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Abstract. Digital certificates signed by trusted certification authorities
(CAs) are used for multiple purposes, most commonly for secure binding
of public keys to names and other attributes of their owners. Although a
certificate usually includes an expiration time, it is not uncommon that
a certificate needs to be revoked prematurely. For this reason, whenever
a client (user or program) needs to assert the validity of another party’s
certificate, it performs revocation checking. There are many revocation
techniques varying in both the operational model and underlying data
structures. One common feature is that a client typically contacts an
on-line third party (trusted, untrusted or semi-trusted), identifies the
certificate of interest and obtains some form of a proof of either revoca-
tion or validity (non-revocation) for the certificate in question.

While useful, revocation checking can leak potentially sensitive infor-
mation. In particular, third parties of dubious trustworthiness discover
two things: (1) the identity of the party posing the query, as well as
(2) the target of the query. The former can be easily remedied with
techniques such as onion routing or anonymous web browsing. Whereas,
hiding the target of the query is not as obvious. Arguably, a more im-
portant loss of privacy results from the third party’s ability to tie
the source of the revocation check with the query’s target. (Since, most
likely, the two are about to communicate.) This paper is concerned with
the problem of privacy in revocation checking and its contribution is
two-fold: it identifies and explores the loss of privacy inherent in current
revocation checking, and, it constructs a simple, efficient and flexible
privacy-preserving component for one well-known revocation method.

1 Introduction and Motivation

As is well-known, public key cryptography allows users to communicate privately
without having pre-established shared secrets. While parties can be assured that
communication is private, there is no guarantee of authenticity. Authenticity is
obtained by binding a public key to some identity or name which is later verified
via digital signatures in conjunction with public key certificates. A public key
certificate, signed by a recognized certification authority (CA), can be used to
verify the validity, authenticity and ownership of a public key. As long as the
issuing CA is trusted, anyone can verify the CA’s certificate signature and bind
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the included name/identity to the public key. Digital certificates work best in
large interconnected open systems, where it is generally infeasible to directly
authenticate the owners of all public keys. X.509 [24] is one well-known cer-
tificate format widely used in several Internet-related contexts. The peer-based
PGP/GPG [2,8] format represents another popular approach.

Since a certificate is essentially a capability, one of the biggest problems asso-
ciated with large-scale use of certificates is revocation. There are many reasons
that can lead to a certificate being revoked prematurely. They include [24]: pri-
vate key loss or compromise, change of affiliation or job function, algorithm
compromise, or change in security policy. To cope with revocation, it must be
possible to check the status of any certificate at any time.

Revocation techniques can be roughly partitioned into implicit and explicit
classes. In the former, each certificate owner possesses a timely proof of non-
revocation which it supplies on demand to anyone. Lack of such a proof implic-
itly signifies revocation. An example of implicit revocation is Micali’s Certificate
Revocation System (CRS) [20]. Most revocation methods are explicit, i.e., they
involve generation, maintenance and distribution of various secure data struc-
tures that contain revocation information for a given CA or a given range of
certificates.

Well-known explicit revocation methods (data structures) include Certifica-
tion Revocation Lists (CRLs) and variations such as Δ-CRLs, CRL Distribution
Points (CRL-DPs), Certificate Revocation Trees (CRTs) [15] and Skip-Lists [9].
Another prominent technique is the On-line Certificate Status Protocol (OCSP)
[21] which involves a multitude of “somewhat-trusted” validation agents (VAs)
which respond to client queries with on-demand signed replies indicating current
status of a target certificate.

Regardless of their particulars, all current explicit revocation methods have an
unpleasant side-effect: they divulge too much information. Specifically, a third
party (agent, server, responder or distribution point) of dubious trustworthiness
knows: (1) the entity checking revocation status (source), and (2) the entity
whose status is being checked (target). An even more important loss of privacy
results from the third party tying the source of the revocation checking query
to that query’s target. This is significant, because the revocation status check
typically serves as a prelude to actual communication between the two parties.1

In the society preoccupied with gradual erosion of (electronic) privacy, loss
of privacy in current revocation checking is an important issue worth consider-
ing. Consider, for example, certain countries with less-than-stellar human rights
records where mere intent to communicate (indicated by revocation checking)
with a “unsanctioned” web-site may be grounds for arrest or worse. In the same
vein, sharp increase in popularity (deduced from being a frequent target of revo-
cation checking) of a web-site may lead authorities to conclude that something
“subversive” is going on. The problem can also manifest itself in less sinister

1 We assume that communication between clients and on-line revocation agents (third
parties) is private, i.e., conducted over secure channels protected by tools such as
IPSec [12] or SSL/TLS [10].
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settings. Many internet service providers keep detailed statistics and build elab-
orate profiles based on their clients’ communication patterns. Current revocation
checking methods – by divulging both sources and targets or revocation queries
– represent yet another source of personal information that can be exploited by
potentially unscrupulous providers.

