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Abstract. Patra et al. (IJACT ’09) gave a necessary and sufficient con-
dition for the possibility of almost perfectly secure message transmis-
sion protocols1 tolerating general, non-threshold Q2 adversary structure.
However, their protocol requires at least three rounds and performs expo-
nential (exponential in the size of the adversary structure) computation
and communication. They have left it as an open problem to design
efficient protocol for almost perfectly secure message transmission, tol-
erating Q2 adversary structure.

In this paper, we show the first single round almost perfectly secure
message transmission protocol tolerating Q2 adversary structure. The
computation and communication complexities of the protocol are both
polynomial in the size of underlying linear secret sharing scheme (LSSS).
This solves the open problem posed by Patra et al.

When we restrict our general protocol to a threshold adversary, we
obtain a single round, communication optimal almost secure message
transmission protocol tolerating threshold adversary, which is much more
computationally efficient and relatively simpler than the previous single
round, communication optimal protocol of Srinathan et al. (PODC ’08).
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1 Introduction

Consider the following problem: there exists a sender S and a receiver R, who
are part of a large distributed network and connected by n disjoint channels.
There exists a computationally unbounded adversary, who can listen and forge
communication over some of these channels in any arbitrary manner. However,
neither S, nor R knows which of the channels are under the control of the
adversary. S has a message mS, which is a sequence of � elements from a finite
field F, where � ≥ 1. The challenge is to design a protocol, such that after
interacting with S as per the protocol, the following should hold at R’s end:

1. Perfect Reliability: R outputs mR = mS.
2. Perfect Secrecy: Adversary should not get any extra information about
mS. In other words, mS should be information theoretically secure.

This problem is called perfectly secure message transmission (PSMT) [12].

Motivation and Different Models for Studying PSMT. PSMT is a well
known and fundamental problem in secure distributed computing. If S and R are
directly connected by a secure channel, as assumed in generic multiparty compu-
tation (MPC) protocols [3,4,29], then PSMT is trivial. However, if S and R are
not directly connected by a secure channel, then PSMT protocols help to simu-
late a virtual secure channel between S and R. The second motivation for PSMT
is to achieve information theoretic security. The security of all existing public
key cryptosystems is based on hardness assumptions of certain number theoretic
problems and security of these schemes holds only against a computationally
bounded adversary. However, with the advent of new computing paradigms like
Quantum computing [33] and with the increase in computing speed, these as-
sumptions may tend to be useless. But all these factors have no effect on PSMT
protocols, as security of these protocols holds good against a computationally
unbounded adversary.

Over the past two decades, PSMT problem has been studied by several re-
searchers in different settings. Specifically, we can consider the following settings:

1. Type of Channels: The channels between S and R can be bi-directional.
This setting has been considered in [12,31,16,36,1,13,19,26,24]. On the other
hand, channels may be uni-directional, having direction associated with them
[10,23,21,40,6].

2. Adversary Capacity: The adversary may be characterized by a thresh-
old, say t, such that the adversary can control any t out of the n channels
[12,31,36,19] or the adversary may be characterized as a more general non-
threshold adversary, specified by an adversary structure [16,28,40,41,17,18].

3. Adversary Behavior: The adversary may be static who corrupts the same
channels throughout the protocol [12,31,36,19] or the adversary may be mo-
bile, who corrupts different set of channels, during different stages of the
protocol [39,26,5,27].
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4. Type of Underlying Network: The underlying network may be syn-
chronous, where there is a global clock in the system and the delay in the
transmission over any channel is bounded by a constant [12,31,36,38,19] or
the network may be asynchronous, having no such global clock [30,6].

Any PSMT protocol is analyzed by the following parameters:

1. Round Complexity: It is the number of communication rounds taken by
the protocol, where a round is a communication from S to R or vice-versa.

2. Communication Complexity: It is the total number of field elements sent
by S and R in the protocol.

3. Computational Complexity: It is amount of computation which is done
by S and R in the protocol.

We call a PSMT protocol against a non-threshold adversary as efficient, if the
round complexity, communication complexity and computational complexity of
the protocol is polynomial in n and the size of the Monotone Span Programme
(MSP) for the adversary structure (adversary structure is presented in Sec. 1.1
and MSP is presented Sec. 2). On the other hand, a PSMT protocol against a
t-active threshold adversary is called efficient, if its round, communication and
computational complexity is polynomial in n and t. Irrespective of the settings
in which PSMT problem is studied, the following questions are fundamental:

– Possibility: What are the necessary and sufficient conditions for the exis-
tence of any PSMT protocol, tolerating a given type of adversary?

