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Abstract. Patra et al. [25] gave a necessary and sufficient condition
for the possibility of almost perfectly secure message transmission proto-
cols4 tolerating general, non-threshold Q2 adversary structure. However,
their protocol requires at least three rounds and performs exponential
(exponential in the size of the adversary structure) computation and
communication. Moreover, they have left it as an open problem to de-
sign efficient protocol for almost perfectly secure message transmission,
tolerating Q2 adversary structure.
In this paper, we show the first single round almost perfectly secure
message transmission protocol tolerating Q2 adversary structure. The
computation and communication complexities of the protocol are both
polynomial in the size of underlying linear secret sharing scheme (LSSS)
and adversary structure. This solves the open problem raised in [25].
When we restrict our general protocol to threshold adversary with n =
2t + 1, we obtain a single round, communication optimal almost secure
message transmission protocol tolerating threshold adversary, which is
much more computationally efficient and relatively simpler than the pre-
vious communication optimal protocol of [35].

Keywords: Information theoretic security, non-threshold adversary, Byzan-
tine corruption, efficiency.

1 Introduction

Consider the following problem: there exists a sender S and a receiver R, who
are part of a large distributed network and connected by n disjoint channels.

★ Financial Support from Department of Information Technology, India Acknowledged
4 The authors in [25] called this problem as unconditionally secure message transmis-
sion (USMT).



There exists a computationally unbounded adversary, who can listen and forge
communication over some of these channels in any arbitrary manner. However,
neither S, not R knows which channels are under the control of the adversary. S
has a message mS, which is a sequence of ℓ elements from a finite field F, where
ℓ ≥ 1. The challenge is to design a protocol, such that after interacting with S
as per the protocol, the following should hold at R’s end:

1. Perfect Reliability: R outputs mR = mS.
2. Perfect Secrecy: Adversary should not get any extra information about

mS. In other words, mS should be information theoretically secure.

Moreover, we require that the above conditions should hold, irrespective of the
behavior of the adversary. This problem is called as perfectly secure message
transmission (PSMT) [12].

1.1 Motivation and Different Models for Studying PSMT

PSMT is a well known and fundamental problem in secure distributed com-
puting. If S and R are directly connected by a secure channel, as assumed in
generic multiparty computation (MPC) protocols [3, 4, 29] , then PSMT is trivial.
However, if S and R are not directly connected by a secure channel, then PSMT
protocols help to simulate a virtual secure channel between S and R. The second
motivation for PSMT is to achieve information theoretic security. The security
of all existing public key cryptosystems is based on hardness assumptions of cer-
tain number theoretic problems and security of these schemes hold only against
a computationally bounded adversary. However, with the advent of new com-
puting paradigms like Quantum computing [33] and with increase in computing
speed, these assumptions may tend to be useless. But all these factors have no
affect on PSMT protocols, as security of these protocols holds good against a
computationally unbounded adversary.

Over the past two decade, PSMT problem has been studied by several re-
searchers in different settings. Specifically, we can consider the following settings:

1. Type of Channels: The channels between S and R can be bi-directional.
This setting has been considered in [12, 31, 16, 36, 1, 13, 19, 26, 24]. On the
other hand, channels may be uni-directional, having direction associated
with them [10, 23, 21, 40, 6].

2. Adversary Capacity: The adversary may be characterized by a threshold,
say t, such that adversary can control any t out of the n channels [12, 31, 36,
19] or the adversary may be characterized as a more general non-threshold
adversary, specified by an adversary structure [16, 28, 40, 41, 17, 18].

3. Adversary Behavior: The adversary may be static who corrupts the same
channels throughout the protocol [12, 31, 36, 19] or the adversary may be
mobile, who corrupts different set of channels, during different stages of the
protocol [39, 26, 5, 27].

4. Type of Underlying Network: The underlying network may be syn-
chronous, where there is a global clock in the system and the delay in the



transmission over any channel is bounded by a constant [12, 31, 36, 38, 19] or
the network may be asynchronous, having no such global clock [30, 6]

Any PSMT protocol is analyzed by the following parameters:

1. Round Complexity: It is the number of communication rounds taken by
the protocol, where a round is a communication from S to R or vice-versa.

