then compute

an attended vector ci for each context token as:

pij =
eaij

∑nq

j=1
eaij

ci =

nq
∑

j=1

qjpij

We also compute a query-to-context vector qc:

mi = max
1≤j≤nq

aij

pi =
emi

∑nc

i=1
emi

qc =

nc
∑

i=1

hipi

The final vector for each token is built by con-

catenating hi, ci, hi ⊙ ci, and qc ⊙ ci. In our

model we subsequently pass the result through a

linear layer with ReLU activations.

Self-Attention: Next we use a layer of residual

self-attention. The input is passed through another

bi-directional GRU. Then we apply the same at-

tention mechanism, only now between the passage

and itself. In this case we do not use query-to-

context attention and we set aij = −inf if i = j.

As before, we pass the concatenated output

through a linear layer with ReLU activations. The

result is then summed with the original input.

Prediction: In the last layer of our model a bi-

directional GRU is applied, followed by a linear

layer to compute answer start scores for each to-

ken. The hidden states are concatenated with the

input and fed into a second bi-directional GRU and

linear layer to predict answer end scores. The soft-

max function is applied to the start and end scores

to produce answer start and end probabilities.

Dropout: We apply variational dropout (Gal

and Ghahramani, 2016) to the input to all the

GRUs and the input to the attention mechanisms

at a rate of 0.2.

3 Confidence Method

We adapt this model to the multi-paragraph setting

by using the un-normalized and un-exponentiated

(i.e., before the softmax operator is applied) score

given to each span as a measure of the model’s

confidence. For the boundary-based models we

use here, a span’s score is the sum of the start and

end score given to its start and end token. At test

time we run the model on each paragraph and se-

lect the answer span with the highest confidence.

This is the approach taken by Chen et al. (2017a).

Our experiments in Section 5 show that these

confidence scores can be very poor if the model is

only trained on answer-containing paragraphs, as

done by prior work. Table 1 contains some quali-

tative examples of the errors that occur.

We hypothesize that there are two key sources

of error. First, for models trained with the soft-

max objective, the pre-softmax scores for all spans

can be arbitrarily increased or decreased by a con-

stant value without changing the resulting softmax

probability distribution. As a result, nothing pre-

vents models from producing scores that are arbi-

trarily all larger or all smaller for one paragraph

848

Question Low Confidence Correct Extraction High Confidence Incorrect Extraction

When is the Members
Debate held?

Immediately after Decision Time a “Mem-
bers Debate” is held, which lasts for 45 min-
utes...

...majority of the Scottish electorate voted for
it in a referendum to be held on 1 March
1979 that represented at least...

How many tree species
are in the rainforest?

...one 2001 study finding a quarter square
kilometer (62 acres) of Ecuadorian rainforest
supports more than 1,100 tree species

The affected region was approximately
1,160,000 square miles (3,000,000 km2) of
rainforest, compared to 734,000 square miles

Who was Warsz?
....In actuality, Warsz was a 12th/13th century
nobleman who owned a village located at the
modern....

One of the most famous people born in War-
saw was Maria Sklodowska - Curie, who
achieved international...

How much did the ini-
tial LM weight in kg?

The initial LM model weighed approximately
33,300 pounds (15,000 kg), and...

The module was 11.42 feet (3.48 m) tall,
and weighed approximately 12,250 pounds
(5,560 kg)

Table 1: Examples from SQuAD where a model was less confident in a correct extraction from one

paragraph (left) than in an incorrect extraction from another (right). Even if the passage has no correct

answer and does not contain any question words, the model assigns high confidence to phrases that match

the category the question is asking about. Because the confidence scores are not well-calibrated, this

confidence is often higher than the confidence assigned to correct answer spans in different paragraphs,

even when those correct spans have better contextual evidence.

than another. Second, if the model only sees para-

graphs that contain answers, it might become too

confident in heuristics or patterns that are only ef-

fective when it is known a priori that an answer

exists. For example, the model might become too

reliant on selecting answers that match semantic

type the question is asking about, causing it be eas-

ily distracted by other entities of that type when

they appear in irrelevant text. This kind of error

has also been observed when distractor sentences

are added to the context (Jia and Liang, 2017)

We experiment with four approaches to training

models to produce comparable confidence scores,

shown in the following subsections. In all cases

we will sample paragraphs that do not contain an

answer as additional training points.