– Feasibility: Once the possibility of a protocol is ascertained, the next obvi-
ous question is whether there exists an efficient protocol or not?

– Optimality: Given a message of some specific length, what is the lower
bound on the round complexity and communication complexity of any PSMT
protocol to send the message? Moreover, do we have a protocol, whose total
round complexity and communication complexity matches these bounds?

Different techniques are used to answer the above questions in different settings.
For details, see [7]. The issue of Possibility, Feasibility and Optimality of
PSMT has been completely resolved tolerating threshold adversary. However,
not too much is known regarding the Feasibility and Optimality of protocols
against non-threshold adversary (see [7] for complete details).

1.1 Non-Threshold Adversary

Let the set of n channels be denoted by W = {w1, . . . , wn}. Then a threshold
adversary is characterized by a threshold t, such that the adversary can control
any t channels out of the n channels for corruption. We denote such an adversary
by At. On the other hand, a non-threshold general adversary A is characterized
by an adversary structure Γ , which is a collection of subsets of channels that the
adversary A can potentially corrupt. That is,

Γ = {B ⊂ W | A can corrupt B}.
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Moreover, we assume that if B ∈ Γ and if B′ ⊂ B, then B′ ∈ Γ . It is easy to
see that a threshold adversary is a special case of non-threshold adversary, such
that all possible B ⊂ W with |B| ≤ t, are present in Γ .

Definition 1 (Qk Condition [15]). We say that A satisfies the Qk condition
with respect to W, if there exists no k sets in Γ , which adds up to the whole set
W. That is:

∀B1, . . . , Bk ∈ Γ : B1 ∪ . . . ∪Bk �= W .

PSMT Tolerating Non-Threshold Adversary. Modeling the adversary by
a threshold helps in easy characterization of protocols and it also helps in ana-
lyzing protocols. However, as mentioned in [15], modeling the (dis)trust in the
network as a threshold adversary is not always appropriate because threshold
protocol requires more stringent requirements than the reality [16]. Motivated
by this, Kumar et al. [16] studied PSMT tolerating non-threshold adversary
for the first time in the literature. The work of Kumar et al. is followed by
[11,28,17,40,41], where the issues related to the Possibility and Feasibility of
PSMT against non-threshold adversary have been studied. In short, there exists
efficient PSMT protocols tolerating non-threshold adversary for bi-directional
channels [41,17] as well as for uni-directional channels [41]. However, there exists
another variant of PSMT, known as almost perfectly secure message transmission
(almost-PSMT), which got relatively less attention in the context of non-
threshold adversary.

1.2 Almost Perfectly Secure Message Transmission: Almost-PSMT

In PSMT, it is required that R should output mR = mS without any error.
In [14], the authors considered a variant of PSMT called almost-PSMT, where
they relaxed this requirement. Specifically, a protocol is called almost-PSMT, if
it satisfies the following requirements:

1. Perfect Secrecy: Same as in the case of PSMT.
2. Almost Perfect Reliability: R outputs mR = mS with probability at

least 1 − 2−Ω(κ), where κ is the error parameter and κ > 0.

In [14], the authors studied almost-PSMT tolerating threshold adversary and
showed that almost-PSMT protocols require less number of channels than PSMT
protocols for tolerating a threshold adversary with the same threshold. That is,
allowing a negligible error probability in protocol outcome reduces the connec-
tivity requirement. The work of [14] is followed by [10,37,20,35,2,9,22] where
almost-PSMT tolerating threshold adversary is studied rigorously and the is-
sues related to the Possibility, Feasibility and Optimality of almost-PSMT
tolerating threshold adversary has been completely resolved. In summary, all
these works show that allowing a negligible error probability in the protocol out-
put (without compromising the secrecy) results in significant reduction in the
round complexity, communication complexity and also connectivity requirement
(number of channels) of PSMT protocols.
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Remark 1. (On the Term almost-PSMT): In the literature, almost-PSMT
protocols are also known by various other names. In [34,37], the authors called
these protocols as probabilistic PSMT (PPSMT). On the other hand, [25,35]
called these protocols as unconditionally secure message transmission (USMT)
protocols. Finally, [7] called these protocols as statistically secure message trans-
mission (SSMT) protocols. However, all the above terms stand for almost-PSMT.
In this article, we prefer to use the original name, namely almost-PSMT.