2. Communication Complexity: It is the total number of field elements sent
by S and R in the protocol.

3. Computational Complexity: It is amount of computation which is done
by S and R in the protocol.

A PSMT protocol is said to be efficient, if the round complexity, communication
complexity and computational complexity of the protocol is polynomial in n and
size of the adversary structure (see Sec. 1.2 for details about adversary structure).
Irrespective of the settings in which PSMT problem is studied, the following
questions are fundamental:

– Possibility: What are the necessary and sufficient conditions for the exis-
tence of any PSMT protocol, tolerating a given type of adversary?

– Feasibility: Once the possibility of a protocol is ascertained, the next obvi-
ous question is whether there exists an efficient protocol or not?

– Optimality: Given a message of some specific length, what is the lower
bound on the round complexity and communication complexity of any PSMT
protocol to send the message? Moreover, do we have a protocol, whose total
round complexity and communication complexity matches these bounds?

Different techniques are used to answer the above questions in different settings.
For details, see [7]. The issue of Possibility, Feasibility and Optimality of
PSMT has been completely resolved tolerating threshold adversary. However,
not too much is known regarding the Feasibility and Optimality of protocols
against non-threshold adversary (see [7] for complete details) .

1.2 Non-Threshold Adversary

Let the set of n channels be denoted by W = {w1, . . . , wn}. Then a threshold
adversary is characterized by a threshold t, such that adversary can control any
t channels out of the n channels for corruption. We denote such an adversary by
At. On the other hand, a non-threshold general adversary A is characterized by
an adversary structure ¡ , which is a collection of subsets of channels that the
adversary A can potentially corrupt. That is,

¡ = {B ⊂ W ∣ A can corrupt B}.

Moreover, we assume that if B ∈ ¡ and if B′ ⊂ B, then B′ ∈ ¡ . It is easy to
see that a threshold adversary is a special case of non-threshold adversary, such
that ∣B∣ ≤ t, for each B ∈ ¡ .

Definition 1 (Qk Condition [15]). We say that A satisfies Qk condition with
respect to W, if there exists no k sets in ¡ , which adds upto the whole set W.
That is:

∀B1, . . . , Bk ∈ ¡ : B1 ∪ . . . ∪Bk ∕= W .



1.3 PSMT Tolerating Non-Threshold Adversary

Modeling the adversary by a threshold helps in easy characterization of protocols
and it also helps in analyzing protocols. However, as mentioned in [15], modeling
the (dis)trust in the network as a threshold adversary is not always appropriate
because threshold protocol requires more stringent requirements than the reality
[16]. Motivated by this, Kumar et al. [16] studied PSMT tolerating non-threshold
adversary, where they resolved the issue of Possibility of PSMT protocols, when
the channels are bi-directional. Specifically, they showed that two or more round
PSMT is possible iff A satisfies Q2 condition with respect to W . Recently, [41]
resolved the issue of Feasibility of multi-round PSMT by designing two round
efficient PSMT protocol tolerating non-threshold adversary if A satisfies Q2

condition.
On the other hand, Desmedt et al. [11] have shown that one round PSMT

is possible iff A satisfies Q3 condition with respect to W. Moreover, they also
presented a one round PSMT protocol tolerating non-threshold adversary. How-
ever, their protocol is not efficient in general. Recently, Kurosawa [17] resolved
the issue of Feasibility of one round PSMT by designing efficient one round
PSMT protocol tolerating non-threshold adversary if A satisfies Q3 condition.

The issue of Possibility and Feasibility of PSMT tolerating non-threshold
adversary for the case when the channels are uni-directional is resolved in [28, 40,
41]. So in short, there exists efficient PSMT protocols tolerating non-threshold
adversary for bi-directional channels [41, 17] as well as for uni-directional chan-
nels [41]. However, there exists another variant of PSMT, known as almost per-
fectly secure message transmission (almost-PSMT), which got relatively less at-
tention in the context of non-threshold adversary.

1.4 Almost Perfectly Secure Message Transmission: almost-PSMT

In PSMT, it is required that R should output mR = mS without any error.
In [14], the authors considered a variant of PSMT called almost-PSMT, where
they relaxed this requirement. Specifically, a protocol is called almost-PSMT, if
it satisfies the following requirements:

1. Perfect Secrecy: Same as in the case of PSMT.
2. Almost Perfect Reliability: R outputs mR = mS with probability at

least 1− 2−(·), where · is the error parameter and · > 0.