3.1 Shared-Normalization

In this approach a modified objective function is

used where span start and end scores are normal-

ized across all paragraphs sampled from the same

context. This means that paragraphs from the

same context use a shared normalization factor in

the final softmax operations. We train on this ob-

jective by including multiple paragraphs from the

same context in each mini-batch. The key idea is

that this will force the model to produce scores that

are comparable between paragraphs, even though

it does not have access to information about what

other paragraphs are being considered.

3.2 Merge

As an alternative to the previous method, we ex-

periment with concatenating all paragraphs sam-

pled from the same context together during train-

ing. A paragraph separator token with a learned

embedding is added before each paragraph.

3.3 No-Answer Option

We also experiment with allowing the model to se-

lect a special “no-answer” option for each para-

graph. First we re-write our objective as:

− log

(

esa
∑n

i=1
esi

)

− log

(

egb
∑n

j=1
egj

)

=

− log

(

esa+gb

∑n
i=1

∑n
j=1

esi+gj

)

where sj and gj are the scores for the start and end

bounds produced by the model for token j, and a

and b are the correct start and end tokens. We have

the model compute another score, z, to represent

the weight given to a “no-answer” possibility. Our

revised objective function becomes:

− log

(

(1− δ)ez + δesa+gb

ez +
∑n

i=1

∑n
j=1

esi+gj

)

where δ is 1 if an answer exists and 0 otherwise. If

there are multiple answer spans we use the same

objective, except the numerator includes the sum-

mation over all answer start and end tokens.

We compute z by adding an extra layer at the

end of our model. We build input vectors by tak-

ing the summed hidden states of the RNNs used to

predict the start/end token scores weighed by the

start/end probabilities, and using a learned atten-

tion vector on the output of the self-attention layer.

849

These vectors are fed into a two layer network with

an 80 dimensional hidden layer and ReLU activa-

tions that produces z as its only output.

3.4 Sigmoid

As a final baseline, we consider training models

with the sigmoid loss objective function. That is,

we compute a start/end probability for each token

by applying the sigmoid function to the start/end

scores of each token. A cross entropy loss is used

on each individual probability. The intuition is

that, since the scores are being evaluated indepen-

dently of one another, they are more likely to be

comparable between different paragraphs.

4 Experimental Setup

4.1 Datasets

We evaluate our approach on four datasets: Triv-

iaQA unfiltered (Joshi et al., 2017), a dataset of

questions from trivia databases paired with docu-

ments found by completing a web search of the

questions; TriviaQA wiki, the same dataset but

only including Wikipedia articles; TriviaQA web,

a dataset derived from TriviaQA unfiltered by

treating each question-document pair where the

document contains the question answer as an in-

dividual training point; and SQuAD (Rajpurkar

et al., 2016), a collection of Wikipedia articles and

crowdsourced questions.

4.2 Preprocessing

We note that for TriviaQA web we do not sub-

sample as was done by Joshi et al. (2017), instead

training on the all 530k training examples. We

also observe that TriviaQA documents often con-

tain many small paragraphs, so we restructure the

documents by merging consecutive paragraphs to-

gether up to a target size. We use a maximum para-

graph size of 400 unless stated otherwise. Para-

graph separator tokens with learned embeddings

are added between merged paragraphs to preserve

formatting information. We are also careful to

mark all spans of text that would be considered an

exact match by the official evaluation script, which

includes some minor text pre-processing, as an-

swer spans, not just spans that are an exact string

match with the answer text.

4.3 Sampling

Our confidence-based approaches are trained by

sampling paragraphs from the context during

training. For SQuAD and TriviaQA web we take

Model EM F1

baseline (Joshi et al., 2017) 41.08 47.40
BiDAF 50.21 56.86
BiDAF + TF-IDF 53.41 59.18
BiDAF + sum 56.22 61.48
BiDAF + TF-IDF + sum 57.20 62.44
our model + TF-IDF + sum 61.10 66.04

Table 2: Results on TriviaQA web using our

pipelined method.

the top four paragraphs as judged by our paragraph

ranking function (see Section 2.1). We sample two

different paragraphs from those four each epoch

to train on. Since we observe that the higher-

ranked paragraphs are more likely to contain the

context needed to answer the question, we sample

the highest ranked paragraph that contains an an-

swer twice as often as the others. For the merge

and shared-norm approaches, we additionally re-

quire that at least one of the paragraphs contains

an answer span, and both of those paragraphs are

included in the same mini-batch. For TriviaQA

wiki we repeat the process but use the top 8 para-

graphs, and for TriviaQA unfiltered we use the top

16, because much more context is given in these

settings.