1.3 Almost-PSMT Tolerating Non-Threshold Adversary:
Motivation of Our Work

Unlike almost-PSMT tolerating threshold adversary, almost-PSMT against non-
threshold adversary has got very less attention. In [25], Patra et al. have studied
almost-PSMT tolerating non-threshold adversary. They showed that single round
as well as multi-round almost-PSMT is possible iff A satisfies Q2 condition. This
is to be compared with the results of [11] and [16], according to which single
round and multi-round PSMT is possible iff A satisfies Q3 and Q2 condition
respectively. Unfortunately, the almost-PSMT protocol tolerating non-threshold
adversary presented in [25] is very inefficient and requires computation and com-
munication complexity, which is exponential in the size of adversary structure2.
Moreover, it requires at least three rounds. In [25], the authors have left it as an
open problem to design efficient almost-PSMT protocol tolerating non-threshold
adversary, satisfying Q2 condition. In this paper, we solve this open problem.

1.4 Our Results and Comparison with the Existing Results

In this paper, we present the first single round almost-PSMT protocol tolerating
non-threshold adversary A, specified by an adversary structure, satisfying Q2

condition. Our protocol is round optimal, requiring minimum number of rounds.
Moreover, our protocol is very simple and efficient and thus significantly outper-
forms the almost-PSMT protocol of [25].

As a special case of our single round protocol, when we restrict it to thresh-
old adversary, we get a single round communication optimal almost-PSMT tol-
erating threshold adversary. Though there exists single round, communication
optimal almost-PSMT protocol tolerating threshold adversary [35], we find that
our protocol is much more computationally efficient and relatively simpler than
the protocol of [35]. In practical networks like sensor networks, it is desirable to
have protocols which perform simple computation. In such a situation, our com-
munication optimal protocol (tolerating threshold adversary) fits the bill more
appropriately than the communication optimal protocol of [35].

In [9] the authors have designed single round almost-PSMT protocol toler-
ating threshold adversary, which performs simple computations. However, their
protocol is not communication optimal. On the other hand, our protocol tol-
erating threshold adversary enjoys the property of being both simple and also
communication optimal.
2 The protocol of [25] does not use LSSS and is based on the principle of Induction.
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Table 1. Comparison of our almost-PSMT protocol tolerating Q2 adversary structure
with best known almost-PSMT protocol tolerating Q2 adversary structure

Reference Number of Rounds Efficient/Inefficient

[25] At least three Inefficient

This paper One Efficient

Table 2. Comparison of our single round almost-PSMT protocol tolerating threshold
adversary with n = 2t + 1 with the best known single round almost-PSMT protocols
tolerating threshold adversary with n = 2t + 1

Reference Communication Optimal Computational Complexity

[35] Yes Efficient (Polynomial in n)

[9] No More efficient than [35]

This paper Yes More efficient than [35]

In Table 1 and 2, we compare our protocols with the best known almost-PSMT
protocols in non-threshold and threshold settings respectively.

1.5 Tools and Techniques Used in Our Protocol

To design our protocol, we use Linear Secret Sharing Scheme (LSSS) [8]. In ad-
dition, we also use a new method of authenticating multiple values concurrently
in information theoretic sense. Together this leads to our efficient single round
almost-PSMT protocol.

2 Primitives

Our protocol involves a negligible error probability of 2−Ω(κ). To bound the error
probability by 2−Ω(κ), our protocol operates over a finite field F, where |F| = 2κ.
In our protocol, the error probability comes from the fact that adversary has to
guess a value (unknown to the adversary), selected uniformly and randomly by S
from F. If the adversary can correctly guess the value, then the protocol output
will be incorrect. However, the probability of this event is 1

|F| = 2−κ. Without
loss of generality, we assume that �

|F| ≈ 2−Ω(κ) and hence is negligible (this is
assumed in all the previous almost-PSMT protocols). We now discuss LSSS.