The primary motivation for this paper is current lack of privacy in certificate
revocation checking. The intended contribution of this paper is two-fold: first,
it explores the loss of privacy inherent in current certificate revocation check-
ing, and, second, it constructs a simple, efficient and flexible privacy-preserving
add-on component for one well-known revocation method. We believe that the
simplicity of our approach has a good chance of enabling its eventual adoption by
the Internet masses most of whom at present (unfortunately) ignore revocation
checking.

1.1 Focus

The first problem mentioned above (hiding the source of a revocation query)
can be easily remedied with modern anonymization techniques, such as onion
routing, anonymous web browsing or remailers. While this might protect the
source of a revocation query, the target of the query remains known to the third
party. Furthermore, although anonymization techniques are well-known in the
research community, their penetration remains, overall, fairly low. Also, in order
to take advantage of an existing anonymization infrastructure, one either needs
to place some trust in unfamiliar existing entities (e.g., remailers, re-webbers or
onion routers) or make the effort to create/configure some of these entities.

In this paper we focus on the second problem – hiding the targets of revocation
queries. We start by examining current revocation techniques and settle on the
one that is most amenable to supporting efficient privacy-preserving querying.

Note that the privacy problem of the type described above is not unique to
revocation checking. A very similar problem arises in the context of a name
service, e.g., the Internet Domain Name System (DNS) [14]. In DNS, at least
one (and potentially many) name servers become privy to both the source and
target of a name-to-address resolution query. For the same reasons as revocation
checking, information culled from DNS queries can be used for sinister, or at
least unintended, purposes. In fact, the privacy problem in DNS is much more
rampant and thus more important than that in revocation checking. This is
because revocation checking is still a niche’ activity among Internet users, in
contrast to DNS which is used by nearly all.

1.2 Related Work

There is very little in terms of closely related work. However, this paper is not
the first to consider privacy in revocation checking. The honor belongs to the
recent work of Kikuchi [13]. This work identified the problem and proposed a
fairly heavy-weight (inefficient) cryptographic technique specific to CRLs. The
solution relies on so-called cryptographic accumulators which are, unfortunately,
quite expensive.
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A related research topic is Private Information Retrieval (PIR) [4,16]. PIR
refers to a set of cryptographic techniques and protocols that – in a client-
server setting – aim to obscure the actual target(s) of database queries from
potentially malicious servers. Although PIR techniques could be applicable in
our context, they tend to be relatively inefficient owing to either (or both) many
communication rounds/messages or expensive cryptographic operations. As will
be seen in subsequent sections, PIR techniques would amount to overkill in the
context of privacy-preserving revocation checking.

2 Certificate Revocation Techniques

In this section, we briefly overview certificate revocation techniques and associ-
ated data structures. In the following, we refer to the entity validating certificates
(answering certificate status queries) as a Validation Authority (VA). A distinct
entity – Revocation Authority (RA) – is assumed responsible for actually revok-
ing certificates, i.e., generating secure data structures such as CRLs. Unlike a
CA, which is always off-line, an RA may be partially on-line to facilitate fast
distribution of revocation information.

CRLs and Δ-CRLs: These are the most common ways to handle certificate
revocation. The Validation Authority (VA) periodically posts a signed list (or
a similar structure) containing all revoked certificates. Such lists are placed
on designated servers, called CRL Distribution Points. Since a list can get
quite long, a VA may post a signed Δ-CRL which only contains the list of
certificates revoked since the last CRL was issued. In the context of encrypted
email, at the time email is sent, the sender checks if the receiver’s certificate is
included in the latest CRL. To verify a signature on a signed email message,
the verifier first checks if (at present time) the signer’s certificate is included
in the latest CRL.

OCSP: The Online Certificate Status Protocol (OCSP) [21] avoids the gen-
eration and distribution of long CRLs and provides more timely revocation
information. To validate a certificate in OCSP, a client sends a certificate
status request to a VA. The latter sends back a signed response indicating
the status (revoked, valid, unknown) of the specified certificate.