4.4 Implementation

We train the model with the Adadelta opti-

mizer (Zeiler, 2012) with a batch size 60 for Triv-

iaQA and 45 for SQuAD. At test time we select

the most probable answer span of length less than

or equal to 8 for TriviaQA and 17 for SQuAD.

The GloVe 300 dimensional word vectors released

by Pennington et al. (2014) are used for word em-

beddings. On SQuAD, we use a dimensionality

of size 100 for the GRUs and of size 200 for the

linear layers employed after each attention mecha-

nism. We found for TriviaQA, likely because there

is more data, using a larger dimensionality of 140

for each GRU and 280 for the linear layers is bene-

ficial. During training, we maintain an exponential

moving average of the weights with a decay rate of

0.999. We use the weight averages at test time. We

do not update the word vectors during training.

5 Results

5.1 TriviaQA Web and TriviaQA Wiki

First, we do an ablation study on TriviaQA web

to show the effects of our proposed methods for

our pipeline model. We start with a baseline fol-

lowing the one used by Joshi et al. (2017). This

850

Model Web Web Verified Wiki Wiki Verified
EM F1 EM F1 EM F1 EM F1

Baseline (Joshi et al., 2017) 40.74 47.06 49.54 55.80 40.32 45.91 44.86 50.71
Smarnet (Chen et al., 2017b) 40.87 47.09 51.11 55.98 42.41 48.84 50.51 55.90
Mnemonic Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48 46.94 52.85 54.45 59.46
(Weissenborn et al., 2017a) 50.56 56.73 63.20 67.97 48.64 55.13 53.42 59.92
Neural Cascade (Swayamdipta et al., 2017) 53.75 58.57 63.20 66.88 51.59 55.95 58.90 62.53
S-Norm (ours) 66.37 71.32 79.97 83.70 63.99 68.93 67.98 72.88

Table 3: Published TriviaQA results. Our approach advances the state of the art by about 10 points on

these datasets4

1 3 5 7 9 11 13 15
Number of Paragraphs

0.62

0.64

0.66

0.68

0.70

F1
 S
co
re

TriviaQA Web F1 vs. Number of Paragraphs

none
sigmoid
merge
no-answer
shared-norm

Figure 3: Results on TriviaQA web when apply-

ing our models to multiple paragraphs from each

document. Most of our training methods improve

the model’s ability to utilize more text.

system uses BiDAF (Seo et al., 2016) as the para-

graph model, and selects a random answer span

from each paragraph each epoch to train on. The

first 400 tokens of each document are used during

training, and the first 800 during testing. When

using the TF-IDF paragraph selection approach,

we instead break the documents into paragraphs

of size 400 when training and 800 when testing,

and select the top-ranked paragraph to feed into

the model. As shown in Table 2, our baseline out-

performs the results reported by Joshi et al. (2017)

significantly, likely because we are not subsam-

pling the data. We find both TF-IDF ranking and

the sum objective to be effective. Using our re-

fined model increases the gain by another 4 points.

Next we show the results of our confidence-

based approaches. For this comparison we split

documents into paragraphs of at most 400 to-

kens, and rank them using TF-IDF cosine distance.

Then we measure the performance of our proposed

approaches as the model is used to independently

process an increasing number of these paragraphs,

and the highest confidence answer is selected as

the final output. The results are shown in Figure 3.

On this dataset even the model trained without

any of the proposed training methods (“none”) im-

0 5 10 15 20 25 30
Number of Paragraphs

0.56

0.58

0.60

0.62

0.64

0.66

F1
 S
co
re

Unfiltered TriviaQA F1 vs. Number of Paragraphs

none
sigmoid
merge
no-answer
shared-norm

Figure 4: Results for our confidence methods on

TriviaQA unfiltered. The shared-norm approach

is the strongest, while the baseline model starts to

lose performance as more paragraphs are used.

proves as more paragraphs are used, showing it

does a passable job at focusing on the correct para-

graph. The no-answer option training approach

lead to a significant improvement, and the shared-

norm and merge approaches are even better.