2.1 Linear Secret Sharing Scheme: LSSS

In a secret sharing scheme, a dealer D distributes a secret s ∈ F, to a set of n
parties P = {P1, . . . , Pn} in such a way that some subsets of the participants
(called access sets) can reconstruct s from their shares, while the other subsets of
the participants (called forbidden sets) have no information about s from their
shares. The family of access sets is called access structure. Moreover, we assume
that the access structure is monotone, which is defined as follows:
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Definition 2. An access structure Σ is monotone if A ∈ Σ and A′ ⊇ A, then
A′ ∈ Σ.

Corresponding to the access structure Σ, we have the adversary structure Γ =
Σc, where c denotes the complement. The sets in Γ are called forbidden sets.
There exists a computationally unbounded adversary A, who can control any set
in Γ .

A secret sharing scheme for any monotone access structure Σ can be realized
by a linear secret sharing scheme (LSSS) [8] as follows: Let M be a d× e matrix
over F and ψ : {1, · · · , d} → {1, · · · , n} be a labeling function, where d ≥ e and
d ≥ n.

Sharing algorithm

1. To share a secret s ∈ F, D first chooses a random vector ρ ∈ F
e−1 and

compute a vector

v = (v1, · · · , vd)T = M·
(
s
ρ

)
. (1)

2. Let
LSSS(s,ρ) = (share1, · · · , sharen), (2)

where sharei = {vj | ψ(j) = i}. The dealer gives sharei to Pi as a share of
s for i = 1, · · · , n.

Reconstruction algorithm: A set of parties A ∈ Σ can reconstruct the secret
s if and only if (1, 0, · · · , 0) is in the linear span of

MA = {mj | ψ(j) ∈ A},
where mj denotes the jth row of M. If this is indeed the case then there exists
a vector αA called recombination vector, such that αA ·MA = (1, 0, . . . , 0). Let
sA denote the set of shares corresponding to the parties in A. Then the parties
in A can reconstruct s by computing s = 〈αA, s

T
A〉, where 〈x, y〉 denotes the dot

product of x and y and xT denotes the transpose of x.

Definition 3 (Monotone Span Programme (MSP) [8]). We say that the
above (M, ψ) is a monotone span program which realizes Σ. The size of the MSP
is the number of rows d in M.

Theorem 1 ([8]). The above algorithm constitutes a valid secret sharing scheme.

We are now ready to present our protocol.

3 Efficient Single Round Almost-PSMT Protocol
Tolerating Non-Threshold Adversary

Let W = {w1, . . . , wn} be the set of n channels between S and R and let A be
a non-threshold adversary, specified by an adversary structure Γ over W . More-
over, let Σ = Γ c be the corresponding access structure over W . Furthermore, let
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A satisfies Q2 condition with respect to W , which is necessary for the existence
of any almost-PSMT protocol tolerating A. During the protocol, A can select
any set of channels B ∈ Γ for corruption. However, before the beginning of the
protocol, neither S nor R will know which set of channels are under the control
of A. The channels which are under the control of A are called corrupted. On
the other hand, the channels not under the control of A are called honest.

Let (M, ψ) be the MSP realizing the access structure Σ. Without loss of
generality and for simplicity, we assume that only ith row of M is assigned to
channel wi, for i = 1, . . . , n. Thus,

M =

⎛
⎜⎝

m1

...
mn

⎞
⎟⎠

is an n× e matrix over F. However, our protocol will also work when more than
one row of M is assigned to some wi. Finally we use the following notation in
our protocol:

Notation 1. Let Q be any subset of W i.e. Q ⊆ W. Then MQ denotes the ma-
trix containing the rows of M corresponding to the channels in Q. For example,
if Q = {w1, . . . , wt}, then

MQ =

⎛
⎜⎝

m1

...
mt

⎞
⎟⎠ .