In [14], the authors studied almost-PSMT tolerating threshold adversary and
showed that almost-PSMT protocols requires less number of channels than PSMT
protocols for tolerating a threshold adversary with the same threshold. That is,
allowing a negligible error probability in protocol outcome reduces the connec-
tivity requirement. The work of [14] is followed by [10, 37, 20, 35, 2, 9, 22] where
almost-PSMT tolerating threshold adversary is studied rigorously and the is-
sues related to the Possibility, Feasibility and Optimality of almost-PSMT
tolerating threshold adversary has been completely resolved. In summary, all



these works show that allowing a negligible error probability in the protocol out-
put (without compromising the secrecy) results in significant reduction in the
round complexity, communication complexity and also connectivity requirement
(number of channels) of PSMT protocols.

Remark 1. (On the Term almost-PSMT): In the literature, almost-PSMT
protocols are also known by various other names. In [34, 37], the authors called
these protocols as probabilistic PSMT (PPSMT). On the other hand, [25, 35]
called these protocols as unconditionally secure message transmission (USMT)
protocols. Finally, [7] called these protocols as statistically secure message trans-
mission (SSMT) protocols. However, all the above terms stand for almost-PSMT.
In this article, we prefer to use the original name, namely almost-PSMT.

1.5 Almost-PSMT Tolerating Non-Threshold Adversary:
Motivation of Our Work

Unlike almost-PSMT tolerating threshold adversary, almost-PSMT against non-
threshold adversary has got very less attention. In [25], Patra et al. have studied
almost-PSMT tolerating non-threshold adversary. They showed that single round
as well as multi-round almost-PSMT is possible iff A satisfies Q2 condition. This
is to be compared with the results of [11] and [16], according to which single
round and multi-round PSMT is possible iff A satisfies Q3 and Q2 condition
respectively. Unfortunately, the almost-PSMT protocol tolerating non-threshold
adversary presented in [25] is very inefficient and requires computation and com-
munication complexity, which is exponential in the size of adversary structure.
Moreover, it requires at least three rounds. In [25], the authors have left it as an
open problem to design efficient almost-PSMT protocol tolerating non-threshold
adversary, satisfying Q2 condition. In this paper, we solve this open problem.

1.6 Our Results and Comparison with the Existing Results

In this paper, we present the first single round almost-PSMT protocol tolerating
non-threshold adversary A, specified by an adversary structure, satisfying Q2

condition. Our protocol is round optimal, requiring minimum number of rounds.
Moreover, our protocol is very simple and efficient and thus significantly outper-
forms the almost-PSMT protocol of [25].

As a special case of our single round protocol, when we restrict it to thresh-
old adversary, we get a single round communication optimal almost-PSMT tol-
erating threshold adversary. Though there exists single round, communication
optimal almost-PSMT protocol tolerating threshold adversary [35], we find that
our protocol is much more computationally efficient and relatively simpler than
the protocol of [35]. In practical networks like sensor networks, it is desirable to
have protocols which perform simple computation. In such a situation, our com-
munication optimal protocol (tolerating threshold adversary) fits the bill more
appropriately than the communication optimal protocol of [35].



In [9] the authors have designed single round almost-PSMT protocol toler-
ating threshold adversary, which performs simple computations. However, their
protocol is not communication optimal. On the other hand, our protocol tol-
erating threshold adversary enjoys the property of being both simple and also
communication optimal.

In Table 1 and 2, we compare our protocols with the best known almost-
PSMT protocols in non-threshold and threshold settings respectively.

Table 1. Comparison of our almost-PSMT protocol tolerating Q2 adversary structure
with best known almost-PSMT protocol tolerating Q2 adversary structure

Reference Number of Rounds Efficient/Inefficient

[25] At least three Inefficient

This paper One Efficient

Table 2. Comparison of our single round almost-PSMT protocol tolerating threshold
adversary with n = 2t + 1 with the best known single round almost-PSMT protocol
tolerating threshold adversary with n = 2t+ 1

Reference Communication Optimal Computational Complexity

[35] Yes Efficient (Polynomial in n)

[9] No More efficient than [9]

This paper Yes More efficient than [35]

1.7 Tools and Techniques Used in Our Protocol

To design our protocol, we use Linear Secret Sharing Scheme (LSSS) [8]. In ad-
dition, we also use a new method of authenticating multiple values concurrently
in information theoretic sense. Together this leads to our efficient single round
almost-PSMT protocol.