We use the shared-norm approach for evalua-

tion on the TriviaQA test sets. We found that in-

creasing the paragraph size to 800 at test time, and

to 600 during training, was slightly beneficial, al-

lowing our model to reach 66.04 EM and 70.98 F1

on the dev set. As shown in Table 3, our model is

firmly ahead of prior work on both the TriviaQA

web and TriviaQA wiki test sets. Since our sub-

mission, a few additional entries have been added

to the public leader for this dataset5, although to

the best of our knowledge these results have not

yet been published.

5.2 TriviaQA Unfiltered

Next we apply our confidence methods to Trivi-

aQA unfiltered. This dataset is of particular inter-

est because the system is not told which document

contains the answer, so it provides a plausible sim-

ulation of answering a question using a document

4Comparison made of 5/01/2018.
5https://competitions.codalab.org/competitions/17208

851

1 3 5 7 9 11 13 15
Number of Paragraphs

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725
F1

 S
co

re
SQuAD F1 vs. Number of Paragraphs

none
sigmoid
merge
no-answer
shared-norm

Figure 5: Results for our confidence methods on

document-level SQuAD. The shared-norm model

is the only model that does not lose performance

when exposed to large numbers of paragraphs.

retrieval system. We show the same graph as be-

fore for this dataset in Figure 4. Our methods have

an even larger impact on this dataset, probably be-

cause there are many more relevant and irrelevant

paragraphs for each question, making paragraph

selection more important.

Note the naively trained model starts to lose

performance as more paragraphs are used, show-

ing that errors are being caused by the model be-

ing overly confident in incorrect extractions. We

achieve a score of 61.55 EM and 67.61 F1 on the

dev set. This advances the only prior result re-

ported for this dataset, 50.6 EM and 57.3 F1 from

Wang et al. (2017b), by 10 points.

5.3 SQuAD

We additionally evaluate our model on SQuAD.

SQuAD questions were not built to be answered

independently of their context paragraph, which

makes it unclear how effective of an evaluation

tool they can be for document-level question an-

swering. To assess this we manually label 500 ran-

dom questions from the training set.

We categorize questions as:

1. Context-independent, meaning it can be un-

derstood independently of the paragraph.

2. Document-dependent, meaning it can be un-

derstood given the article’s title. For exam-

ple, “What individual is the school named af-

ter?” for the document “Harvard University”.

3. Paragraph-dependent, meaning it can only be

understood given its paragraph. For example,

“What was the first step in the reforms?”.

We find 67.4% of the questions to be context-

independent, 22.6% to be document-dependent,

and the remaining 10% to be paragraph-

dependent. There are many document-dependent

questions because questions are frequently about

the subject of the document. Since a reasonably

high fraction of the questions can be understood

given the document they are from, and to isolate

our analysis from the retrieval mechanism used,

we choose to evaluate on the document-level. We

build documents by concatenating all the para-

graphs in SQuAD from the same article together

into a single document.

Given the correct paragraph (i.e., in the standard

SQuAD setting) our model reaches 72.14 EM and

81.05 F1 and can complete 26 epochs of training

in less than five hours. Most of our variations to

handle the multi-paragraph setting caused a minor

(up to half a point) drop in performance, while the

sigmoid version fell behind by a point and a half.

We graph the document-level performance in

Figure 5. For SQuAD, we find it crucial to em-

ploy one of the suggested confidence training tech-

niques. The base model starts to drop in perfor-

mance once more than two paragraphs are used.

However, the shared-norm approach is able to

reach a peak performance of 72.37 F1 and 64.08

EM given 15 paragraphs. Given our estimate that

10% of the questions are ambiguous if the para-

graph is unknown, our approach appears to have

adapted to the document-level task very well.

Finally, we compare the shared-norm model

with the document-level result reported by Chen

et al. (2017a). We re-evaluate our model using

the documents used by Chen et al. (2017a), which

consist of the same Wikipedia articles SQuAD was

built from, but downloaded at different dates. The

advantage of this dataset is that it does not allow

the model to know a priori which paragraphs were

filtered out during the construction of SQuAD.