3.1 Underlying Idea of the Protocol

The high level idea of the protocol is as follows: let the message mS, which is a
sequence of � elements from F be denoted by mS = [mS

1 , . . . ,m
S
� ]. Now using the

MSP M, S generates LSSS(mS
i ,ρi) = (shareSi1, . . . , share

S
in), for i = 1, . . . , �,

where ρi’s are the randomness used by S.
If S sends the jth share of all the � mS

i ’s, namely shareSij , over wj , for j =
1, . . . , n, then the communication preserves the secrecy of mS. This is because
A can control any one set from the adversary structure Γ and hence will get the
shares of each mS

i ’s, sent over those channels. However, from the properties of
MSP, these shares will not reveal any information about mS

i ’s to A.
However, S cannot ensure that mS will be recovered correctly by R by sim-

ply sending the shares. This is because A may corrupt the shares sent over the
channels under its control and there will be no way by which R can detect which
channels have delivered correct shares. This is because there is only one round in
the protocol. So S also need to send some additional information to authenticate
each share, which can assist R to detect the corrupted shares with very high
probability. So in our protocol, S also sends additional authentication informa-
tion, using which R can detect the corrupted shares with very high probability
(the way this is done is explained in the next section).
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Though this mechanism of sending the shares, along with their authentication
information is also used in the earlier almost-PSMT protocols, we use a new
way of sending the authentication information, which is relatively simpler than
the earlier schemes. After removing the corrupted shares, R will be left with the
shares, which are correctly delivered with very high probability. Among these
shares, there will be a set of shares which are delivered over the honest channels
and hence they correspond to shares of the wires that constitute an access set.
So if R applies the reconstruction algorithm of the LSSS to the retained shares,
R will correctly recover each mS

i with very high probability.

3.2 Sending the Authentication Information

In our protocol, the authentication of shares is done in the following way: cor-
responding to the jth share of all the � mS

i ’s, sender S constructs a polynomial
pSj (x) of degree �−1 as follows: pSj (x) = shareS1j+shareS2j ·x+. . .+shareS�j ·x�−1.
Now S associates pSj (x) with channel wj , for j = 1, . . . , n and sends it over wj

(by sending the coefficients of pSj (x) over wj). This is same as sending all the jth

shares over wj .
Now S associates a random evaluation point αS

k with every channel wk, for k =
1, . . . , n. If S sends αS

k and pSj (αS
k ), for j = 1, . . . , n over wk, then it achieves the

following: if wj is corrupted and if wk is honest, then wj cannot deliver pRj (x) �=
pSj (x) to R over wj without being caught by wk with very high probability. This
is because A will have no information about αS

k sent over wk and also αR
k received

by R over wk is same as αS
k . So except with probability �−1

|F| , pRj (αR
k ) �= pSj (αR

k ).
This is because two different polynomials of degree �− 1 can have at most �− 1
common roots and αS

k is randomly selected from F. By appropriately selecting
F, we can ensure that �−1

|F| ≈ 2−Ω(κ), which is negligible. So this can help to
detect corrupted shares.

However, the above communication may breach the secrecy as follows: if Pj

is honest and Pk is corrupted, then earlier adversary would have no informa-
tion about pSj (x), as no information about pSj (x) would have been sent over wk.
But now, adversary will know pSj (αS

k ), as well as αS
k through wk, thus revealing

information about pSj (x) and hence about jth share of all mS
i ’s. To avoid this

situation, we use the following idea: corresponding to channel wj , S selects n
random masking keys, denoted by keySj1, . . . , key

S
jn. All the nmasking keys (asso-

ciated with wj) are sent over wj . Now the authentication of pSj (x) corresponding
to the evaluation point αS

k , namely pSj (αS
k ), is masked with the kth masking key,

namely keySjk and sent over wk. That is, over wk, S sends pSj (αS
k )+keySjk, instead

of only pSj (αS
k ). Notice that keySjk is not sent over wk. So if the adversary controls

wk, then even after knowing αS
k and pSj (αS

k )+keySjk, adversary will not gain any
information about pSj (x), as he has no information about the kth masking key
keySjk associated with wj . This way, we preserve the secrecy of each pSj (x), sent
over honest pj’s. The interesting fact is that with this communication, we can
also ensure that if some pSj (x) is changed by the adversary over some corrupted
wj , then it will be detected with very high probability by an honest wk.
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Remark 2. (Comparison with the earlier mechanisms of authenticating
shares) As mentioned earlier, all the previous almost-PSMT protocols also used
the idea of sending the authentication information of the shares, along with the
shares. However, these protocols perform the authentication of each individual
jth share separately, corresponding to each of the � messages, using the idea of
Check vectors [29]. On the other hand, in our scheme, a single authentication
information is sent for all the jth shares of the � secrets. This way, we achieve
more efficiency.