2 Primitives

Our protocol involves a negligible error probability of 2−(·). To bound the error
probability by 2−(·), our protocol operates over a finite field F, where ∣F∣ = 2·.
In our protocol, the error probability comes from the fact that adversary has to
guess a value (unknown to the adversary), selected uniformly and randomly by S
from F. If the adversary can correctly guess the value, then the protocol output
will be incorrect. However, the probability of this event is 1

∣F∣ = 2−·. Without



loss of generality, we assume that ℓ
∣F∣ ≈ 2−(·) and hence is negligible (this is

assumed in all the previous almost-PSMT protocols). We now discuss LSSS.

2.1 Linear Secret Sharing Scheme: LSSS

In a secret sharing scheme, a dealer D distributes a secret s ∈ F, to a set of n
parties P = {P1, . . . , Pn} in such a way that some subsets of the participants
(called as access sets) can reconstruct s from their shares, while the other subsets
of the participants (called forbidden sets) have no information about s from
their shares. The family of access sets is called an access structure. Moreover, we
assume that access structure is monotone, which is defined as follows:

Definition 2. An access structure § is monotone if A ∈ § and A′ ⊇ A, then
A′ ∈ §.

Corresponding to the access structure §, we have the adversary structure ¡ =
§c, where c denotes the complement. The sets in ¡ are called as forbidden sets.
There exists a computationally unbounded adversary A, who can control any set
in ¡ .

A secret sharing scheme for any monotone access structure § can be realized
by a linear secret sharing scheme (LSSS) [8] as follows: Let ℳ be a d× e matrix
over F and Ã : {1, ⋅ ⋅ ⋅ , d} → {1, ⋅ ⋅ ⋅ , n} be a labeling function, where d ≥ e and
d ≥ n.

Sharing algorithm:

1. To share a secret s ∈ F, D first chooses a random vector ½ ∈ F
e−1 and

compute a vector

v = (v1, ⋅ ⋅ ⋅ , vd)
T = ℳ ⋅

(

s

½

)

. (1)

2. Let

LSSS(s,½) = (share1, ⋅ ⋅ ⋅ , sharen), (2)

where sharei = {vj ∣ Ã (j) = i}. The dealer gives sharei to Pi as a share for
i = 1, ⋅ ⋅ ⋅ , n.

Reconstruction algorithm: A set of parties A ∈ § can reconstruct the secret
s if and only if (1, 0, ⋅ ⋅ ⋅ , 0) is in the linear span of

ℳA = {mj ∣ Ã (j) ∈ A},

where mj denotes the jth row of ℳ. If this is indeed the case then there exists a
vector ®A called recombination vector, such that ®A ⋅ℳA = (1, 0, . . . , 0). Let sA
denote the set of shares corresponding to the parties in A. Then the parties in A

can reconstruct s by computing s = ⟨®A, s
T
A⟩, where ⟨x, y⟩ denotes dot product

of x and y and xT denotes transpose of x.



Definition 3 (Monotone Span Programme (MSP) [8]). We say that the
above (ℳ, Ã ) is a monotone span program which realizes §. The size of the MSP
is the number of rows d in M.

Theorem 1 ([8]). The above algorithm constitutes a valid secret sharing scheme.

We are now ready to present our protocol.

3 Efficient Single Round Almost-PSMT Protocol

Tolerating Non-Threshold Adversary

Let W = {w1, . . . , wn} be the set of n channels between S and R and let A be
a non-threshold adversary, specified by an adversary structure ¡ over W. More-
over, let § = ¡ c be the corresponding access structure over W . Furthermore, let
A satisfies Q2 condition with respect to W , which is necessary for the existence
of any almost-PSMT protocol tolerating A. During the protocol, A can select
any set of channels B ∈ ¡ for corruption. However, before the beginning of the
protocol, neither S nor R will know which set of channels are under the control
of A. The channels which will be under the control of A will be called corrupted.
On the other hand, the channels not under the control of A will be called honest.