The disadvantage is that some of the articles have

been edited since the questions were written, so

some questions may no longer be answerable. Our

model achieves 59.14 EM and 67.34 F1 on this

dataset, which significantly outperforms the 49.7

EM reported by Chen et al. (2017a).

5.4 Curated TREC

We perform one final experiment that tests our

model as part of an end-to-end question answering

system. For document retrieval, we re-implement

the pipeline from Joshi et al. (2017). Given a

question, we retrieve up to 10 web documents us-

7https://github.com/brmson/yodaqa/wiki/Benchmarks

852

Model Accuracy

S-Norm (ours) 53.31
YodaQA with Bing (Baudiš, 2015), 37.18

YodaQA (Baudiš, 2015), 34.26
DrQA + DS (Chen et al., 2017a) 25.7

Table 4: Results on the Curated TREC corpus, Yo-

daQA results extracted from its github page7

ing a Bing web search of the question, and all

Wikipedia articles about entities the entity linker

TAGME (Ferragina and Scaiella, 2010) identifies

in the question. We then use our linear paragraph

ranker to select the 16 most relevant paragraphs

from all these documents, which are passed to

our model to locate the final answer span. We

choose to use the shared-norm model trained on

the TriviaQA unfiltered dataset since it is trained

using multiple web documents as input. We use

the same heuristics as Joshi et al. (2017) to filter

out trivia or QA websites to ensure questions can-

not be trivially answered using webpages that di-

rectly address the question. A demo of the system

is publicly available8.

We find accuracy on the TriviaQA unfiltered

questions remains almost unchanged (within half

a percent exact match score) when using our doc-

ument retrieval method instead of the given doc-

uments, showing our pipeline does a good job of

producing evidence documents that are similar to

the ones in the training data.

We test the system on questions from the TREC

QA tasks (Voorhees et al., 1999), in particular a

curated set of questions from Baudiš (2015), the

same dataset used in Chen et al. (2017a). We apply

our system to the 694 test questions without re-

training on the train questions.

We compare against DrQA (Chen et al., 2017a)

and YodaQA (Baudiš, 2015). It is important to

note that these systems use different document

corpora (Wikipedia for DrQA, and Wikipedia,

several knowledge bases, and optionally Bing web

search for YodaQA) and different training data

(SQuAD and the TREC training questions for

DrQA, and TREC only for YodaQA), so we can-

not make assertions about the relative performance

of individual components. Nevertheless, it is in-

structive to show how the methods we experiment

with in this work can advance an end-to-end QA

system.

The results are listed in Table 4. Our method

outperforms prior work, breaking the 50% accu-

8https://documentqa.allenai.org/

Category proportion

Sentence reading errors 35.2
Paragraph reading errors 17.6

Document coreference errors 14.1
Part of answer extracted 7.1

Required background knowledge 5.8
Answer indirectly stated 20.2

Table 5: Error analysis on TriviaQA web.

racy mark. This is a strong proof-of-concept that

neural paragraph reading combined with existing

document retrieval methods can advance the state-

of-the-art on general question answering. It also

shows that, despite the noise, the data from Trivi-

aQA is sufficient to train models that can be effec-

tive on out-of-domain QA tasks.

5.5 Discussion

We found that models that have only been trained

on answer-containing paragraphs can perform

very poorly in the multi-paragraph setting. The

results were particularly bad for SQuAD; we think

this is partly because the paragraphs are shorter, so

the model had less exposure to irrelevant text.

The shared-norm approach consistently outper-

formed the other methods, especially on SQuAD

and TriviaQA unfiltered, where many paragraphs

were needed to reach peak performance. Figures

3, 4, and 5 show this technique has a minimal ef-

fect on the performance when only one paragraph

is used, suggesting the model’s per-paragraph per-

formance is preserved. Meanwhile, it can be

seen the accuracy of the shared-norm model never

drops as more paragraphs are added, showing it

successfully resolves the problem of being dis-

tracted by irrelevant text.

The no-answer and merge approaches were

moderately effective, we suspect because they at

least expose the model to more irrelevant text.

However, these methods do not address the fun-

damental issue of requiring confidence scores to

be comparable between independent applications

of the model to different paragraphs, which is why

we think they lagged behind. The sigmoid objec-

tive function reduces the paragraph-level perfor-

mance considerably, especially on the TriviaQA

datasets. We suspect this is because it is vulner-

able to label noise, as discussed in Section 2.2.