We are now ready to formally present our protocol, which is given in Fig. 1.
We now proceed to prove the properties of the protocol. In the proofs, we will

use the following notations (For the definition of VALID, see Fig. 1):

– HW denotes the set of channels in W not under the control of A.
– CW denotes the set of channels in W under the control of A.
– HVALID denotes the set of channels in VALID not under the control of A.
– CVALID denotes the set of channels in VALID under the control of A.

Remark 3. Notice that if some channel is under the control of A then it is
not necessary that A changes all the information sent over the channel. The
adversary may or may not change any portion of the information sent over the
channels under his control.

Lemma 1. HVALID = HW and hence HVALID constitutes an access set.

Proof: First notice that every channel in the set HW will correctly deliver all the
information to R. Specifically, pRk (x) = pSk (x), αR

k = αS
k , (keyRk1, . . . , key

R
kn) =

(keySk1, . . . , key
S
kn) and valRjk = valSjk, for j = 1, . . . , n, for every channel wk ∈

HW. So the condition valRjk = pRj (αR
k ) + keyRjk holds for every wj , wk ∈ HW.

Moreover, HW constitutes an access set. Thus, the condition W\SUPPORTj ∈ Γ
will hold for every channel wj ∈ HW. Thus, every channel in HW will be present
in VALID and hence HVALID = HW. �

Lemma 2. Every channel wj ∈ VALID will deliver pRj (x) = pSj (x), except with
error probability 2−Ω(κ).

Proof: The proof holds without any error probability if wj ∈ HVALID. So we
now consider the case when wj ∈ CVALID. So let wj be a channel in CVALID.
Since wj ∈ CVALID (and hence VALID), it implies that W \ SUPPORTj ∈ Γ .
This further implies that there exists at least one channel in SUPPORTj , say
wk, such that wk is not under the control of the adversary. Otherwise, it implies
that SUPPORTj ∈ Γ and hence A does not satisfy Q2 condition with respect to
W , which is a contradiction.

Now since wk is not under the control of A, it implies that αR
k = αS

k and
also valRjk = valSjk. Moreover, A will have no information about αR

k and valRjk.
Now suppose adversary changes pSj (x), so that pRj (x) �= pSj (x). However, since
wk ∈ SUPPORTj , it implies that valRjk = pRj (αR

k ) + keyRjk. But adversary can
ensure the same only if he can correctly guess αR

k = αS
k . However, adversary can

do the same with probability at most �−1
|F| ≈ 2−Ω(κ). �
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Computation by S:

1. For i = 1, . . . , �, S computes LSSS(mS
i , ρi) = (shareS

i1, . . . , share
S
in).

2. For k = 1, . . . , n, corresponding to channel wk, S selects a random value αS
k , called

as kth evaluation point.
3. For j = 1, . . . , n, corresponding to the jth share of all the � mS

i ’s, S constructs a
polynomial pS

j (x) of degree � − 1 as follows:

pS
j (x) = share

S
1j + share

S
2j · x + . . . + share

S
�j · x�−1.

4. For j = 1, . . . , n, S evaluates each pS
j (x) at evaluation point αS

k , for k = 1, . . . , n.
5. For j = 1, . . . , n, corresponding to channel wj , S selects n random, non-zero values

keyS
j1, . . . , keyS

jn, called as masking keys.

Round I: Communication from S to R: For k = 1, . . . , n, S sends the following
to R over channel wk and terminates the protocol.

1. Polynomial pS
k (x).

2. Evaluation point αS
k .

3. n masking keys keyS
k1, . . . , keyS

kn.
4. Masked authentication values valSjk, for j = 1, . . . , n, where valSjk = pS

j (αS
k )+keyS

jk.