Certificate Revocation Trees: In 1998, Kocher suggested an improvement
for OCSP [15]. Since the VA is a global service, it must be sufficiently repli-
cated in order to handle the load of all the validation queries. This means the
VA’s signature key must be replicated across many servers which is either
insecure or expensive. (VA servers typically use tamper-resistance to protect
the VA’s signing key). Kocher’s idea is a single highly secure VA which peri-
odically posts a signed CRL-like data structure to many insecure VA servers.
Users then query these insecure VA servers. The data structure proposed by
Kocher is a hash tree2 where the leaves represent currently revoked certifi-
cates sorted by serial number (lowest serial number is the left-most leaf and

2 More, accurately, a Merkle Hash Tree (MHT) [19].
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the highest serial number is the right-most leaf). The root of the hash tree
is signed by the VA. This data structure is called a Certificate Revocation
Tree (CRT). When a client wishes to validate a certificate CERT, she issues
a query to the nearest VA server. Any insecure VA can produce a proof that
CERT is (or is not) on the CRT. If n certificates are revoked, the length of
the proof is O(log n). In contrast, the length of the validity proof in plain
OCSP is O(1).

Skip-lists and 2-3 trees: One problem with CRTs is that, each time a cer-
tificate is revoked, the whole tree must be recomputed and distributed in its
entirety to all VA servers. A data structure allowing for dynamic updates
would solve the problem since a secure VA would only need to send small
updates to the data structure along with a signature on the new root of the
structure. Both 2-3 trees proposed by Naor and Nissim [22] and skip-lists
proposed by Goodrich, et al. [9] are natural and efficient for this purpose.
Additional data structures were proposed in [1]. When a total of n certifi-
cates are already revoked and k new certificates must be revoked during
the current time period, the size of the update message to the VA servers
is O(k log n) (as opposed to O(n) with CRT’s). The proof of certificate’s
validity is of size O(log n), same as with a CRT.

3 Zooming In

Looking at the approaches reviewed above, it seems that retrofitting privacy
into CRLs or Δ-CRLs is not easy. This observation is supported by the recent
attempt by Kikuchi in [13]. As mentioned in Section 1.2, the cryptographic
accumulator approach is inefficient in terms of both bandwidth and computation.
There is, of course, a trivial solution that would entail, for each revocation check,
requesting the entire CRL (or Δ-CRL). Although effective – the target of the
revocation check remains unknown – this approach is grossly inefficient in terms
of bandwidth and client storage.

Similarly, making plain OCSP privacy-preserving is difficult because the type
of a revocation/non-revocation proof it employs is basically an on-demand public
key signature by the VA. It does not rely, at least as far as clients are concerned,
on any specific data structure for representing revoked certificates.

This leaves us with CRTs and related structures, such as 2-3 trees and skip-
lists. We start with CRTs (skip-lists are discussed in the Appendix) since they
turn out to be quite amenable to supporting privacy and inherently guarantee
completeness of query replies. (Completeness means that a lazy or malicious
server can not omit leaf nodes in response to a query without causing verification
of the root hash to fail.) Admittedly, our approach is simple (even trivial) and
relies on two basic tools:

– Range Queries: Because the number of revoked certificates typically con-
stitutes only a small fraction of issued certificates, we suggest, instead of
posing revocation queries by a specific target, to query a range or certifi-
cates. The size of the range is determined by the combination of two basic
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parameters: (1) the degree of privacy desired by the querier, and (2) the den-
sity/number of revoked certificates. The latter directly influences bandwidth
and client storage overhead.
– and

– Permuted Ordering: As designed, CRT involves ordering of revoked
certificates by (typically) certificate serial numbers. Since most CAs assign
consecutive serial numbers to consecutively issued certificates (which makes
perfect sense) groups of related certificates, e.g., issued to the same company,
would have consecutive serial numbers. Thus, we need to avoid situations
where querying for a range of certificates betrays some information about
somehow related consecutive blocks of serial numbers contained in the range.

In the rest of this paper we describe CRTs in more detail (Section 42), present
our modifications to support privacy (Section 5, describe our prototype imple-
mentation (Section 6) and conclude with examples (Section 7) and future direc-
tions (Section 8). Our approach in the context of skip-lists is presented in the
Appendix.

4 CRT Details

We now describe the CRT/OCSP scheme in more detail and, in the process,
introduce the notation used in the rest of this paper.