Let (ℳ, Ã ) be the MSP realizing the access structure §. Without loss of
generality and for simplicity, we assume that only itℎ row of ℳ is assigned to
channel wi, for i = 1, . . . , n. Thus,

ℳ =

⎛

⎜

⎝

m1

...
mn

⎞

⎟

⎠

is an n× e matrix over F. However, our protocol will also work when more than
one row of ℳ is assigned to some wi. Finally we use the following notation in
our protocol:

Notation 1 Let Q be any subset of W i.e Q ⊆ W. Then ℳQ denotes the matrix
containing the rows of ℳ corresponding to the channels in Q. For example, if
Q = {w1, . . . , wt}, then

ℳQ =

⎛

⎜

⎝

m1

...
mt

⎞

⎟

⎠
.

3.1 Underlying Idea of the Protocol

The high level idea of the protocol is as follows: let the message mS, which is a
sequence of ℓ elements from F be denoted by mS = [mS

1 , . . . ,m
S

ℓ ]. Now using the
MSP ℳ, S generates LSSS(mS

i ,½i) = (shareSi1, . . . , share
S

in), for i = 1, . . . , ℓ,
where ½i’s are the randomness used by S.



If S sends the jtℎ share of all the ℓ mS

i ’s, namely share
S

ij , over wj , for

j = 1, . . . , n, then it still preserves the secrecy of mS. This is because A can
control any one set from the adversary structure ¡ and hence will get the shares
of each mS

i ’s, sent over those channels. However, from the properties of MSP,
these shares will not reveal any information about mS

i ’s to A.
However, S cannot ensure that mS will be recovered correctly by R by sim-

ply sending the shares. This is because A may corrupt the shares sent over the
channels under its control and there will be no way by which R can detect which
channels have delivered correct shares. This is because there is only one round in
the protocol. So S has also to send some additional information to authenticate
each share, which can assist R to detect the corrupted shares with very high
probability. So in our protocol, S also sends additional authentication informa-
tion, using which R can detect the corrupted shares with very high probability
(the way this is done is explained in the next section).

Though this mechanism of sending the shares, along with their authentication
is used in earlier almost-PSMT protocols, we use a new way of sending the
authentication information, which is relatively simpler than the earlier schemes.
After removing the corrupted shares, R will be left with the shares, which, with
very high probability are correctly delivered. Among these shares, there will be
a set of shares which are delivered over the channels which are honest and hence
constitutes an access set. So if R applies the reconstruction algorithm of the
LSSS to the retained shares, R will correctly recover each mS

i with very high
probability.

3.2 Sending the Authentication Information

In our protocol, the authentication of shares is sent in the following way: corre-
sponding to jtℎ share of all the ℓ mS

i ’s, sender S constructs a polynomial pSj (x)

of degree ℓ− 1 as follows: pSj (x) = share
S

1j + share
S

2j ⋅ x+ . . .+ share
S

ℓj ⋅ x
ℓ−1.

Now S associates pSj (x) with channel wj , for j = 1, . . . , n and sends it over wj

(by sending the coefficients of pSj (x) over wj). This is the same as sending all

the jtℎ shares over wj .
Now S associates a random evaluation point ®S

k with every channel wk, for
k = 1, . . . , n. If S sends ®S

k and pSj (®
S

k ) over wk, then it achieves the following:

if wj is corrupted and if wk is honest, then wj cannot deliver pRj (x) ∕= pSj (x)
to R over wj without being caught by wk with very high probability. This is
because A will have no information about ®S

k sent over wk and also ®R

k received
by R over wk is same as ®S

k . So except with probability ℓ−1
∣F∣ , p

R

j (®R

k ) ∕= pSj (®
R

k ).

This is because two different polynomials of degree ℓ− 1 can have at most ℓ− 1
common roots and ®S

k is randomly selected from F. By appropriately selecting
F, we can ensure that ℓ−1

∣F∣ ≈ 2−(·), which is negligible. So this can help to

detect corrupted shares.
However, the above communication may breach secrecy as follows: if Pj is

honest and Pk is corrupted, then earlier adversary would have no information
about pSj (x), as no information about pSj (x) would have been sent over wk. But



now, adversary will know pSj (®
S

k ), as well as ®S

k through wk, thus revealing in-

formation about pSj (x) and hence about jtℎ shares of all mS

i ’s. To avoid this
situation, we use the following idea: corresponding to channel wj , S selects n

random masking keys, denoted by keySj1, . . . , key
S

jn. All the n masking keys (as-

sociated with wj) are sent over wj . Now the authentication of pSj (x) correspond-