5.6 Error Analysis

We perform an error analysis by labeling 200 ran-

dom TriviaQA web dev-set errors made by the

shared-norm model. We found 40.5% of the er-

853

rors were caused because the document did not

contain sufficient evidence to answer the question,

and 17% were caused by the correct answer not

being contained in the answer key. The distribu-

tion of the remaining errors is shown in Table 5.

We found quite a few cases where a sentence

contained the answer, but the model was unable

to extract it due to complex syntactic structure or

paraphrasing. Two kinds of multi-sentence read-

ing errors were also common: cases that required

connecting multiple statements made in a sin-

gle paragraph, and long-range coreference cases

where a sentence’s subject was named in a previ-

ous paragraph. Finally, some questions required

background knowledge, or required the model to

extract answers that were only stated indirectly

(e.g., examining a list to extract the nth element).

Overall, these results suggest good avenues for im-

provement are to continue advancing the sentence

and paragraph level reading comprehension abili-

ties of the model, and adding a mechanism to han-

dle document-level coreferences.

6 Related Work

Reading Comprehension Datasets. The state of

the art in reading comprehension has been rapidly

advanced by neural models, in no small part due

to the introduction of many large datasets. The

first large scale datasets for training neural reading

comprehension models used a Cloze-style task,

where systems must predict a held out word from

a piece of text (Hermann et al., 2015; Hill et al.,

2015). Additional datasets including SQuAD (Ra-

jpurkar et al., 2016), WikiReading (Hewlett et al.,

2016), MS Marco (Nguyen et al., 2016) and Triv-

iaQA (Joshi et al., 2017) provided more realis-

tic questions. Another dataset of trivia questions,

Quasar-T (Dhingra et al., 2017), was introduced

recently that uses ClueWeb09 (Callan et al., 2009)

as its source for documents. In this work we

choose to focus on SQuAD because it is well stud-

ied, and TriviaQA because it is more challenging

and features documents and multi-document con-

texts (Quasar T is similar, but was released after

we started work on this project).

Neural Reading Comprehension. Neural

reading comprehension systems typically use

some form of attention (Wang and Jiang, 2016), al-

though alternative architectures exist (Chen et al.,

2017a; Weissenborn et al., 2017b). Our model

follows this approach, but includes some re-

cent advances such as variational dropout (Gal

and Ghahramani, 2016) and bi-directional atten-

tion (Seo et al., 2016). Self-attention has been

used in several prior works (Cheng et al., 2016;

Wang et al., 2017c; Pan et al., 2017). Our

approach to allowing a reading comprehension

model to produce a per-paragraph no-answer score

is related to the approach used in the BiDAF-

T (Min et al., 2017) model to produce per-sentence

classification scores, although we use an attention-

based method instead of max-pooling.

Open QA. Open question answering has been

the subject of much research, especially spurred

by the TREC question answering track (Voorhees

et al., 1999). Knowledge bases can be used,

such as in (Berant et al., 2013), although the re-

sulting systems are limited by the quality of the

knowledge base. Systems that try to answer ques-

tions using natural language resources such as

YodaQA (Baudiš, 2015) typically use pipelined

methods to retrieve related text, build answer can-

didates, and pick a final output.

Neural Open QA. Open question answering

with neural models was considered by Chen et al.

(2017a), where researchers trained a model on

SQuAD and combined it with a retrieval engine

for Wikipedia articles. Our work differs because

we focus on explicitly addressing the problem

of applying the model to multiple paragraphs.

A pipelined approach to QA was recently pro-

posed by Wang et al. (2017a), where a ranker

model is used to select a paragraph for the read-

ing comprehension model to process. More recent

work has considered evidence aggregation tech-

niques (Wang et al., 2017b; Swayamdipta et al.,

2017). Our work shows paragraph-level mod-

els that produce well-calibrated confidence scores

can effectively exploit large amounts of text with-

out aggregation, although integrating aggregation

techniques could further improve our results.

7 Conclusion

We have shown that, when using a paragraph-level

QA model across multiple paragraphs, our train-

ing method of sampling non-answer-containing

paragraphs while using a shared-norm objective

function can be very beneficial. Combining this

with our suggestions for paragraph selection, us-

ing the summed training objective, and our model

design allows us to advance the state of the art

on TriviaQA. As shown by our demo, this work

can be directly applied to building deep-learning-

powered open question answering systems.