Consider a CRT corresponding to a specific CA and/or a block of certificates.
Let lo and hi be the lowest- and highest-numbered certificates, respectively and
n = (hi− lo+1) be the total number of certificates. A certificate with the serial
number i is denoted Ci. To simplify the description, we assume that the total
number of revoked certificates 2 < m ≤ n (leaf nodes) is a power of 2. 3 Let
L1, ..., Lm represent the leaf nodes of the CRT. Each leaf contains the serial
number of the corresponding revoked certificate and possibly other information,
such as the certificate hash, data/time of, and reason for, revocation. Finally,
the notation N(Lp) means the serial number of the certificate referred to by Lp

for 1 ≤ p ≤ m, and, for all Lp, C(Lp) = i where lo ≤ i ≤ hi. Conversely,
L(Ci) is the leaf index of a revoked certificate, i.e., for each revoked Ci, there
exists a unique p, such that: 1 ≤ p ≤ m and L(Ci) = p.

Consider two revoked certificates Cj and Ck such that j < k and, for each i,
j < i < k, Ci is not revoked. (In other words, all certificates with serial numbers
between j and k are valid.) Then, it is easy to see that there exists p such that
C(Lp) = j and C(Lp+1) = k. In most cases (with over 75% probability) any two
adjacent leaf nodes are either siblings or cousins.

Another requirement for building a CRT is a cryptographically suitable (effi-
cient, one-way and second pre-image collision-resistant) hash function H() such
as SHA-256 [23]. As in any Merkle Hash Tree [19], each non-leaf node is recur-
sively computed bottom-up by hashing the concatenation of its left and right

3 In practice, a CRT does not need to be perfectly balanced.
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Fig. 1. An example CRT query for node L3

children. Once the root node is computed, its hash, along with additional infor-
mation such as issuance and expiration date, is signed by the CA. Finally, the
signed CRT is distributed to all VAs (responders or distribution centers).

For any node in the tree, we use the term co-path to mean a sequence of nodes
representing siblings of all direct ancestors of that node.

To check revocation status, a client sends a request containing the certifi-
cate serial number, say i, to its closest VA. If Ci is not revoked, the response
consists of:

1. Two adjacent leaf nodes Lp, Lp+1 such that N(Lp) < i < N(Lp+1)
2. Three co-paths: one from Lp and one from Lp+1, to their LCA, and a third

co-path from the LCA to the root.
3. The signed root node.

If Ci is revoked, the response includes:

1. Two adjacent sibling leaf nodes Lp, Lp+1 such that either N(Lp) = i or
N(Lp+1) = i.

2. A co-path to the root starting with the sibling of their parent.
3. The signed root node.

In each case, using the data in the response, the client recomputes the root of
the CRT and compares it to the signed root. It then (in case it has not done so
yet for some previous query) verifies the CA’s signature on the root. This forms
a proof of the target certificate’s status.

The CRT/OCSP scheme is computation-efficient since it obviates the need to
sign each reply. Moreover, it removes most of the trust from VAs which are no
longer required to maintain on-line keys, as in plain OCSP. Also, the bandwidth
overhead is modest, logarithmic in terms of m – the number of revoked certifi-
cates. However, bandwidth overhead is higher than in plain OCSP which has
constant-sized query replies. Figure 1 illustrates an example CRT with a query
to node L3. The co-path returned to the client is denoted by the green nodes.
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5 Range Queries

The basic idea behind range queries is very simple, even trivial. Instead of query-
ing by a specific certificate serial number i, the client queries a range of serial
numbers (j, k) with j ≤ i ≤ k. This allows us to effectively hide the certificate
of interest. The only information divulged to the VA (third party) is that the
target certificate lies in the interval [j, k] which translates into the probability of
correctly guessing i: Pi = 1

k−j+1 . Each number in the range is equally likely to
be the serial number of interest and the third party has no means, other than
guessing, of determining the target certificate.

Furthermore, the third party has no way of telling whether the target is a
revoked or a non-revoked certificate. Assuming uniform distribution of revoked
certificate serial numbers over the entire serial number range, m

n is the fraction of
revoked certificates. The very same fraction of certificates would then be revoked
in any (j, k) range and hence (k−j+1)∗m

n adjacent leaf nodes would be contained
in the query reply.

We stress that using range queries in conjunction with CRTs does not involve
any modifications to the basic CRT data structure.

5.1 Range Size

As with many simple solutions, the challenge lies in the details. Clearly, there
is no perfect privacy attainable with range queries. The highest possible privacy
is 1

n which corresponds to querying the full certificate serial number range, i.e.,
[j = lo, k = hi], and entails receiving the entire set of CRT leaf nodes.4 The
lowest privacy level corresponds to querying – as currently done – by a specific
serial number, i.e., setting j = k = i.