ing to evaluation point ®S

k , namely pSj (®
S

k ) is masked with the ktℎ masking key,

namely keySjk and sent over wk. That is, over wk, S sends pSj (®
S

k )+keySjk, instead

of only pSj (®
S

k ). Notice that keySjk is not sent over wk. So if adversary controls

wk, then even after knowing ®S

k and pSj (®
S

k )+keySjk, adversary will not gain any

information about pSj (x), as he has no information about the ktℎ masking key

keySjk associated with wj . This way, we preserve the secrecy of each pSj (x), sent
over honest pj ’s. The interesting fact is that with this communication, we can
also ensure that if some pSj (x) is changed by the adversary over some corrupted
wj , then it will be detected with very high probability by an honest wk.

We are now ready to formally present our protocol, which is given in Fig. 1.
We now proceed to prove the properties of the protocol. In the proofs, we

will use the following notations (For the definition of VALID, see Fig. 1):

– HW denotes the set of channels in W not under the control of A.
– CW denotes the set of channels in W under the control of A.
– HVALID denotes the set of channels in VALID not under the control of A.
– CVALID denotes the set of channels in VALID under the control of A.

Remark 2. Notice that if some channel is under the control of A then it is
not necessary that A changes all the information sent over the channel. The
adversary may or may not change any portion of the information sent over the
channels under his control.

Lemma 1. HVALID = HW and hence HVALID constitutes an access set.

Proof: First notice that every channel in the set HW will correctly deliver all the
information to R. Specifically, pRk (x) = pSk (x), ®

R

k = ®S

k , (key
R

k1, . . . , key
R

kn) =
(keySk1, . . . , key

S

kn) and valRjk = valSjk, for j = 1, . . . , n, for every channel wk ∈

HW. So the condition valRjk = pRj (®R

k )+keyRjk for every wj , wk ∈ HW. Moreover,
HW constitutes an access set. Thus, the condition W ∖SUPPORTj ∈ ¡ will hold
for every channel wj ∈ HW. Thus, every channel in HW will be present in VALID

and hence HVALID = HW. □

Lemma 2. Every channel wj ∈ VALID will deliver pRj (x) = pSj (x), except with

error probability 2−(·).

Proof: The proof holds without any error probability if wj ∈ HVALID. So we
now consider the case when wj ∈ CVALID. So let wj be a wire in CVALID. Since
wj ∈ CVALID (and hence VALID), it implies that W ∖ SUPPORTj ∈ ¡ . This
further implies that there exists at least one channel in SUPPORTj , say wk,
such that wk is not under the control of the adversary. Otherwise, it implies



Fig. 1. Efficient Single Round Almost-PSMT Tolerating Q2 Adversary Structure

Computation by S:

1. For i = 1, . . . , ℓ, S computes LSSS(mS

i ,½i) = (shareSi1, . . . , share
S

in).
2. For k = 1, . . . , n, corresponding to channel wk, S selects a random value ®S

k , called
as ktℎ evaluation point.

3. For j = 1, . . . , n, corresponding to the jtℎ share of all the ℓ mS

i ’s, S constructs a
polynomial pSj (x) of degree ℓ− 1 as follows:

p
S

j (x) = share
S

1j + share
S

2j ⋅ x+ . . .+ share
S

ℓj ⋅ x
ℓ−1

.

4. For j = 1, . . . , n, S evaluates each pSj (x) at evaluation point ®S

k , for k = 1, . . . , n.
5. For j = 1, . . . , n, corresponding to channel wj , S selects n random, non-zero values

keyS

j1, . . . , key
S

jn, called as masking keys.

Round I: Communication from S to R: For k = 1, . . . , n, S sends the following
to R over channel wk and terminates the protocol.

1. Polynomial pSk (x).
2. Evaluation point ®S

k .
3. n masking keys keyS

k1, . . . , key
S

kn.
4. Masked authentication values valSjk, for j = 1, . . . , n, where valSjk = pSj (®

S

k )+keyS

jk.

Information Received by R: For k = 1, . . . , n, let R receives the following from S

over channel wk:

1. Polynomial pRk (x).
2. Evaluation point ®R

k .
3. n masking keys keyR

k1, . . . , key
R

kn.
4. Masked authentication values valRjk, for j = 1, . . . , n a.