854

References

Petr Baudiš. 2015. YodaQA: A Modular Question An-
swering System Pipeline. In POSTER 2015-19th In-
ternational Student Conference on Electrical Engi-
neering.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic Parsing on Freebase from
Question-Answer Pairs. In EMNLP.

Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao.
2009. Clueweb09 Data Set.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017a. Reading Wikipedia to An-
swer Open-Domain Questions. arXiv preprint
arXiv:1704.00051.

Zheqian Chen, Rongqin Yang, Bin Cao, Zhou Zhao,
Deng Cai, and Xiaofei He. 2017b. Smarnet: Teach-
ing Machines to Read and Comprehend Like Hu-
man. arXiv preprint arXiv:1710.02772.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long Short-Term Memory-Networks for Machine
Reading. arXiv preprint arXiv:1601.06733.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078.

Bhuwan Dhingra, Kathryn Mazaitis, and William W
Cohen. 2017. Quasar: Datasets for Question An-
swering by Search and Reading. arXiv preprint
arXiv:1707.03904.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
On-the-fly Annotation of Short Text Fragments (by
Wikipedia Entities). In Proceedings of the 19th
ACM international conference on Information and
knowledge management.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in neural informa-
tion processing systems.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. In Advances in
Neural Information Processing Systems.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. Wikireading:
A Novel Large-scale Language Understanding Task
over Wikipedia. arXiv preprint arXiv:1608.03542.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The Goldilocks Principle: Reading
Children’s Books with Explicit Memory Represen-
tations. arXiv preprint arXiv:1511.02301.

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017.
Mnemonic Reader: Machine Comprehension with
Iterative Aligning and Multi-hop Answer Pointing.

Robin Jia and Percy Liang. 2017. Adversarial Ex-
amples for Evaluating Reading Comprehension Sys-
tems. arXiv preprint arXiv:1707.07328.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. arXiv preprint arXiv:1705.03551.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text Understanding with
the Attention Sum Reader Network. arXiv preprint
arXiv:1603.01547.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question Answering through Transfer Learn-
ing from Large Fine-grained Supervision Data.
arXiv preprint arXiv:1702.02171.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. arXiv preprint
arXiv:1611.09268.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai,
and Xiaofei He. 2017. MEMEN: Multi-layer Em-
bedding with Memory Networks for Machine Com-
prehension. arXiv preprint arXiv:1707.09098.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. arXiv preprint
arXiv:1606.05250.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional Atten-
tion Flow for Machine Comprehension. CoRR,
abs/1611.01603.

Swabha Swayamdipta, Ankur P. Parikh, and Tom
Kwiatkowski. 2017. Multi-Mention Learning for
Reading Comprehension with Neural Cascades.

Chuanqi Tan, Furu Wei, Nan Yang, Weifeng Lv, and
Ming Zhou. 2017. S-Net: From Answer Extraction
to Answer Generation for Machine Reading Com-
prehension. arXiv preprint arXiv:1706.04815.

Ellen M Voorhees et al. 1999. The TREC-8 Question
Answering Track Report. In Trec.

Shuohang Wang and Jing Jiang. 2016. Machine
Comprehension Using Match-LSTM and Answer
Pointer. arXiv preprint arXiv:1608.07905.

855

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. 2017a. R:
Reinforced Reader-Ranker for Open-Domain Ques-
tion Answering. arXiv preprint arXiv:1709.00023.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang,
Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim
Klinger, Gerald Tesauro, and Murray Campbell.
2017b. Evidence Aggregation for Answer Re-
Ranking in Open-Domain Question Answering.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017c. Gated Self-Matching Net-
works for Reading Comprehension and Question
Answering. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1.

Dirk Weissenborn, Tomas Kocisky, and Chris Dyer.
2017a. Dynamic Integration of Background Knowl-
edge in Neural NLU Systems. arXiv preprint
arXiv:1706.02596.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017b. FastQA: A Simple and Efficient Neural Ar-
chitecture for Question Answering. arXiv preprint
arXiv:1703.04816.

Matthew D Zeiler. 2012. ADADELTA: an Adap-
tive Learning Rate Method. arXiv preprint
arXiv:1212.5701.