The optimal query range is determined by the source of the query, i.e., the
client. Several factors must be taken into account: (1) desired level of privacy,
e.g., the probability of guessing equal to 0.001 which, equivalently, the desired
level of privacy equal to k − j + 1 = 1000, (2) additional bandwidth and storage
overhead stemming from a set of adjacent leaf nodes in the reply. It is important
to note that additional bandwidth overhead does not depend on the height of the
CRT. This is because, in the plain CRT scheme, any query reply always includes
a co-path. The same holds for our modification. The only “new” overhead is
incurred due to the number of adjacent leaf nodes returned. As described in
Section 4, at most two leaf nodes are returned if a certificate-specific query
(j = k = i) is posed. In contrast, a range query of size r entails returning � r∗m

n �
contiguous leaf nodes.

Once the range size (r) is decided, the client proceeds to set the actual range
boundaries: j and k. To do so, it first generates a b-bit random number X
where b = log(r) or the bit-length of r. X determines the position, within the
range, of the actual target certificate serial number. This step is necessary to
randomize/vary the placement of the target. Next, the boundaries are set as:

4 This is equivalent to obtaining an entire CRL.
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j = i−X and k = j + r− 1. (Special care must be taken if i < X or i−X < lo.
More on this below.)

Incidentally, we observe that, if a client poses repeated queries against the
same target certificate, varying the query range and boundaries is not advisable.
This is because, otherwise, the adversary can gradually narrow down the set of
possible targets by repeatedly computing the intersection ofmultiple query ranges.
To avoid this situation, our prototype implementation – described in Section 6 –
keeps a cache of previously queried certificates along with corresponding ranges.

A related privacy-enhancing measure is to reuse previously queried ranges.
If a certificate of interest is contained within a previously queried range, then
re-using an old query range that contains the (new) certificate of interest leaks
no additional information.

5.2 Range Size Analysis

The intuition behind our claim that a range query provides privacy is fairly
straightforward. It is impossible for the distribution center, and indeed anyone
intercepting traffic, to determine with any significant advantage the targeted
certificate in the returned range. Put another way, we claim that:

Given a client query range (j, k) and corresponding results from the
server, no adversary can distinguish with probability neglibly over 50%
among two certificates a, b ∈ (j, k) where a is the certificate of interest
and b is not.

The only information learned by an adversary about the potential target of the
query is the range. Since we require the range to be randomly determined (as
long as the certificate of interest is within the range) and a client performing
repeated queries against the same certificate uses the same range (j, k), the
attacker gains no additional information about the actual certificate of interest.
Each certificate in the range is equally likely to be the certificate of interest with
probability 1

k−j . However, we concede that, if revocation status of a particular
certificate is being queried by many clients – and each client picks its own random
range – the target certificate will be contained within the intersection of all such
queires’ ranges.

5.3 Revocation Density

In order to achieve a tailored trade off between privacy and (mostly bandwidth)
overhead, the client has to be aware of the revocation density, i.e., the ratio of
revoked-to-unrevoked certificates, denoted by m

n . We suggest two simple ways of
obtaining this value.

The simpler method requires no modifications whatsoever to the CRT data
structure. A client merely poses a dummy revocation query with a randomly
generated certificate serial number (no range query). The purpose is to elicit a
reply in the form of the proof containing a CRT co-path. Verifying the reply se-
curely convinces the client of the CRT’s height. Given the height, the number of
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leaf nodes is easily computed, assuming again that the the tree is balanced. The
revocation density immediately follows. (Note that the dummy query is needed
only once per CRT, supposing that the CRT update interval is globally known.)

If dummy queries are undesirable or keeping the CRT balanced is not prac-
tical, a minor modification solves the problem. Recall that the root of the CRT
is always signed by the issuing CA or its trusted off-line agent. One obvious
modification is to include the number of leaf nodes (or the actual ratio) in the
computation of the root node’s signature. A client initially obtains the signed
root and obtains the associated tree revocation density as a consequence of suc-
cessfully verifying the root signature.

5.4 Query Response

Upon receipt of a range query (j, k), the VA first determines the contiguous
sequence of leaf nodes corresponding to all revoked certificates within the range.
It then adds to this sequence two sentinel leaf nodes: one just beyond k and
one immediately preceding j (unless either j or k correspond to the leftmost of
rightmost leaves in the CRT, respectively). This is needed to prove completeness
of the query reply. Completeness in this context refers to expectation that a
client will receive all nodes within the range, i.e., a server can not omit leaf
nodes without causing root hash verification to fail.