Message Recovery by R: R does the following computation:

1. R initializes a set VALID = ∅.
2. For j = 1, . . . , n, corresponding to channel wj , R constructs a set SUPPORTj = ∅.
3. R adds channel wk in SUPPORTj if valRjk = pRj (®R

k ) + keyR

jk.
4. For j = 1, . . . , n, R adds channel wj to VALID if W ∖ SUPPORTj ∈ ¡ .
5. Without loss of generality, let w1, . . . , wt be the channels in VALID. Moreover, for

j = 1, . . . , t, let pRj (x) be of the form

p
R

j (x) = share
R

1j + share
R

2j ⋅ x+ . . .+ share
R

ℓj ⋅ x
ℓ−1

.

6. For i = 1, . . . , ℓ, R applies reconstruction algorithm of the LSSS to
share

R

i1, share
R

i2, . . . , share
R

it and reconstructs mR

i .
7. Finally R reconstructs mR = [mR

1 , . . . ,mR

ℓ ] and terminates the protocol.

a If channel wk is not under the control of A then pRk (x) = pSk (x), ®R

k = ®S

k ,
(keyR

k1, . . . , key
R

kn) = (keyS

k1, . . . , key
S

kn) and valRjk = valSjk, for j = 1, . . . , n.



that SUPPORTj ∈ ¡ and hence A does not satisfy Q2 condition with respect to
W, which is a contradiction.

Now since wk is not under the control of A, it implies that ®R

k = ®S

k and
also valRjk = valSjk. Moreover, A will have no information about ®R

k and valRjk.

Now suppose adversary changes pSj (x), so that pRj (x) ∕= pRj (x). However, since

wk ∈ SUPPORTj , it implies that valRjk = pRj (®R

k ) + keyRjk. But adversary can

ensure the same only if he can correctly guess ®R

k = ®S

k . However, adversary can
do the same with probability at most ℓ−1

∣F∣ ≈ 2−(·). □

Lemma 3 (Perfect Secrecy). The protocol in Fig. 1 satisfies perfect secrecy
condition.

Proof: If wk ∈ CW, then adversary will know the polynomial pSk (x) and
hence the shares share

S

1k, . . . , share
S

ℓk. However, even after knowing all the
polynomials transmitted through the channels in CW, adversary will not know
mS

1 , . . . ,m
S

ℓ , as adversary will only come to know the shares of mS
1 , . . . ,m

S

ℓ sent
through the channels in CW and CW ∈ ¡ . However, the adversary will also know
valSjk = pSj (®

S

k ) + keySjk, corresponding to every wj ∈ HW, which is transmitted

through every wk ∈ CW. However, such valSjk’s will not reveal any extra infor-

mation about pSj (x) (corresponding to any Pj in HW) to the adversary, as the

adversary will have no information about the masking key keySjk, which is only

sent over wj . Thus, val
S

jk’s corresponding to every wj ∈ HW, which are trans-

mitted through every pk ∈ CW will not reveal any information about pSj (x)’s
corresponding to wj ’s in HW. Thus, through the information received over the
channels in CW, adversary will not get any information about mS

i ’s and hence
the message mS.

Lemma 4 (Almost Perfect Reliability). The protocol in Fig. 1 satisfies al-
most perfect reliability condition.

Proof: To prove the lemma, we have to show that the shares (of mS

i ’s) received
by R over the channels in VALID are correct shares, except with error proba-
bility 2−(·). This further implies that every channel wj ∈ VALID has delivered
pRj (x) = pSj (x), except with error probability 2−(·). However, this follows from
Lemma 2. □

Lemma 5 (Computation and Communication Complexity). In the pro-
tocol of Fig. 1, S and R performs computation which is polynomial in the size of
¡ and the underlying LSSS. In the protocol, S sends O(ℓn + n2) field elements
from F to R.

Proof: The computation complexity is easy to verify. We now analyze the com-
munication complexity. Through each channel, S sends a polynomial of degree
ℓ − 1, one evaluation point, n masking keys and n authenticated values. This
results in a total communication complexity of O(ℓn+ n2) field elements. □

Theorem 2. Let S and R be connected by n channels and let there exists a
computationally unbounded adversary A, specified by an adversary structure ¡



over the n channels, such that A satisfies Q2 condition. Then there exists an
efficient single round almost-PSMT protocol tolerating A.