Information Received by R: For k = 1, . . . , n, let R receive the following from S
over channel wk:

1. Polynomial pR
k (x).

2. Evaluation point αR
k .

3. n masking keys keyR
k1, . . . , keyR

kn.
4. Masked authentication values valRjk, for j = 1, . . . , n.

Message Recovery by R: R does the following computation:

1. R initializes a set VALID = ∅.
2. For j = 1, . . . , n, corresponding to channel wj , R constructs a set SUPPORTj = ∅.
3. R adds channel wk in SUPPORTj if valRjk = pR

j (αR
k ) + keyR

jk.
4. For j = 1, . . . , n, R adds channel wj to VALID if W \ SUPPORTj ∈ Γ a.
5. Without loss of generality, let w1, . . . , wt be the channels in VALID. Moreover, for

j = 1, . . . , t, let pR
j (x) be of the form

pR
j (x) = share

R
1j + share

R
2j · x + . . . + share

R
�j · x�−1.

6. For i = 1, . . . , �, R applies reconstruction algorithm of the LSSS to
shareR

i1, share
R
i2, . . . , share

R
it and reconstructs mR

i .
7. Finally R reconstructs mR = [mR

1 , . . . , mR
� ] and terminates the protocol.

a This is can be done efficiently by checking whether the target vector (1, 0, . . . , 0)
lies in the span of the rows assigned to the parties in the set W \SUPPORTj in M.

Fig. 1. Efficient Single Round Almost-PSMT Tolerating Q2 Adversary Structure
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Lemma 3 (Perfect Secrecy). The protocol in Fig. 1 satisfies perfect secrecy
condition.

Proof: If wk ∈ CW, then adversary will know the polynomial pSk (x) and
hence the shares shareS1k, . . . , share

S
�k. However, even after knowing all the

polynomials transmitted through the channels in CW, adversary will not know
mS

1 , . . . ,m
S
� , as adversary will only come to know the shares of mS

1 , . . . ,m
S
� sent

through the channels in CW and CW ∈ Γ . However, the adversary will also know
valSjk = pSj (αS

k ) + keySjk, corresponding to every wj ∈ HW, which is transmitted
through every wk ∈ CW. However, such valSjk’s will not reveal any extra infor-
mation about pSj (x) (corresponding to any Pj in HW) to the adversary, as the
adversary will have no information about the masking key keySjk, which is only
sent over wj . Thus, valSjk’s corresponding to every wj ∈ HW, which are trans-
mitted through every pk ∈ CW will not reveal any information about pSj (x)’s
corresponding to wj ’s in HW. Thus, through the information received over the
channels in CW, adversary will not get any information about mS

i ’s and hence
the message mS.

Lemma 4 (Almost Perfect Reliability). The protocol in Fig. 1 satisfies al-
most perfect reliability condition.

Proof: To prove the lemma, we have to show that the shares (of mS
i ’s) received

by R over the channels in VALID are correct shares, except with error proba-
bility 2−Ω(κ). This further implies that every channel wj ∈ VALID has delivered
pRj (x) = pSj (x), except with error probability 2−Ω(κ). However, this follows from
Lemma 2. �

Lemma 5 (Computation and Communication Complexity). In the pro-
tocol of Fig. 1, S and R performs computation which is polynomial in the size
of the underlying LSSS. In the protocol, S sends O(�n+ n2) field elements from
F to R.

Proof: The computational complexity is easy to verify. We now analyze the
communication complexity. Through each channel, S sends a polynomial of
degree � − 1, one evaluation point, n masking keys and n authenticated
values. This results in a total communication complexity of O(�n + n2) field
elements. �

Theorem 2. Let S and R be connected by n channels and let there exists a
computationally unbounded adversary A, specified by an adversary structure Γ
over the n channels, such that A satisfies Q2 condition. Then there exists an
efficient single round almost-PSMT protocol tolerating A.

Proof: The proof follows from Lemma 3, Lemma 4 and Lemma 5. �
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4 Simple and Computationally Efficient Single Round
Almost-PSMT Tolerating Threshold Adversary with
Optimum Communication Complexity

As discussed earlier, a threshold adversary At is a special type of non-threshold
adversary where the adversary structure Γ consists of all possible subsets of W
of size at most t. We now recall the following results from [25].