All of these leaf nodes have the lowest common ancestor denoted by LCA.
The reply must includes the sequence of leaf nodes and a co-path from the LCA
up to the root. In addition, the reply needs to include two partial co-paths to
enable the client to recompute the LCA. This differs from the plain CRT scheme
where a single co-path to the root is sufficient. Of course, the additional (over
plain CRT) overhead is mainly due to returning multiple leaf nodes as part of
the verification object. As long as the revocation density – which is used to
determine the query range – is uniform, on the average �r ∗ (m

n )� leaf nodes
are returned. Also, of the two co-paths leading up to the LCA, one represents
additional overhead imposed by our method.

The respective bandwidth costs (ignoring constants) of plain CRT and the
range query extension can be compared as follows:

– Plain CRT: log(m) – two leaf nodes and a co-path from their parent (or
grandparent) to the root.

– Range Query: log(m) + log( r∗m
n ) + � r∗m

n � – a set of � r∗m
n � contiguous leaf

nodes, a co-path from their LCA to the root and two co-paths from sentinel
leafs to the LCA.

Figure 2 illustrates an example with two co-paths necessary to compute the root
hash. The first co-path includes all nodes on the left side of the subtree and the
second includes all nodes on the right. These nodes, along with the leaf nodes
in the (j, k) range, are used to compute the root of the CRT. The figure also
illustrates how computing the LCA for nodes returned in the (j, k) range results
in shorter co-paths, i.e., by computing the LCA, the co-path can begin from the
sibling node of the LCA instead of the leaf nodes.
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Fig. 2. The LCA and co-path nodes for a given (j, k) range

5.5 Forcing Uniform Distribution

In a worst-case scenario, all certificates in the desired range are revoked and
corresponding r leaf nodes must be returned to the client. The simplest solution
to this is to force all revoked certificate serial numbers to be uniformly dis-
tributed over the entire serial number range. However, this is unrealistic, since,
in practice, certificate issuers assign serial numbers to certificates consecutively
over well-defined subranges. 5 Each subrange can be used to indicate a differ-
ent product or class of products, e.g., VeriSign supports the following classes:
Standard, Commerce and Premium [5]. Requiring uniform non-sequential cer-
tificate distribution would create a maintenance nightmare for both issuers and
certificate-holders. Furthermore, gathering and analysis of statistical data would
become problematic.

We propose a simple extension to the range query technique that addresses
the problem while guaranteeing uniformity among the CRT leaf nodes. Instead
of sorting according to serial numbers, we sort leaf nodes along permuted serial
numbers. One obvious choice of suitable permutation that ensures uniformity is
a block cipher, e.g., DES, with a known and fixed key. Note that the brute-force
resistance of the block cipher is not important here. The only issue of concern is
the block cipher’s quality – for a fixed key – as a pseudo-random permutation
(PRP). Ideally, the space of all possible serial numbers would match the set of
all possible block cipher outputs. For example, DES-ECB mode outputs 64-bit
blocks which matches the size of certificate serial numbers for many X.509v3

5 This is true even in light of certain new attacks [18]. Such attacks allow an adversary
to construct a pair of valid X.509 certificates when the template for the certificate
is known or easily guessed, i.e., with high probability two sequential certificates will
have near identical header templates.
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CAs. However, the underlying permutation can be resolved with any good block
cipher, such as Blowfish or AES. We further observe that a cryptographic hash
function is not a good choice for the kind of a PRP we require. Unlike a PRP, a
hash function “reduces” its input and collisions are expected, however difficult
they might be to compute. Whereas, a PRP resolved with a block cipher such
as DES-ECB with a fixed key, guarantees no collisions.

The primary advantage of this extension is that certificate issuers can con-
tinue issuing sequentially-numbered certificates over well-defined subranges. As
long as an appropriate PRP is used, we can assure uniform distribution of the
CRT leaf nodes. An unfortunate drawback of this technique is that revoking a
whole block of consecutive certificate serial numbers becomes inefficient. This
is because permuted serial numbers are scattered throughout the total range of
serial numbers, which complicates the corresponding CRT.

6 Prototype Implementation

The range query approach described above has been implemented as a
stand-alone proof-of-concept prototype available for both Linux and Win32 plat-
forms. The tools and the source code are available for download at
http://sconce.ics.uci.edu/ppr. The toy prototype consists of the client and
server components and utilizes the popular OpenSSL crypto library [10]. There
is also a separate CA component which issues certificates and CRTs.