Proof: The proof follows from Lemma 3, Lemma 4 and Lemma 5. □

4 Simple and Computationally Efficient Single Round

Almost-PSMT Tolerating Threshold Adversary With

Optimum Communication Complexity

As discussed earlier, a threshold adversary At, with threshold t, is a special type
of non-threshold adversary where the size of each set in the adversary structure
¡ is at most t. We now recall the following results from [25].

Theorem 3 ([25]). Any almost-PSMT (irrespective of the number of rounds)
tolerating At is possible iff S and R are connected by n ≥ 2t+1 channels. More-
over, any single round almost-PSMT protocol tolerating At has to communicate


(

nℓ
n−2t

)

field elements to send a message containing ℓ field elements.

Remark 3. In any almost-PSMT protocol, ∣F∣ is selected as a function of the
error parameter · (normally ∣F∣ = 2·) and thus each each field element can be
represented by a number of bits, which will be function of ·. So though · is
not figuring out explicitly in the expression for communication complexity in
Theorem 3, it is implied implicitly if we look into the total number of bits that
are actually communicated.

Any single round almost-PSMT protocol designed with n = 2t + 1 channels is
said to have optimal resilience. Substituting n = 2t+1 in the above theorem, we
find that any single round almost-PSMT protocol with optimal resilience has to
communicate (nℓ) field elements to send a message containing ℓ field elements.
Thus any single round, optimally resilient, almost-PSMT protocol whose total
communication complexity is O(nℓ) is said to be communication optimal.

In [35, 25], the authors presented an efficient5 single round, optimally re-
silient almost-PSMT protocol tolerating At. However, the protocol performs
some complex (though efficient) computational stuffs, like extrapolation tech-
nique, extranding randomness, etc6 to achieve its task. In practical networks like
sensor network, it is desirable to design protocols which perform computation-
ally simple steps. Motivated by this, the authors in [9] have designed a very
simple, optimally resilient, single round almost-PSMT tolerating At. However,
their protocol is not communication optimal. Specifically, their protocol sends
O(n2) field elements to send a message containing one field element.

We now show that our single round almost-PSMT protocol against non-
threshold adversary when restricted to threshold adversary is a single round,

5 The computation and communication complexity of the protocol is polynomial in n

and ℓ.
6 See [7] for the detailed presentation of the single round almost-PSMT protocol of
[35].



optimally resilient, almost-PSMT protocol tolerating At having optimal commu-
nication complexity. Moreover, the protocol is efficient. Furthermore, the proto-
col is very simple and performs much simplers steps than the communication
optimal single round almost-PSMT protocol of [35].

The first observation is that if the adversary is specified by a threshold t and
if the underlying adversary structure satisfies Q2 condition, then it implies that
S and R are connected by n ≥ 2t+ 1 channels. Moreover, it is well known that
there exists a very simple MSP tolerating a threshold adversary with threshold
t, such that there are exactly n rows in the MSP and one row of the MSP is
assigned to each channel. The MSP is nothing but an n× (t+ 1) Vandermonde
matrix [8]. The resultant secret sharing scheme is known as Shamir secret sharing
scheme [32]. So now with these observations, if we simply execute the protocol of
previous section assuming that the adversary is a threshold adversary and there
are n = 2t + 1 channels between S and R, we get a simple, efficient, optimally
resilient, single round almost-PSMT protocol tolerating At, which communicates
O(ℓn+ n2) field elements to send a message containing ℓ field elements. Now if
we set ℓ = n, then we find that the protocol sends a message containing n field
elements by communicating O(n2) field elements. From Theorem 3, any single
round optimally resilient almost-PSMT protocol has to communicate (n2) field
elements to securely send a message containing n field elements. Thus our re-
sultant protocol is communication optimal. We now state this in the following
theorem:

Theorem 4. Let S and R be connected by n = 2t + 1 channels. Moreover, let
S has a message containing ℓ = n field elements. Then there exists a simple,
efficient, optimally resilient, communication optimal single round almost-PSMT
protocol tolerating At.

5 Conclusion

In this paper, we resolved one of the open problems raised in [25] by designing
an optimally resilient, single round, efficient almost-PSMT protocol tolerating
non-threshold adversary. This is the first ever efficient single round almost-PSMT
protocol tolerating non-threshold adversary. When restricted to threshold adver-
sary, we get a simple, efficient, optimally resilient, single round communication
optimal almost-PSMT protocol.
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