Theorem 3 ([25]). Any almost-PSMT (irrespective of the number of rounds)
tolerating At is possible iff S and R are connected by n ≥ 2t+1 channels. More-
over, any single round almost-PSMT protocol tolerating At has to communicate
Ω

(
n�

n−2t

)
field elements to send a message containing � field elements.

Remark 4. In any almost-PSMT protocol, |F| is selected as a function of the error
parameter κ (normally |F| = 2κ) and thus each field element can be represented
by a number of bits, which will be function of κ. So though κ does not figure
explicitly in the expression for communication complexity in Theorem 3, it is
implied implicitly if we look into the total number of bits that are actually
communicated.

Any single round almost-PSMT protocol designed with n = 2t + 1 channels is
said to have optimal resilience. Substituting n = 2t+1 in the above theorem, we
find that any single round almost-PSMT protocol with optimal resilience has to
communicate Ω(n�) field elements to send a message containing � field elements.
Thus any single round, optimally resilient, almost-PSMT protocol whose total
communication complexity is O(n�) is said to be communication optimal.

In [35,25], the authors presented an efficient3 single round, optimally resilient
almost-PSMT protocol tolerating At. However, the protocol performs some com-
plex (though efficient) computations, like extrapolation technique, extracting ran-
domness, etc4 to achieve its task. In practical networks like sensor network, it is
desirable to design protocols which perform computationally simple steps. Moti-
vated by this, the authors in [9] have designed a very simple, optimally resilient,
single round almost-PSMT tolerating At. However, their protocol is not commu-
nication optimal. Specifically, their protocol sends O(n2) field elements to send
a message containing one field element.

We now show that our single round almost-PSMT protocol against non-
threshold adversary when restricted to threshold adversary is a single round,
optimally resilient, almost-PSMT protocol tolerating At having optimal commu-
nication complexity. Moreover, the protocol is efficient. Furthermore, the protocol
is very simple and performs much simplers steps (by avoiding steps like extrapo-
lation technique, extracting randomness) than the communication optimal single
round almost-PSMT protocol of [35].
3 The computation and communication complexity of the protocol are polynomial in

n and �.
4 See [7] for the detailed presentation of the single round almost-PSMT protocol of

[35].
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The first observation is that if the adversary is specified by a threshold t and if
the underlying adversary structure satisfies Q2 condition, then it implies that S
and R are connected by n ≥ 2t+1 channels. Moreover, it is well known that there
exists a very simple MSP tolerating a threshold adversary with threshold t, such
that there are exactly n rows in the MSP and one row of the MSP is assigned to
each channel. The MSP is nothing but an n×(t+1) Vandermonde matrix [8]. The
resultant secret sharing scheme is known as Shamir secret sharing scheme [32]. So
now with these observations, if we simply execute the protocol of previous section
assuming that the adversary is a threshold adversary and there aren = 2t+1 chan-
nels between S and R, we get a simple, efficient, optimally resilient, single round
almost-PSMT protocol tolerating At, which communicates O(�n + n2) field ele-
ments to send a message containing � field elements. Now if we set � = n, then we
find that the protocol sends a message containing n field elements by communi-
cating O(n2) field elements. From Theorem 3, any single round optimally resilient
almost-PSMT protocol has to communicate Ω(n2) field elements to securely send
a message containing n field elements. Thus our resultant protocol is communica-
tion optimal. We now state this in the following theorem:

Theorem 4. Let S and R be connected by n = 2t + 1 channels. Moreover, let
S has a message containing � = n field elements. Then there exists a simple,
efficient, optimally resilient, communication optimal single round almost-PSMT
protocol tolerating At.

5 Conclusion

In this paper, we resolved one of the open problems raised in [25] by designing
an optimally resilient, single round, efficient almost-PSMT protocol tolerating
non-threshold adversary. This is the first ever efficient single round almost-PSMT
protocol tolerating non-threshold adversary. When restricted to threshold adver-
sary, we get a simple, efficient, optimally resilient, single round communication
optimal almost-PSMT protocol.

Acknowledgments. We would like to thank the anonymous referees of ACNS
2011 for several useful suggestions.
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