The prototype components are configured with the following parameters:

– Pseudo-Random Permutation Function: PRP (·)
– CA Public/Private Key-Pair: (PK, SK)
– The CRT Root Hash and its RSA signature

In this implementation, the permutation function can be one of the following
block ciphers supported by OpenSSL: Blowfish, DES, RC4.

The server component takes as input the path to an ASCII configuration file,
or loads from a default file if one is not supplied. Currently, there is no interactive
way of configuring the server. The configuration file allows for selecting a (PRP)
block cipher (or none, if so desired), the keys to be used, as well as the information
about each revoked certificate in the CRT. The information required for each
revoked certificate includes: certificate certificate number, reason for revocation,
and path to a (file) copy of the revoked certificate. The certificates are assumed
to be in the X.509v3 format, generated by the OpenSSL CA tool, in the default
.pem output. A more complete description of the configuration file is included
in the default.conf file distributed with the tool.

Once all settings are loaded from the configuration file, the server generates
the corresponding CRT based on the permuted (via PRP (·)) serial numbers and
waits for clients to initiate a connection. When a client initially connects, the
server responds with the global parameters for the system and waits for an actual
query. When a query is received, the server returns all appropriate leaf nodes in
the range requested by the client as well as the interior nodes corresponding to
the co-paths, as described in Section 5.4 above.

http://sconce.ics.uci.edu/ppr
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The client component takes as input the server’s IP address, the desired pri-
vacy level p = 1

r (where r is the query range size) and the serial number (Ci) of
the target certificate. It then computes PRP (K, Ci), and performs two queries
on the server. The first query refers to a specific but random certificate. As de-
scribed in Section 5.3, this is needed to establish revocation density. The client
verifies the first reply, and, using, the length of the returned co-path in the re-
ply, computes the number of leaf nodes. Then, it generates the random range
boundaries necessary for the desired privacy level. The formulation of the second
query, its processing by the server and reply verification by the client follow the
protocol as described above.

The current prototype is a mere proof-of-concept of little practical use. Work
is currently underway to construct a privacy-preserving CRT plug-in for the
Mozilla Thunderbird and Eudora e-mail clients. These plug-ins will have the
functionality roughly equivalent to the stand-alone prototype and will allow user-
transparent certificate status checking for the intended email destination (in case
of sending) and for the email source (as part of processing received email).

7 Real World Scenarios

Public Key Infrastructures (PKIs) are already well-established in commercial,
educational and government venues. For example, VeriSign, one of the leading
certificate issuers has more than 450, 000 public key certificates in many differ-
ent countries throughout the world [6]. The majority of e-commerce sites utilize
VeriSign certificates. Additionally, the United States Army has instituted a pro-
gram that issues public keys (contained on a personal smartcard) to all military
personnel, selected reservists, civilian employees, and on-site contractors in the
Department of the Army [17]. This initiative is quite remarkable because of its
huge scale. The Department of the Army is expecting to issue a total of around
1.4 million smartcards. Researchers have already started pointing out potential
problems with the planned implementation of the PKI infrastructure [11,3].

Both VeriSign and the Department of the Army use CRLs as the primary
means of distributing information about invalid certificates. VeriSign hosts a
public website with all CRLs [7]. Each CRLs issued includes the certificate se-
rial numbers along with a hash of the certificate. The CRLs combined together
represent over 115, 000 revoked certificates and take up 3.6 MBytes of space.
The situation is worse for the Department of the Army. In a study by the Na-
tional Institute of Standards and Technology (NIST), Berkovits, et al. [3] predict
certificate revocation frequency as high as 10%. This is based on the relatively
fast re-issue rate (every three years) and the high fluidity of the user base. Sup-
porting CRLs with upwards of 140, 000 certificates translates into a bandwidth
nightmare requiring each of the 1.4 million smart card owners to periodically
download the CRLs.

With such high bandwidth requirements for traditional CRLs, alternate so-
lutions providing low bandwidth costs need to be explored. Our approach offers
client-selectable bandwidth/privacy trade-off.
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8 Future Directions

The proposed range query approach takes advantage of the CRT structure to
offer low bandwidth overhead and obtain client-specified level of privacy. The
CRT structure has the additional benefit of providing efficient (in terms of com-
putation) cryptographic proofs for target certificates. However, our approach
represents only the initial simple step in this line of research and much more
remains to be done.

One outstanding issue is the analysis of privacy loss in the presence of repeated
queries. If we assume that multiple clients, at about the same time, are all
interested in a particular target certificate (e.g., because of a breaking news
article) and the adversary (third party or VA) is aware of the potential target,
co-relating multiple range queries does not seem difficult since all the range
queries in question would have at least one certificate in common. A similar
situation occurs if a single client, over time, repeatedly queries the status of the
same target certificate – in this case, narrowing the overlap of all queries’ ranges
gradually erodes privacy and might eventually yield a single target certificate.

Finally, the usability factor remains largely unexplored. Many wonderful
security- and privacy-enhancing techniques have been proposed and lauded by
the research community only to quietly fade into obscurity due to usability is-
sues. As mentioned earlier in the paper, revocation checking is unfortunately all
but ignored by the majority of Internet users. For this reason, finding simple and
unobtrusive ways of making average users aware of both the need for revocation
checking and the need to protect their privacy (as part of revocation checking)
is a major challenge.

9 Conclusions

The work described in this paper represents a very simple yet novel approach
for addressing privacy concerns in revocation checking. Each client, depending
on the desired level of privacy, can determine a query range that best suits its
needs. This results in a fundamental trade-off between privacy and bandwidth
overhead. In the worst case, the overhead can be significant if the desired pri-
vacy level is high and as is the number of revoked certificates. However, if only a
small fraction of all certificates are revoked, our approach results is reasonably
efficient. Furthermore, experience from real-world environments (based on revo-
cation statistics from government, commercial, and military sources) suggests
that the proposed solution would work well since revoked certificates represent
a tiny fraction of the total numbers of issued certificates.
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Appendix A: Range Queries in Skip-Lists

The ranqed query technique can also be applied to other revocation structures
mentioned in Section 2. We now discuss providing privacy in the context of skip-
lists which were proposed for revocation purposes by Goodrich, et al. [9] The
authenticated dictionary approach based on skip-lists and commutative hash-
ing [9] can be used as a certificate revocation structure. The resultining data
structure is a traditional skip-list amended with commutative hashing. A hash
function is said to be commutative if h(x, y) = h(y, x) for all x and y. A candidate
construction for such a hash function is:

h(x, y) = f(min{x, y}, max{x, y})

Here, h() is a hash function that takes two integer arguments, x and y of equal
bit-size and maps them to a k-bit integer h(x, y). Additionally, sequences of
integers (x1, x2, ..., xn) can be hashed together by using the resultant hash as the
input for the next iteration of the hash function: h(x1, h(x2, ...h(xn−2, h(xn−1,
hn)) · · ·))

This notion of commutative hashing allows for the creation of authenticated
dictionary based on skip-lists. Each node in the skip-list contains the hash of
its neighbor to the right causing a hash chain up to the root. The root node
represents the combined hash of all nodes in the skip-list. Further details of the
hashing process (for both tower and plateau nodes) can be found in [9].

When used as certificate revocation structure, a skip-list with commutative
hashing can also provide a short proof. When a query for a target node is posed,
the nodes along the search path are returned to the client who, by repeated
commutative hashing, can verify the hash of the root. If the hash value matches
the signed root then

Figure 3 shows the query path for value 75 in the skip-list. The colored nodes
represent the search path taken to locate the node. These colored nodes become
the hash values returned to the user to verify the root the hash. We can now
easily extend this data structure to preserve privacy. The technique is similiar to
the original CRT solution. Instead of querying for a single node, we query for a
single node and for a range of nodes to return. The result from the server is the
search path for the smallest node in the query and all nodes in the query range.

Since each node contains the hash value of the node immediately to its right,
the client takes each returned node and computes the hash for the smallest node.
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Fig. 3. Query for 75 on a skip-list with commutative hashing. Colored nodes represent
search path and arrows represent direction of hash flow to root

Fig. 4. Range query (10,60) using skip-lists and commutative hashing

If the computed value correctly matches the value returned by the server the
client can be assured that no nodes have been omitted from the search results,
and that the results are complete.

The second step of the verification process involves using the search path to
the smallest node and the smallest node itself to compute the hash value of the
root node. If the computed value matches the signed root hash value then the
client can be assured that all nodes returned are revoked and that none have been
omitted. An example of this process can be seen in Figure 4. In this example, a
client makes a query on node 10 with a range of 60, making the complete search
range from 10 to 70. Node 75 must be included in the results to prove to the
client that no nodes have been omitted from the search results.

The green nodes represent the search path to node 10, while the red nodes
represent all nodes in the range returned to the client. A client can then verify
the validity of the results using the process described above. In this example,
nodes are hashed from 73 down to 10 and then verified that this value is the
hash value returned by the server. If this verifies then the root hash is computed
by using the search path (green) nodes.
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